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The best theories are the ones that have settled, either by virtue of their actual
genesis or more commonly through their subsequent evolution, at the right level
of generality. They must be sufficiently general to encompass problems of broad
interest and applicability, but not so super-general as to allow for an expanse of
phenomena not amenable to any sort of reasonable taxonomy. There is of course a
litany of subjects of questionable merit that fail to satisfy one of these criteria (and
sometimes both), but in these terms it is difficult to imagine one that meets them
more spectacularly than the representation theory of finite-dimensional simple Lie
algebras. The definition is entirely elementary: a Lie algebra is a vector space g

together with an alternating bilinear map [·, ·] : g × g → g satisfying the Jacobi
identity (a kind of associativity for [·, ·]). The modifier “simple” means that g

is atomic in the sense that it has no proper nontrivial ideals; here an ideal is a
subspace such that [X,Y ] also belongs to the ideal whenever X is in the ideal and
Y is an arbitrary element of g. (Conventionally a simple Lie algebra is also not
allowed to have dimension one.)

A hint at why this definition is so interesting is the classification of simple com-
plex Lie algebras (achieved in 1894 by E. Cartan). Since there are no ideals to
help, one works with the next best thing: a maximal abelian subspace h (i.e. a
subspace on which the restriction of [·, ·] is identically zero). It turns out that each
[H, ·] ∈ EndC(g) for H ∈ h is a semisimple endomorphism of g, and since h is
abelian, it is possible to simultaneously diagonalize the action of each [H, ·]. The
resulting nonzero generalized eigenvalues α ∈ h∗ are called roots. They satisfy a
strong rationality property, and as a consequence their Z-span is a lattice of rank
equal, in fact, to the full dimension of h∗. This so-called root lattice essentially
characterizes g and (among other things) comes equipped with a Euclidean struc-
ture. The notion of a root lattice can be axiomatized, and subsequently all such
can be classified and each can be shown to correspond to a complex simple Lie
algebra. The classification yields four infinite families of algebras, each more or
less indexed by the natural numbers (for instance, one family is the set of traceless
endomorphisms of Cn with [A,B] = AB − BA), and five “exceptional” algebras,
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G2, F4, E6, E7, and E8, where the subscript indicates the dimension of the root
lattice.

Regardless of whether or not the details of this classification are familiar to the
reader, the point is that the answer foreshadows the flavor of the entire subject. It is
discrete in essence, and consequently this combinatorial backbone permeates many
aspects of the representation theory of simple Lie algebras, even where one might
not expect much combinatorics at all. As for the specifics of the classification, the
existence of such a short list of exceptional algebras is completely unexpected: one
would either expect no exceptional algebras at all or a very long list of them. They
must surely be considered a gift of divinity gratis. It should come as no surprise,
therefore, that the root lattice for E8 is one of the world’s most interesting lattices.
For instance, it is the best lattice packing of spheres in eight dimensions, probably
the best of any packing in eight dimensions (though this is still open); and in terms
of a canonical normalization of distance, the number of lattice points whose length
is less than 2n (for any integer n) is equal to 240 times the sum of the cubes of the
exact divisors of n.

But the classification is of course just the tip of the iceberg. Cartan went on
to study the irreducible finite-dimensional representations of a complex simple Lie
algebra g. Such a representation is a linear map φ : g → EndC(V ) respecting
the bracket operator in the sense that φ ([X,Y ]) = φ(X)φ(Y ) − φ(Y )φ(X). It is
irreducible if there is no proper nontrivial subspace V ′ ⊂ V such that φ(g)V ′ ⊂ V ′.
There is a natural notion of a choice of a positive system of roots ∆+ such that
each root α is either in ∆+ or else −α ∈ ∆+. For a fixed choice of ∆+, it transpires
that each irreducible finite-dimensional representation contains a vector v, unique
up to scalar, such that φ(X)v = 0 for all X ∈

⊕
α∈∆+ gα; here gα is the generalized

α eigenspace for the action of [H, ·] ∈ EndC(g). Moreover, there exists λ ∈ h∗

such that φ(H)v = λ(H)v for all H ∈ h. (The terminology is that v is a highest
weight vector of weight λ.) The weight λ characterizes (the equivalence class of)
the irreducible representation, and it is easy to say which λ arise as highest weights
of finite-dimensional irreducible representations. This is the celebrated Theorem of
the Highest Weight, and it has ubiquitous applications.

