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CATALAN’S CONJECTURE : ANOTHER OLD DIOPHANTINE
PROBLEM SOLVED

TAUNO METSÄNKYLÄ

Abstract. Catalan’s Conjecture predicts that 8 and 9 are the only consecu-
tive perfect powers among positive integers. The conjecture, which dates back
to 1844, was recently proven by the Swiss mathematician Preda Mihăilescu.
A deep theorem about cyclotomic fields plays a crucial role in his proof.

Like Fermat’s problem, this problem has a rich history with some surprising
turns. The present article surveys the main lines of this history and outlines
Mihăilescu’s brilliant proof.

1. Introduction

Catalan’s Conjecture in number theory is one of those mathematical problems
that are very easy to formulate but extremely hard to solve. The conjecture predicts
that 8 and 9 are the only consecutive perfect powers, in other words, that there are
no solutions of the Diophantine equation

(1.1) xu − yv = 1 (x > 0, y > 0, u > 1, v > 1)

other than xu = 32, yv = 23.
This conjecture was received by the editor of the Journal für die Reine und Ange-

wandte Mathematik from the Belgian mathematician Eugène Catalan (1814–1894).
The journal published it in 1844 [CAT]. Catalan, at that time a teacher at l’École
Polytechnique de Paris, had won his reputation with a solution of a combinatorial
problem. The term Catalan number, still in use, refers to that problem. As to the
equation (1.1), Catalan wrote that he “could not prove it completely so far.” He
never published any serious partial result about it either.

The conjecture became a challenge for mathematicians, and some interesting
results about particular cases of the equation appeared soon. However, during the
first hundred years or so, all results were of a more or less isolated nature. After that,
towards the end of the 1950s, there were several remarkable ideas evolving almost
simultaneously, and in the 1970s the study was electrified by a result reducing the
problem to a finite computation. Yet it appeared that the required computational
work was all too big to be feasible. From that time on, the main direction of the
study was in the efforts to diminish the amount of that work.

This was the situation in 2002 when Preda Mihăilescu, a mathematician practi-
cally unknown to the experts in this area, turned up with a complete proof of the
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conjecture. Surprisingly, his proof has very little to do with computation, making
instead use of deep theoretical results, notably from the theory of cyclotomic fields.

Mihăilescu, born in 1955 in Romania, received his mathematical education at
the ETH Zürich. He has worked in the machine and finance industry but is now
doing research in Germany at the University of Paderborn.

The present article describes briefly the landmarks in the history of the work on
Catalan’s problem and outlines Mihăilescu’s brilliant solution.

2. Early and not-so-early history

About 100 years before Catalan sent his letter to Crelle, Euler had proven that 8
and 9 are the only consecutive integers among squares and cubes, that is, the only
solution of the Diophantine equations

(2.1) x3 − y2 = ±1 (x > 0, y > 0).

Euler’s proof is ingenious but somewhat tedious. Among other things, it resorts to
the method of infinite descent due to Fermat.

As a background to (1.1) it is illuminating to look at how the special equations
(2.1) are solved by current methods of algebraic number theory. Let (x, y) be a
solution. Take first the equation with the plus sign and write it in the ring Z[i] of
Gaussian integers as

(2.2) x3 = (y + i)(y − i).

Since Z[i] is a unique factorization ring, we may speak about the gcd of its elements.
Let d be the gcd of y + i and y − i (unique up to a unit factor). The equations
y + i = dλ, y − i = dµ imply that d|2. On the other hand, d divides x and x must
be odd, since y2 ≡ 0 or 1 (mod 4). Hence d is a unit, that is, one of the numbers
±1, ±i.

We have y + i = d(a + bi)3 with a, b ∈ Z. But d is anyway a 3rd power in Z[i]
and so may be ignored here. Looking separately at the real and imaginary parts
in the equation y + i = (a+ bi)3, we find that y = 0 (and x = 1), a contradiction.
Thus there is no solution.

The second equation will be written in a similar form,

x3 = (y + 1)(y − 1).

The gcd of y + 1 and y − 1 is 1 or 2. In the former case we see that 2 would be a
difference of two cubes, which is impossible. The latter case correspondingly leads
to the equations

a3 − 2b3 = ±1.

Hence the number a − bα, with α = 3
√

2, is a unit in Z[α], the ring of integers in
the real cubic field Q(α). The units of this ring are, up to sign, powers of the single
unit 1 + α + α2. With some work one finds that |a − bα| can only be the zeroth
power, so that a = ±1 and b = 0. Returning to the original equation we get the
solution x = 2, y = 3.

