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STABLE ERGODICITY

CHARLES PUGH, MICHAEL SHUB, AND
AN APPENDIX BY ALEXANDER STARKOV

1. Introduction

A dynamical system is ergodic if it preserves a measure and each measurable
invariant set is a zero set or the complement of a zero set. No measurable invariant
set has intermediate measure. See also Section 6. The classic real world example of
ergodicity is how gas particles mix. At time zero, chambers of oxygen and nitrogen
are separated by a wall. When the wall is removed, the gasses mix thoroughly as
time tends to infinity. In contrast think of the rotation of a sphere. All points move
along latitudes, and ergodicity fails due to existence of invariant equatorial bands.
Ergodicity is stable if it persists under perturbation of the dynamical system. In
this paper we ask: “How common are ergodicity and stable ergodicity?” and we
propose an answer along the lines of the Boltzmann hypothesis – “very.”

There are two competing forces that govern ergodicity – hyperbolicity and the
Kolmogorov-Arnold-Moser (KAM) phenomenon. The former promotes ergodicity
and the latter impedes it. One of the striking applications of KAM theory and its
more recent variants is the existence of open sets of volume preserving dynamical
systems, each of which possesses a positive measure set of invariant tori and hence
fails to be ergodic. Stable ergodicity fails dramatically for these systems. But does
the lack of ergodicity persist if the system is weakly coupled to another? That is,
what happens if you have a KAM system or one of its perturbations that refuses
to be ergodic, due to these positive measure sets of invariant tori, but somewhere
in the universe there is a hyperbolic or partially hyperbolic system weakly coupled
to it? Does the lack of egrodicity persist? The answer is “no,” at least under
reasonable conditions on the hyperbolic factor. See Section 13 for more details and
the proof of

Theorem A . If a volume preserving hyperbolic system with sufficiently strong
hyperbolicity is weakly coupled to a KAM system, then often the resulting dynamical
system is not only ergodic, it is stably ergodic.

In short,
Hyperbolicity trumps KAM, and

ergodicity often reigns à la Boltzmann.
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2 C. PUGH AND MICHAEL SHUB

Our theme has long been that “a little hyperbolicity goes a long way toward
ergodicity,” and we continue to hold hope for the

Main Conjecture. Among the volume preserving partially hyperbolic dynamical
systems, the stably ergodic ones form an open and dense set.

Theorem A is a step in that direction. See also Section 18. In Section 7 we
formulate Theorem E, in which we give sufficient conditions for ergodicity and
stable ergodicity of a partially hyperbolic system.

We also discuss at length some examples of stable ergodicity that arise in Lie
group dynamics. We are interested in the following question: Does stability of
ergodicity in which the perturbations occur only in the Lie group context imply
stable ergodicity? That is, is affine stable ergodicity decisive for general stable
ergodicity? In this direction, we have

Theorem B. In a large class of affine diffeomorphisms of homogeneous spaces,
stable ergodicity within the class is decisive for general stable ergodicity.

See Section 16 for details and the proof.

Notes. We assume for the most part that the phase space of our dynamical system
is a smooth compact manifold M and that m is a smooth invariant volume form
on M . Smooth means C∞, although C2, or in some cases C1+ε with small ε > 0,
is usually good enough. Questions about ergodicity in the C1 world seem to be
fundamentally different.

In the case of a flow, for all t ∈ R, ϕt : M →M is a diffeomorphism and ϕt+s =
ϕt ◦ ϕs. In the case of discrete time, t is restricted to Z. Invariance of m means
that m(ϕt(S)) = m(S) for measurable sets S. We perturb a diffeomorphism in the
function space of m-preserving C2 diffeomorphisms, Diff2

m(M), and we perturb a
flow ϕ by perturbing its tangent vector field ϕ̇ in the space of C2 divergence-free
vector fields, X 2

m(M).
For an easy example of ergodicity, think of the torus as the square with edges

identified in the usual way, and think of the flow that translates all points along
lines of slope α, where α is an irrational number. The flow preserves area on the
torus and is ergodic. There are no measurable invariant sets of intermediate area.
The proof is elementary, but not immediate. Although ergodic, the flow is not
stably ergodic, for the slope α can be perturbed to become rational, and as in the
case of the sphere, there are invariant bands that deny ergodicity.

The concept of ergodicity originated in statistical mechanics. See Gallavotti’s
book [Ga] for an extensive bibliography.