The finite-dimensional highest weight theory is really all that is germane to the
current review, but having come this far it is impossible to resist at least giving a
taste of the beautiful theory of infinite-dimensional irreducible representations of
g which possess a highest weight vector in the sense of the preceding paragraph.
Suitably defined (as in the fundamental work of Bernstein-Gelfand-Gelfand), these
representations form a category HW , and the classification of irreducible objects
follows in much the same way as the finite-dimensional theory. But here a new
wrinkle enters: there are nontrivial extensions between irreducible objects in HW,
something that does not happen for finite-dimensional irreducibles. In the late
1970’s, Kazhdan and Lusztig changed the trajectory of inquiry by introducing an
auxiliary algebra and suggesting (in a slightly different form) that the extension
problem possibly had purely geometric content. Subsequently it was established
that HW was equivalent, very roughly speaking, to a geometric category of equi-
variant sheaves. The irreducible objects in HW corresponded to sheaves supported
on singular algebraic varieties, and the computation of Ext groups inHW amounted
to computing the local intersection cohomology of these singular spaces.
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The development of the theory of highest weight modules proved to be a par-
adigm for other categories of representations, and many questions regarded once
as purely representation theoretic have subsequently been interpreted as problems
in the study of the homology of singular algebraic varieties. Perhaps the most
mysterious of all is the geometric theory of the Langlands conjectures, where even
questions of arithmetic harmonic analysis have been conjecturally translated into
purely geometric ones. In some narrowly interpreted cases, representation theory
has been subsumed as a subfield of algebraic geometry—a subfield, incidentally,
which is arguably of the right level of generality in the sense discussed at the out-
set.

∗

For Lie, the progenitor of the subject, the fundamental objects of study were
“finite continuous groups”. Roughly speaking, Lie’s finite continuous groups are
what we nowadays call Lie groups, that is, a smooth manifold G together with a
group structure whose multiplication and inversion maps are smooth.

The above discussion of simple Lie algebras — with no groups at all in sight
— was only meant to touch on some ideas in the subject. (To mention only two
serious omissions: there is no mention of the vital contributions of Weyl to the
highest weight theory, and there is no mention of the Borel-Weil theorem describ-
ing geometric realizations of finite-dimensional representations, even though this
theorem was decisive motivation for the kind of geometric categorical equivalence
mentioned in the context of HW above.) But the conspicuous absence of groups in
the discussion was not entirely without calculation. The key point is that under-
standing the definition of simple Lie algebras, their classification, the essence of the
highest weight theory, and even the original formulation of the Kazhdan-Lusztig
conjecture requires nothing beyond a command of abstract linear algebra. But
even the definition of a Lie group requires substantially more, including at least an
understanding of manifolds, point-set topology, and abstract group theory.

To understand the further pedagogical implications of this observations, one
needs to understand the so-called Lie correspondence, the dictionary between Lie
groups and Lie algebras. To each Lie group G, one associates a real Lie algebra of
vector fields that are invariant under left translation. This construction is local, so
it cannot distinguish the connected component of the identity of G from G itself,
nor can it distinguish G from a topological covering of G. But it is relatively easy
to make precise the sense in which this construction is one-to-one. (That it is onto
— that is, that every real Lie algebra comes from a Lie group — is a difficult result
often known as Lie’s Third Theorem.)

One may ask to what extent the passage from a Lie group G to Lie algebra
g behaves nicely with respect to subgroups and subalgebras. This is not so easy.
Intuitively the kind of statement that one wants is that the Lie subalgebras of
g correspond exactly to the Lie subgroups of G. It is clear what one means by
a Lie subalgebra (a vector subspace closed under bracket), but exactly what one
means by a Lie subgroup is more subtle. A basic example is the two-torus with
Lie algebra R2, where one wants a line of irrational slope in R2 to correspond
to an infinite winding on the torus. This example shows that one must consider
subgroups (like the infinite winding) whose topology does not coincide with the
relative topology on the whole of G. On the other hand, the closed subgroup
theorem asserts that a closed subgroup of a Lie group with the relative topology
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is again a Lie group, and it follows easily that the Lie algebra of the subgroup is
a subalgebra of the Lie algebra of the ambient group. The issue then is to find
some class of subgroups of G that contains the closed ones and which corresponds
exactly to subalgebras of g. Chevalley found the right class of subgroups, and this
is one of the main contributions of his classic 1946 text [Ch]. To establish the
correspondence of subalgebras and subgroups, he relied on the Frobenius theory to
solve systems of partial differential equations defining submanifolds, or, in a more
geometric language, to pass from involutive subbundles of the tangent bundle of a
given manifold to integral submanifolds.