To prove Catalan’s Conjecture, it obviously suffices to consider the equation

(2.3) xp − yq = 1 (x > 0, y > 0),

where p and q are different primes.
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The case of q = 2 was solved in 1850 by V.A. Lebesgue [LEB] (not to be confused
with his more famous namesake). At that time one already knew the arithmetic of
Gaussian integers, so that the equation could be treated in the form

xp = (y + i)(y − i),
analogous to (2.2). The gcd of y + i and y − i is again a unit, but this time it
cannot be easily ignored. Hence we have a pair of equations,

y + i = is(a+ bi)p, y − i = (−i)s(a− bi)p,
where s ∈ {0, 1, 2, 3}. From these, y can be eliminated in several ways, and the
equations so obtained lead to a contradiction. Thus the equation xp − y2 = 1 has
no solution.

How about the case of p = 2 in (2.3)? This remained a mystery for a long time.
As late as 1961 a result was published proving that a possible solution of x2−yq = 1
necessarily has x > 103·109

. The news that a Chinese mathematician, Chao Ko,
had just proven this equation insolvable had not yet reached the mathematical
community. The proof became known in 1964 when it appeared in Scientia Sinica
[KO].

In 1976 E.Z. Chein [CHE] published a new, very elegant proof. It is based on a
result by T. Nagell [NAG] stating that the solution (x, y) must satisfy 2|y and q|x.
Considering the equation in the form

(x+ 1)(x− 1) = yq,

Chein concluded that the gcd of x + 1 and x − 1 is 2, so that there are coprime
integers a and b, with a odd, satisfying the equations

(2.4) x+ 1 = 2aq, x− 1 = 2q−1bq

or, alternatively, similar equations with x+1 and x−1 interchanged. If q > 3, then
(2.4) can be shown to imply a condition

(ha)2 + b2 = (a2 − b)2,

where h2 = a2 − 2b, and the alternative equations yield a similar condition. These
are both Pythagorean type equations, and thus their complete solution is known.
From this it follows that x and y fail to exist (for q > 3).

More details about the above solutions can be found in Paulo Ribenboim’s nice
monograph [RIB]. That book gives a comprehensive history of Catalan’s Conjecture
until 1994.

3. Cassels and Case I

From now on it is convenient to consider Catalan’s equation in the form

(3.1) xp − yq = 1 (xy 6= 0, p, q different odd primes).

Thus, unless otherwise stated, negative integers x, y are allowed as well.
By way of “multiplicatization” of the equation, rewrite it as

(x− 1)
xp − 1
x− 1

= yq.

What is the gcd of the two factors on the left hand side? By considering the
identity xp = ((x− 1) + 1)p one easily finds that there are two possibilities: the
gcd is either 1 or p.
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A similar situation occurs in the study of the Fermat equation xp + yp = zp,
where the left hand side can be split into the product of x+y and (xp+yp)/(x+y).
Here, too, the gcd of these factors is 1 or p, and this leads to Case I and Case II of
the problem, respectively. Historically, Case I was “easier”, and many people felt
optimistic that the classical approach in this case might eventually prove successful.
In the solution by Andrew Wiles this kind of classification played no role.

For the equation (3.1) we may similarly speak about Case I and Case II according
to the value of the gcd above. In Case I, when the gcd equals 1, we obtain the
equations

x− 1 = aq,
xp − 1
x− 1

= bq, y = ab,

where a and b are coprime and not divisible by p. In 1960 J.W.S. Cassels [CAS]
showed that these equations yield a contradiction. His method is elementary, a
striking mixture of divisibility relations and inequalities. A different proof was later
discovered by S. Hyyrö [HY2], who somewhat amazingly could apply his results
about the Diophantine equation axn − byn = z.

This means that we are left with Case II. In particular, one of the two numbers
x−1 and (xp−1)/(x−1) contains p just in the first power. But this number cannot
be x− 1, since in that case xp− 1 would only be divisible by p2. Therefore we have
the equations

(3.2) x− 1 = pq−1aq,
xp − 1
x− 1

= pbq, y = pab,

where again a and b are coprime and p does not divide b (but p may divide a).
Analogous equations follow from the factorization of xp into the product of y + 1
and (yq + 1)/(y + 1). In particular, y is divisible by p and x is divisible by q.

From the last result it follows, by the way, that there cannot be three consecutive
perfect powers – a good exercise for the interested reader.

Cassels’ theorem was one of the first general results about Catalan’s equation
(3.1). It gave a significant impulse to the study of this equation.

4. Can the problem be solved by a computer?

Around the middle of the last century Catalan’s Conjecture began to interest
people working on Diophantine analysis. One of their early observations was that
the number of solutions (x, y) to (3.1), for fixed exponents p and q, is at most
finite. This is a consequence of a general theorem about integer points on a curve,
published by C.L. Siegel in 1929. A result by H. Davenport and K.F. Roth from
1955 further allowed one to derive an explicit – though enormous – upper bound for
that number, as shown in [HY1]. (For other results about the number of solutions,
see the introductory section in [TIJ].)

A turning point in this direction came in the seventies, some time after Alan
Baker had obtained his fundamental estimates for linear forms of logarithms. To
give an idea of Baker’s result, let

Λ = b1 log r1 + · · ·+ bn log rn,

where the bj are integers and the rj are positive rational numbers. Define the
height of a rational number r = s/t (in lowest terms) as log max(|s|, |t|) and let
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B = max(|b1|, . . . , |bn|). Suppose that Λ 6= 0. Baker proved an inequality of the
form

|Λ| > exp(−A logB),

where A is an explicitly computable positive number depending on n and on the
heights of r1, . . . , rn.

This result, or in fact a slight refinement, was used by Robert Tijdeman [TIJ] to
bound a solution (x, y, p, q) (with x, y positive) of Catalan’s equation from above.
The strategy is to find linear forms Λ depending on this solution in a special way:
an upper bound for |Λ| implied by (3.1) should be sufficiently close to Baker’s lower
bound. Tijdeman’s clever choices were

Λ1 = q log q − p log p+ pq log
pa

qa′
= log

(x− 1)p

(y + 1)q
,

Λ2 = q log q + p log
pq−1aq + 1
qqa′q

= log
yq + 1

(y + 1)q
,

where a is defined by the equation x− 1 = pq−1aq in (3.2) and a′ is defined by the
analogous equation y + 1 = qp−1a′

p. Since

(x− 1)p < xp = yq + 1 < (y + 1)q,

Λ1 and Λ2 are nonzero. A comparison of lower and upper bounds of |Λ1| leads to
an inequality between p and q, and the same happens with |Λ2|. These inequalities
are indeed sharp enough to yield, on eliminating q, a condition

p < c1(log p)c2 ,

where c1 and c2 are constants. This requires that q < p, but in the case q > p a
similar argument gives a corresponding condition for q.

It follows that the exponents p and q are bounded from above, and the bound is
independent of x and y. So the nature of our problem changed dramatically: there
is only a finite number of solutions (x, y, p, q), and still more, one can compute
explicit bounds for the unknowns.

Indeed, the constants c1, c2 above are effective. The first explicit computations
produced astronomical upper bounds for p and q, but refinements of the method
have given estimates of more modest size. By the best result, the upper bound for
max(p, q) is about 8 ·1016 (for this and similar results, see Mignotte’s article [MI2]).
This limit is of course still far beyond anything useful for practical purposes.

Note that when restricting to positive x and y above we did not lose anything,
since (3.1) may also be written in the form

(4.1) (−y)q − (−x)p = 1.

A very instructive exposition of a Tijdeman-type reasoning based on more recent
estimates of logarithmic forms (in the special cases of interest here) can be found
in Yuri Bilu’s article [BIL].

What happens, by the way, when our equation is replaced by xp− yq = c, where
c > 1 is a given integer? For fixed p and q, Siegel’s theorem again implies that the
number of solutions (x, y) is finite. But allowing the exponents to vary makes the
situation much more complicated: we do not know whether the number of solutions
(x, y, p, q) is finite, not to mention any effective upper bound.
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5. The Wieferich pairs

The preceding results prompted a search for further restrictions on putative
solutions.

Recall that we transformed our equation xp − yq = 1 in (3.2) in the form

xp − 1
x− 1

= pbq (p - b).

This suggests a traditional approach of factorizing the left hand side in Z[ζ], the ring
of integers in the pth cyclotomic field Q(ζ) (ζ = e2πi/p). Combining this procedure
with the observation that

p =
[xp − 1
x− 1

]
x=1

=
p−1∏
k=1

(1− ζk),

we obtain the equation
p−1∏
k=1

x− ζk
1− ζk = bq.

Write x−ζk = (x−1)+(1−ζk) and notice that x−1 was found to be divisible by p
(see (3.2)). It follows that the quotients (x−ζk)/(1−ζk) are in Z[ζ]. Unfortunately,
this ring is no ufd in general. To restore good factorization properties we thus have
to replace our numbers with the ideals they generate. Now it is not difficult to show
that the principal ideals 〈(x − ζk)/(1 − ζk)〉 are pairwise coprime. Hence each of
them is a qth power of some ideal, in particular

(5.1) 〈x− ζ
1− ζ 〉 = Jq,

where J is a nonzero ideal of Z[ζ].
All this is analogous to Kummer’s classical work on the Fermat equation and

was published by K. Inkeri [IN2] in 1990. In his article Inkeri went on in the same
spirit by making the assumption that the class number of the field Q(ζ) is prime
to q. Then, along with Jq the ideal J has to be principal, say J = 〈γ〉, and (5.1)
implies an equation

(5.2)
x− ζ
1− ζ = εγq,

where ε is a unit in Z[ζ].
There are infinitely many units in this ring, but one can overcome this obstacle.