Finally, one may ask to what extent morphisms of Lie groups correspond to
morphisms of their associated Lie algebras. By differentiation a smooth map of
Lie groups gives a map of corresponding Lie algebras. While each map of Lie
algebras need not lift to the groups from which they come, the map does at least
lift to the simply connected coverings of the groups in question. These statements
follow relatively painlessly (using an argument in [Ch]) from the correspondence of
subgroups and subalgebras given in the previous paragraph.

It is worth pausing to emphasize the remarkable nature of the Lie correspon-
dence. It makes precise the sense in which the structure of a Lie group is so rigid
that the group is essentially controlled by its Lie algebra, an ostensibly far less
structured object. In turn, we sketched above how the most basic and atomic Lie
algebras (the simple ones) are essentially controlled by a combinatorial structure.
Thus a simple Lie group — an outwardly complicated confluence of geometric, an-
alytic, and algebraic structures — remarkably reduces in many ways to a kind of
combinatorial skeleton. This astounding reality at once captures the flavor and
power of the subject.

To return to more immediate matters, the above discussion clearly indicates
that understanding the dictionary between Lie groups and Lie algebras demands
significant mathematical sophistication beyond even that required to understand
and appreciate the definition of a Lie group. The consequent pedagogical problem
is that a linear treatment of the Lie correspondence, together with the time it takes
to fill in any missing prerequisites, can easily burn almost an entire semester’s
course. Students leave with the dictionary in hand along with a few examples
of Lie groups but little else except possibly a painful memory of a tortuously dry
experience and possibly a too-hurried overview of some aspects of the highest weight
theory. Increasingly it seems that graduate students (and strong undergraduates)
are adapting to this reality by learning the more elementary Lie algebra theory up to
the highest weight theory (say from the standard and still excellent [Hu]), accepting
the dictionary as axiomatic (and without proof), and then applying the theory of
Lie groups to the particular setting that they need in their own thesis work, be it
in symplectic geometry or mathematical physics or whatever their specialty may
be. In principle there is nothing wrong with this approach. After all, most learning
in graduate school follows such a nonlinear path where some concepts are taken on
faith in the kind of synthesis that underlies all mathematical research. But while
good students of mathematics always return to fill in their missing proofs, less-than-
good students do not. The danger is the creation of a generation of practitioners
of Lie theory who are ignorant of the foundations of the theorems they employ.

Of course if there were an expository breakthrough making the dictionary at once
more accessible and coherent, the danger might be avoided altogether. Certainly
people have tried. The review [K] counts over twenty-five attempts, none of which
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deserves the title of breakthrough in this sense. One must ask: Is it really reasonable
to expect a significant improvement (beyond incremental polishing and updating) of
the gold standard of Chevalley’s treatment of the Lie correspondence? Rossmann’s
book provides an affirmative answer.

∗

In an effort to simplify the exposition of the correspondence of Lie groups and
Lie algebras, a natural idea is to focus not on general Lie groups but instead on
linear groups, that is, those Lie groups whose elements consist of invertible matrices.
This is a nontrivial restriction, yet a restriction that makes good sense: it is linear
groups that arise most frequently in applications and capture the subtleties of the
theory, and the general nonlinear theory can best be absorbed after a mastery of
linear examples. This is the approach that Rossmann’s book takes.

But even after agreeing on narrowing the focus to groups of matrices, further
choices must be made for the subsequent exposition of the Lie correspondence.
The essence of the further choices is topological. Chevalley’s argument relating
subgroups to subalgebras makes essential use of the manifold structure of the objects
under consideration (inasmuch as he invokes the Frobenius theory). Thus most
treatments of linear groups from the very beginning restrict attention further to
those that have a manifold structure. (Anticipating the closed subgroup theorem
— which can be proved from rather elementary principles, as in [Ho] for example
— some treatments are confined to closed subgroups of matrices, but as mentioned
above, this is too restrictive to treat the subgroup-subalgebra correspondence.) As
Rossmann aptly points out in the preface, the imposition of additional topological
hypotheses appears logically superfluous, since ultimately it is often deduced after
the fact that any connected abstract subgroup of invertible matrices is indeed a
manifold in a natural way. But any argument involving the Frobenius theorem is
such that this consequence cannot be taken as the starting point.