Indeed, consider (5.2) together with its complex conjugate and use the fact that ε
and ε differ by a factor which is a root of unity. In this manner Inkeri was able to
obtain, after some manipulation, the result that q2|x. Remember that we had q|x
by Cassels. The strengthening here is based on the Rule of Lifting the Exponent,
which every student of number theory meets in this elementary form: if aq ≡ bq

(mod q), then aq ≡ bq (mod q2). We will come across this rule several times in the
sequel.

On rewriting the first equation in (3.2) as

x = (pq−1 − 1)aq + aq + 1,
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Inkeri drew the further consequence that q2 divides pq−1 − 1. By (4.1) the roles of
p and q can be interchanged, and thus we have a strange pair of congruences,

(5.3) pq−1 ≡ 1 (mod q2), qp−1 ≡ 1 (mod p2),

provided the class numbers of the pth and qth cyclotomic fields behave well; that is,
the former class number is prime to q and the latter prime to p. A pair of odd primes
p, q satisfying these congruences is now called a (double) Wieferich pair. This name
has its origin in the history of the Fermat problem: A. Wieferich showed in 1909
that the solvability of the equation xp + yp = zp in Case I requires that 2p−1 ≡ 1
(mod p2). Such primes p, Wieferich primes, turned out to be extremely rare. In
fact, there are just two Wieferich primes known, 1093 and 3511, and the next one,
if it exists, must exceed 1.25 · 1015 (see [DIL], [KNR]).

Also the Wieferich pairs are very exceptional. The first pair that was found is
(83, 4871), and only five further pairs are known ([MI2], [KER]).

The conditions (5.3) together with existing class number tables were used to rule
out a large family of p and q in the possible solutions of Catalan’s equation. This
method grew still more efficient as people found ways to modify and relax those
class number conditions ([MI1], [SCH], [STE]; see also [IN1]).

The most dramatic progress in this direction happened in 1999, when Preda
Mihăilescu [M1] proved, as a prelude to his coming opus magnum, that the congru-
ences (5.3) in fact hold without any class number condition.

6. Annihilators as key actors

The critical point requiring a class number condition above was passing from the
ideal equation (5.1) back to an equation between numbers. Mihăilescu’s idea was
to do this transition in a different way, by means of annihilators of ideals.

Annihilating an element of a group means mapping it to the neutral element e;
annihilating the whole group means mapping all of it to e. In the case of the (ideal)
class group of a number field, e is the class of principal ideals. Thus the annihilator
of a (nonzero) ideal is a slightly loose expression for a map sending this ideal to a
principal ideal. The reader should excuse this long explanation, but annihilators
do really play a vital role in the proof of Catalan’s Conjecture.

If θ annihilates the ideals of the ring Z[ζ], the equation (5.1) implies that

(6.1)
(
x− ζ
1− ζ

)θ
= εγq,

where ε ∈ Z[ζ]× as before and γ ∈ Q(ζ) is defined by Jθ = 〈γ〉.
In his first article Mihăilescu [M1] chose a classical annihilator given by the so-

called Stickelberger relation. A calculation similar to Inkeri’s but technically more
involved then yields the congruences

(6.2) x ≡ 0, pq−1 ≡ 1 (mod q2).

By the symmetry mentioned above, we also have

(6.3) y ≡ 0, qp−1 ≡ 1 (mod p2).

We repeat that (6.2) and (6.3) must be satisfied by any solution (x, y, p, q) of Cata-
lan’s equation (3.1). In particular, the exponents p, q form a Wieferich pair.
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These are extremely efficient conditions in eliminating possible solutions of (3.1).
By combining them with suitable inequalities for p and q, obtained by Tijdeman-
type methods, Mignotte and others showed by computation that min(p, q) > 107;
see [MI2]. There are subsequent improvements of this bound, but after all, the
bound is still so far from the upper bound mentioned in Section 4 that the problem
remains “cryptographically secure”, as Mihăilescu once put it.

The main value of (6.2) and (6.3) is of a theoretical kind, however, as we shall
soon see.

In his eventual proof of the conjecture, Mihăilescu [M2] looks at the equation
(6.1) from a totally new point of view. Instead of trying to push the unit ε aside,
he just focuses on this unit or, in fact, on the whole group of units. He explores the
information provided for this group by (6.1) through different annihilators θ and
finds one unexpected property of that group. On showing that such a property is
absurd, he comes to a contradiction proving the conjecture.

Suitable means for this program are offered by a deep result about annihilators
called Thaine’s theorem. This result in its general form concerns real abelian fields;
in the next section it will be quoted in the case of interest to us.

For readers familiar with abelian fields we would like to point out that, along
with Thaine’s theorem, Mihăilescu’s proof may be seen as belonging to the “plus-
part” of the cyclotomic theory. This is in contrast to the initial step [M1] receiving
a crucial ingredient from the “minus-part” of the theory.

7. Special annihilators

The natural setting for the following considerations is the real cyclotomic field
K = Q(ζ) ∩ R. This is an extension of degree m = (p − 1)/2 over the rationals,
generated by ρ = ζ + ζ−1, for example. Its ring of integers is Z[ρ]. The group of
units of this ring, E = Z[ρ]×, is an infinite abelian group generated by −1 and by
m − 1 torsion-free units, the fundamental units of K. These are in general truly
hard to find, but as a kind of replacement, consider the units

sin(lπ/p)
sin(π/p)

=
ζl/2 − ζ−l/2
ζ1/2 − ζ−1/2

(l = 2, . . . ,m)

(note that ζ1/2 = −ζ(p+1)/2). Together with −1 these units generate an important
subgroup of E of finite index. Denote it by C. The elements of C are called
cyclotomic or circular units.

There is a surprising link, discovered by Kummer, between those unit groups
and the class group H(K) of K. In fact, the index [E : C] equals the class number
hK = |H(K)|. This result has been extended and sharpened in several ways. A last
step in this development is Thaine’s theorem [THA] relating annihilators of units
to those of ideals. Before going into details we have to introduce the annihilators
more precisely.

The field K is a Galois extension of Q, its group G consisting of the automor-
phisms τ1, . . . , τm defined by (ζ + ζ−1)τc = ζc + ζ−c. It is natural to introduce a
larger set of maps, the group ring

Z[G] = {
∑m
c=1 ncτc | nc ∈ Z (c = 1, . . . ,m) }.
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The Galois action of G in the field K induces a Z[G]-module structure on K×, the
multiplicative group of K, by the rule

γn1τ1+···+nmτm = (γn1)τ1 · · · (γnm)τm ∀ γ ∈ K×.

In particular, the groups E and C become submodules of K×. Observe that it
was convenient to adopt the exponential notation for the module action since the
groups are multiplicative.

The ring Z[G] also acts on the ideal group of K and, along with this, on the
class group H(K). Thus H(K) is a Z[G]-module as well.

The domain where our annihilators will be chosen from is Z[G].
For an abelian group A denote by [A]q the q-primary subgroup of A, that is, the

subgroup consisting of elements with order a q-power. If A is a Z[G]-module, then
[A]q is a submodule.

Thaine’s theorem for the field K and the (odd) prime q reads as follows: If the
degree m = [K : Q] is prime to q, then every annihilator θ ∈ Z[G] of the group
[E/C]q also annihilates the group [H(K)]q.

To be precise, the group of cyclotomic units used by Thaine is not quite the same
as our C but instead a subgroup of C of index 2m−1(cf. [LET]). This difference
does not matter here (since q is odd) and will be ignored in the sequel.

Remark. Thaine’s article was published in 1988, but the theorem was known to be
true before this. In fact, R. Greenberg [GRE] had shown that the “main conjecture”
of Iwasawa theory implies a conjecture by G. Gras saying that the groups [E/C]q
and [H(K)]q, regarded as Zq[G]-modules, have isomorphic Jordan–Hölder series.
(Here Zq stands for the q-adic integers.) The main conjecture was proven by B.
Mazur and A. Wiles [MW] in 1984. See [MW], p. 214, and also K. Rubin’s review
of [THA].

However, Thaine’s method of proof is more direct. A good exposition of this
proof can also be found in L.C. Washington’s monograph [WAS]. Anyway, the
proof shows that behind this theorem – even in the present special case – there is
a substantial amount of theory, including class field theory.

The first task now is to ensure that the condition q - m holds true in our situation.
We argue indirectly. If q|m, then p ≡ 1 (mod q) and hence, by the Rule of Lifting
the Exponent, pq ≡ 1 (mod q2). On the other hand, pq ≡ p (mod q2) by (6.2).
Consequently, p ≡ 1 (mod q2). Since q2 + 1, 2q2 + 1 and 3q2 + 1 are not primes, it
follows that p > 4q2.

However, an argument based on linear forms of logarithms (see Section 4) shows
that p < 4q2 whenever q > 28000. Thus we have a contradiction unless the ex-
ponents p, q satisfy the inequalities q < 28000, p > 4q2. But such exponents (and
even a lot more) have already been excluded, as explained in Section 6. Bilu [BIL]
reports on a tailor-made modification of the above argument ruling out just the
last mentioned p, q. This required only 1 minute running time on a computer.

In the entire proof, this is the only place where a computer is needed. Note
also that this is a place where one really uses a method originating in Tijdeman’s
distinguished work, although the actual result obtained by Tijdeman will not be
needed.

There is more recent news that Mihăilescu has found a totally different approach
for verifying the condition q - m. This would apply the “minus-part” theory referred
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to above and be free of any computer calculations. One important link to that work
is an article by Y. Bugeaud and G. Hanrot [BH].

8. Proof of Catalan’s Conjecture outlined

In this section we sketch Mihăilescu’s proof up to a statement about qth powers
in the field K. This statement, which might be called Mihăilescu’s key theorem,
will be proven in Section 9. Sections 10 and 11 will shed more light on some details
omitted below.