Rossmann adopts a new approach and instead works with arbitrary sets of in-
vertible matrices closed under inversion and multiplication but with absolutely no
topological assumptions. In the first chapter he develops the main tool of his treat-
ment, the exponential map of matrices, which is defined as usual as a power series.
In a neighborhood of the identity matrix in the space of all invertible matrices of
a fixed size, the exponential map admits an inverse. In this neighborhood it is
possible to relate the product exp(X) exp(Y ) to iterated bracket operations of the
form XY − Y X . This is the Campbell-Baker-Hausdorff formula, which appears at
the end of Chapter 1 and which plays a decisive role in the subsequent exposition.

The second chapter defines the Lie algebra g of a linear group G, as usual, as the
set of matrices that appear as differentials (at the identity) of curves in G. It is easy
to see that g is closed under the bracket operation XY − Y X , so really defines a
Lie algebra. But then Rossmann, again with no additional topological assumptions
on G, establishes a surprising result (or at least surprising to me): the exponential
map always carries the Lie algebra g back into G. Given this fact, he can import
a topology to G by declaring a basis of open sets to be the translates in G of the
exponential image of ε-balls in g (defined by the requirement that the sum of the
squares of their matrix entries are less than ε). This is a nonstandard topology
and need not agree with the relative topology on G inherited from the full space of
invertible matrices. The fact that exp(g) ⊂ G also allows one to import coordinates
on G by exponentiating a basis of g. This gives the connected component of the
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identity in G the structure of a manifold (though Rossmann does not yet use this
terminology).

With the treatment of coordinates and the Campbell-Baker-Hausdorff formula
in hand, Rossmann is able to prove the correspondence between subalgebras of g

and subgroups of G that are connected in their intrinsic (not relative) topology.
The correspondence is achieved in Section 2.5 by a lovely conceptual argument.
From there, Rossmann adapts an argument originating in [Ch] and gives a clean
treatment of the correspondence of morphisms. Even here his exposition is more
elementary than one might have thought possible and avoids any recourse to the
definition of homotopy groups. Finally, he proves the closed subgroup theorem for
linear groups in the guise that the relative and nonstandard topologies of a closed
subgroup of a linear group coincide.

Thus in the span of just two chapters, weighing in at a not-very-dense ninety
pages, Rossmann provides nearly the entire dictionary between linear Lie groups
and their Lie algebras. (There is no treatment of Lie’s Third Theorem, but this
is too difficult for any elementary book on the subject.) Nothing beyond linear
algebra, rudimentary abstract group theory, and multivariable calculus (up to the
inverse function theorem) is required. In particular, there is no mention of mani-
folds, no use of the Frobenius theorem, and no mention of homotopy groups. This
is a significant accomplishment.

The remaining four chapters of the book expand the scope of the Lie correspon-
dence to general Lie groups, discuss the classical real Lie groups in detail, and
treat the highest weight theory (as sketched above) for finite-dimensional repre-
sentations of classical groups. The treatment of these topics is more in line with
other existing sources, though it is notable that Rossmann works not to duplicate
these sources but to complement them (and always with an eye for keeping prereq-
uisites minimal). Typical of this approach is Section 3.4. Here he at last defines
the fundamental group and, following Weyl, gives a beautiful and visually intuitive
computation of π1 of the compact classical groups. Rossmann concludes the sec-
tion with Cartan’s version of the computation, which is based on the theory of the
root lattice (and which generalizes to exceptional groups). Rossmann avoids the
standard inductive computation using the long exact sequence of homotopy groups,
and this is appropriate for at least three good reasons in the current context: the
inductive argument is less conceptual, it requires more machinery, and (unlike the
approaches of Weyl and Cartan) it appears in a great many other sources.

The book would have benefited enormously from more careful editing. There are
an alarming number of typographical errors, including extraneous symbols inserted
apparently at random, characters appearing in the wrong font type, and references
to nonexistent entries in the bibliography. These are mostly innocuous, sometimes
annoying, and at least on one occasion actually disruptive. The disruption comes
in the form of a whole series of confusing misprints in the proof of Theorem 1
beginning on page 67. (The placement of these misprints is especially unfortunate,
as this theorem is really at the heart of Rossmann’s unique approach.) The review
[K] carefully details these mistakes and corrects them. Rossmann also maintains
a webpage, easily accessible from his homepage, where he has begun documenting
corrections to the text.

Anyone who has been privileged to work with Rossmann’s research ideas knows
that he is beholden to no one’s traditions but his own. In capable hands, that kind
of free thinking invariably leads to considerable and unanticipated advances. This
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time Rossmann has turned his attention to the exposition of elementary Lie theory
and has, indeed, advanced the subject considerably.
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