Let (x, y) be a solution of Catalan’s equation (3.1). As stated in (5.1), the
principal ideal in Z[ζ] generated by (x−ζ)/(1−ζ) is a qth power of a nonzero ideal.
The same is true for the complex conjugate ideal, and multiplying those two ideals
we get 〈 (x− ζ)(x − ζ−1)

(1− ζ)(1 − ζ−1)
〉

= (JJ)q,

an equation between real ideals. In particular, the ideal class of JJ has order q or
1 in the group H(K) and so belongs to the q-primary group [H(K)]q.

Let θ ∈ Z[G] annihilate the factor group E/C, so that Eθ ⊆ C. Then Thaine’s
theorem implies (as will be shown in Section 10) that θ annihilates [H(K)]q. It
follows, as in Section 6, that

(8.1)
(

(x− ζ)(x − ζ−1)
(1− ζ)(1 − ζ−1)

)θ
= εγq,

where ε ∈ E and γ ∈ K×. Since γ is unknown anyway, it is sufficient to consider ε,
and units related to it, up to a factor which is a qth power in K×. In what follows
this is usually done without mentioning it specifically.

Since εθ ∈ C, the unit ε in (8.1) can itself be assumed to be in C. This step
requires a delicate property of annihilators to be discussed in Section 10.

A trivial but important choice for θ above is the norm map N =
∑

c τc or an
integral multiple of it. Indeed, the norm of any unit is ±1. For a suitable r ∈ Z, the
element

(
(1 − ζ)(1 − ζ−1)

)θ−rN is a cyclotomic unit, and (8.1) then implies that

(8.2)
(
(x− ζ)(x − ζ−1)

)θ−rN ∈ η(K×)q, η ∈ C.
Since x ≡ 0 (mod q2), by (6.2), we find that η ≡ 1 (mod q2) (remember: η up to a
qth power). The cyclotomic units satisfying this condition are called q-primary for
historical reasons. They constitute a subgroup of C denoted by Cq.

Let θ′ ∈ Z[G] be an annihilator of Cq. Then it follows from (8.2) that

(8.3)
(
(x− ζ)(x − ζ−1)

)θθ′−rN ∈ (K×)q.

From this relation Mihăilescu is able to draw the conclusion that θθ′−rN is divisible
by q, that is,

(8.4) θθ′ − rN = qω, ω ∈ Z[G].

The result (8.4) is all we need. Turning now to the group E we find that every
unit ε ∈ E satisfies the condition

εθθ
′

= εrN+qω = εrN = 1.

Recalling that εθ ∈ C, this suggests that θ′ in fact annihilates more of C than
just the subgroup Cq, in this way forcing Cq to be equal to C. This argument can



CATALAN’S CONJECTURE : ANOTHER OLD DIOPHANTINE PROBLEM SOLVED 53

really be made rigorous. Thus we have the result that all cyclotomic units should
be q-primary.

It is fairly easy to show that this is impossible. After that we are done.

9. Mihăilescu’s theorem

Mihăilescu’s key result that (8.3) implies (8.4) has the following precise formu-
lation. We recall that x denotes an integer that makes up, together with some y, a
supposed solution of Catalan’s equation xp − yq = 1.

Theorem. Assume that θ =
∑m

c=1 ncτc ∈ Z[G] and

(9.1)
(
(x− ζ)(x − ζ−1)

)θ ∈ (K×)q.

If
∑m

c=1 nc ≡ 0 (mod q), then each nc is divisible by q, so that θ = qω with ω ∈
Z[G].

The claim in this theorem may look quite plausible, but as a matter of fact the
result is astonishing. Something like this has probably been in the mind of the
people studying the Fermat problem, but in that context nothing similar has been
found (see also [M2], Appendix C).

Crucial for the proof is the fact that |x| is big. A good estimate is |x| > qp,
proven by Hyyrö [HY1] in 1964. Hyyrö’s article appeared in the Turku University
series, not easily available, but other estimates, occasionally weaker but anyway
sufficient, are derived in [M2] and [BIL].

We will present the main lines of the proof of the theorem. There is no par-
ticularly deep mathematics involved. The general setting of the proof shows some
similarity to the ideas of Bugeaud and Hanrot [BH].

To simplify notation, extend the automorphisms τc to the whole cyclotomic field
Q(ζ). The Galois group G0 of Q(ζ) consists of the automorphisms σ1, . . . , σp−1

with ζσk = ζk. Hence τc has exactly the extensions σc and σp−c. Let

ψ =
m∑
c=1

nc(σc + σp−c) =
p−1∑
k=1

bkσk ∈ Z[G0],

where bc = nc = bp−c (c = 1, . . . ,m). Then(
(x − ζ)(x− ζ−1)

)θ
= (x− ζ)θ(x− ζ−1)θ = (x− ζ)ψ .

By adding to ψ a suitable element of the form qψ1, we may suppose that the
coefficients bk are in the range 0, . . . , q − 1. We have to show that each bk in fact
vanishes.

By the assumption of the theorem,
∑p−1

k=1 bk = tq with t ∈ {1, . . . , p − 1}
(excluding the trivial case of t = 0). Since x is fixed by the σk, we have (1−ζ/x)ψ =
x−tq(x− ζ)ψ . Then, by (9.1),

p−1∏
k=1

(
1− ζ

x

)bkσk
=
(

1− ζ

x

)ψ
= γq (γ ∈ K×).

A careful reflection shows that the real number γ can be expressed by means of a
binomial series as follows:

γ =
p−1∏
k=1

(
1− ζk

x

)bk/q
=

p−1∏
k=1

∞∑
µ=0

(
bk/q

µ

)(
−ζ

k

x

)µ
=
∞∑
µ=0

αµ(ψ)
( 1
x

)µ
.
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The coefficients αµ = αµ(ψ) of the series are of the form αµ = aµ/(µ!qµ), where
aµ ∈ Z[ζ]. Let qE(µ) denote the exact power of q dividing µ!qµ.

Consider the remainder term Ω =
∑∞

µ=t+1 αµx
−µ, where t is the integer defined

above. The number
β = qE(t)xtΩ

is an integer of the field Q(ζ), that is, belongs to Z[ζ]. One can estimate |β| by
means of a standard expression for the remainder term of a Taylor series. Applying
Hyyrö’s bound |x| > qp, one arrives at the result |β| < 1. (This is not quite
straightforward. One needs for t the bound t ≤ m which can be achieved by the
clever trick of replacing

∑
k bkσk by

∑
k(q − bk)σk, if necessary. The series itself

may be inconvenient to handle, but it can be replaced by a simpler “dominating”
series – an ingenious idea due to Bilu.)

The argument can be extended to the conjugates βσk ; they will also be less
than 1 in absolute value. But such a situation is impossible for a nonzero algebraic
integer, and hence β = 0. Thus, our Taylor series for γ reduces to a finite sum!

On the other hand, evaluating the numerator of αt gives

at ≡
(
−
p−1∑
k=1

bkζ
k

)t
(mod q).

In conjunction with the equation β = 0 this yields the congruence
∑
k bkζ

k ≡ 0
(mod q). This in turn is possible only if every bk vanishes, the result that was to
be proven.

10. Annihilators revisited

Working through the details of the proof described in Section 8 requires a deeper
study of the annihilators. This brings an interesting algebraic aspect to the proof.

As stated in Section 8, it is sufficient to consider the units ε ∈ E modulo a qth
power or, put exactly, to replace ε by its coset εEq in the group E/Eq. When a
map θ =

∑
c ncτc ∈ Z[G] operates on the latter group, it is not the coefficients nc

that matter but just their residues modulo q. Thus we will regard the coefficients
nc either as integers or as their residue classes mod q, according to the situation at
hand. In the latter case we have

θ =
m∑
c=1

ncτc ∈ Fq[G], Fq = Z/qZ,

and the group E/Eq becomes a module over the ring R = Fq[G].
To have the group [E/C]q from Thaine’s theorem join the game, we correspond-

ingly introduce the group E/CEq, an R-module as well. Moreover, when “measur-
ing” the difference between the groups C and Cq, it is natural to use the R-module
CEq/CqE

q. In this way we come to study the three annihilators (i.e., sets consisting
of the elements of R annihilating the module in question)

A1 = Ann(E/CEq), A2 = Ann(CEq/CqEq), A3 = Ann(CqEq/Eq).

As annihilators of R-modules these are ideals of R.
What does the ring R look like? It is essential that Fq be a field and the order of

the groupG be prime to q, the characteristic of this field. This gives R and its ideals
a transparent structure. (By Maschke’s theorem, R is a semisimple Fq-algebra and
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as such is decomposable into a direct sum of fields; see, e.g., [COH]. The ideals are
principal, generated by sums of the idempotents defining that decomposition.)

Also the R-modules appearing above behave neatly: they are cyclic. It is enough
to check this for the module E/Eq, since the other modules are obtained from it by
the procedure of forming submodules and factor modules. The cyclicity of E/Eq

appears to be quite a deep fact, and it would take too much space to review its
proof here.

Every cyclic R-module M is (non-canonically) isomorphic to R/Ann(M), as
is easy to verify. This isomorphism plus some information about the ideals of R
enables one to conclude that the ideals A1, A2, A3 are pairwise coprime and

A1A2A3 = Ann(E/Eq) = RN,

the principal ideal generated by the norm. Here the second equality follows from
the cyclicity of E/Eq.

Every ideal I of R is idempotent, in other words, coincides with its square. Thus
an element of I can always be written as a product of any number of elements of
I. This is a convenient property (called “delicate” in Section 8) of annihilators to
be used several times in the proof.

As a first illustration, let us show how one argues at the beginning of the proof
that every θ ∈ A1 annihilates [H(K)]q. Simply write θ = θ1 · · · θz , where the θj
belong to A1 and z is defined by |[E/C]q| = qz. By the definition of A1 we have
Eθj ⊆ CEq and so Eθ ⊆ CEqz . Now let εC ∈ [E/C]q. Then εθ = ηεq

z

1 with η ∈ C
and ε1 ∈ E, ε1C ∈ [E/C]q. It follows that εθC = (ε1C)q

z

= C. Consequently, θ
annihilates the group [E/C]q, and the assertion is indeed a consequence of Thaine’s
theorem.

Secondly, look at the equation (8.1) for θ ∈ A1. Write θ = θ1θ2 with θ1, θ2 in
A1. Then the right hand side of (8.1) assumes the form

(ε1γ
q
1)θ2 = εθ2

1 (γθ2
1 )q = ε2γ

q
2 ,

where ε1 ∈ E, ε2 ∈ C and γ1, γ2 ∈ K×. Hence the unit ε in (8.1) can be chosen
from C as claimed.

Once the reasoning outlined in Section 8 is carried through in a precise form,
the relation corresponding to (8.3) says that

(10.1)
(
(x− ζ)(x − ζ−1)

)θ1θ3−rN ∈ (K×)q

for any θ1 ∈ A1 and θ3 ∈ A3, where r ∈ Fq is so chosen that the map θ1θ3 − rN =∑
c ncτc satisfies the condition

∑
c nc = 0. (One should in fact regard θ1θ3 − rN

in (10.1) as lifted from Fq[G] to Z[G].) Mihăilescu’s theorem then tells us that
θ1θ3 − rN = 0. Consequently, A1A3 ⊆ RN . Noting that RN = A1A2A3 and
A1, A2, A3 are pairwise coprime, we deduce that A2 = 〈1〉. From this it follows,
by the definition of A2, that C = Cq.

11. A contradiction, finally

The equality C = Cq means that every cyclotomic unit in K, when regarded
modulo q2, is the qth power of some nonzero integer of K.

We will need the notion of cyclotomic units in the whole field Q(ζ). In this field,
these units make up a subgroup C0 of Z[ζ]× generated by C and ζ. Since ζ = ζdq,
where d is the inverse modulo p of q, we now have that all units in C0 are qth
powers modulo q2.



56 TAUNO METSÄNKYLÄ

In particular, so is the unit 1 + ζq = 1−ζ2q

1−ζq . This gives us a congruence of the
form 1 + ζq ≡ ηq (mod q2). A well-known property of binomial coefficients then
implies that (1 + ζ)q ≡ ηq (mod q). By means of the Rule of Lifting the Exponent
we therefore obtain

(1 + ζ)q ≡ 1 + ζq (mod q2).
Hence the polynomial

f(T ) =
1
q

((1 + T )q − 1− T q) ∈ Z[T ]

has ζ as a zero modulo q, and along with ζ also its conjugates ζk, k = 1, . . . , p− 1.
Consider f(T ) as a polynomial over the field Z[ζ]/Q, where Q is a prime ideal factor
of 〈q〉. Since this polynomial has p − 1 distinct zeros, its degree q − 1 is at least
p − 1. The primes p and q were assumed different, so that we must have q > p.
But p and q can be interchanged, as is seen from (4.1). This shows that the above
inequality cannot be true.

12. Concluding remarks

It is natural to ask whether Catalan’s equation (1.1) has solutions in domains
other than Z. This question is briefly discussed by Ribenboim ([RIB], Appendix 1).

An immediate analog would be the integers in an algebraic number field F . As
stated in [RIB], there is an extension of Tijdeman’s result in this case. Indeed,
under some mild conditions the solutions of

(12.1) xu − yv = 1 (u > 1, v > 1),

where x and y are integers of F , can be bounded from above by an effective constant.
Bounding x and y means here bounding the absolute values of all of their conjugates.

A problem worth studying might be the equation (12.1) with u = p, an odd
prime, in the field F = Q(ζ), where ζ is a primitive pth root of 1 as above. Since
Thaine’s theorem applies to this case, it may be possible to develop ideas similar to
Mihăilescu’s – perhaps starting even with a more general equation, like xp−yv = ζ.
However, the proof of Mihăilescu’s theorem (Section 9) is very sensitive to all kinds
of modifications, so that no straightforward generalization seems possible.

One may also wonder whether (12.1) can be solved in function fields. However,
in the light of the following result by M.B. Nathanson [NAT] this problem is not
very interesting. Let F be a field of characteristic not dividing v. If u > 2 and
v > 2, the equation (12.1) with x, y ∈ F (X) implies that x and y must be constants.
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