The KAM phenomenon is built on an example of an area preserving diffeomor-
phism of the plane that has a fixed point at the origin. See de la Llave’s article [deL]
for a thorough description of the theory. The origin is surrounded by a Cantor set
of invariant closed curves on which the map is conjugate to irrational rotation. The
curves bound invariant annuli, and this denies ergodicity. Enough annuli persist
after perturbation in the area preserving C4 topology to show that the diffeomor-
phism is persistently non-ergodic. It is also not partially hyperbolic, and hence
does not contradict the Main Conjecture. The generalization to volume preserving
dynamics in higher dimensions referred to above is due to Cheng and Sun [CS],
Herman [Yoc], and others. Theorem E in Section 7 is the main result of our in-
vestigation of stable ergodicity which we made in collaboration with Keith Burns
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and Amie Wilkinson. The present paper borrows much from [BuPSW]. Other
references appear in the relevant sections below.

2. Hyperbolicity

A flow is hyperbolic if its orbits look like those in Figure 1. Orbits that are
attracted toward each other asymptotically as time increases form a stable mani-
fold and those that are repelled apart form an unstable manifold. We denote the
unstable and stable manifolds systematically as Wu and W s. A flow is hyperbolic
if all its orbits are hyperbolic. The whole phase space of the flow is filled with
stable and unstable manifolds. They foliate the phase space, and as discussed in
Sections 4 and 9, the properties of these invariant foliations have a lot to do with
ergodicity. We denote them as Wu and Ws. Here is the formal definition.

Definition. A flow ϕ on M is hyperbolic if there is a splitting TM = Eu⊕Eo⊕Es
such that

(a) Eu, Eo, Es are continuous subbundles of TM that are invariant under Tϕ
in the sense that Tϕt(Eup ) = Euϕtp, Tϕt(E

o
p) = Eoϕtp, and Tϕt(Esp) = Esϕtp,

for all p ∈M and all t ∈ R.
(b) The orbit bundle Eo is tangent to the orbits, Eop = span(ϕ̇(p)) for all p ∈M .
(c) Tϕ exponentially expands the unstable bundle Eu in the sense that for

some λ > 1 and a constant c > 0,

|Tϕt(v)| ≥ cλt|v|

holds for all v ∈ Eu and all t ≥ 0.
(d) Tϕ exponentially contracts the stable bundle Es in the sense that for some

constant C,
|Tϕt(v)| ≤ Cλ−t|v|

holds for all v ∈ Es and all t ≥ 0.

Figure 1. Local view of a hyperbolic orbit. The curves with
arrowheads are orbits. The other lines are stable and unstable
manifolds.
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Obviously, ϕ is hyperbolic if and only if the time reversed flow ψt(x) = ϕ−t(x)
is hyperbolic. Stability for one is unstability for the other. The leaves of Wu and
Ws are the invariant manifolds, and they are everywhere tangent to Eu and Es.

Since the bundle Eo is continuous, the orbits of ϕ are all non-singular – a
hyperbolic flow has no fixed points. The definition presupposes that TM carries a
norm since (c), (d) refer to the length of vectors in TM , but the particular choice
of norm is irrelevant because we can choose the constants c, C at will.

One of the basic examples of ergodicity and hyperbolicity is the geodesic flow
on the unit tangent bundle of a surface of constant negative curvature. It is the
mother of all examples, so we will spend some time describing it in detail in the
next section.

The definition of hyperbolicity for discrete time systems is the same, except that
the orbit bundle Eo is zero. After all, the orbits of a diffeomorphism are zero-
dimensional. The simplest example of a hyperbolic diffeomorphism is the Thom
map (also called the cat map; see [ArnA]) of the 2-torus f : T2 → T2 given by the
matrix [

2 1
1 1

]
.

The linear map defined by the preceding 2× 2 matrix is an isomorphism R2 → R2

that sends the integer lattice Z2 onto itself. This gives the diffeomorphism f on
T2 = R2/Z2. The eigenvalues of the matrix are (±

√
5 + 3)/2, and the lines with

slope (±
√

5− 1)/2 are the invariant manifolds.
Hyperbolic dynamical systems have a long history. How the eigenvalues at a

fixed point determine the local phase portrait has been described by Hadamard,
Poincaré, and many others. The global, systematic formulation of hyperbolicity
appeared around 1960 and is due to Smale. See [Sm1] for its best embodiment at the
time. Globally hyperbolic systems are also called Anosov systems or, in Anosov’s
terms, systems that satisfy “Condition U”. More than anything else, Anosov’s thesis
[An] has been the inspiration for our work on ergodicity. See Section 4.

3. The geodesic flow

A geodesic flow is defined geometrically as follows. Take a surface M equipped
with a smooth Riemann structure. (A Riemann structure is a smooth choice of an
inner product on each tangent space. If M happens to be a subset of R3, then one
can choose the inner product on TpM to be the one it inherits from R3.) Let v
be a tangent vector, say at the point p. Through p and tangent to v there passes
a unique geodesic, say γ(t). Thus, γ locally minimizes arclength, γ(0) = p, and
γ′(0) = v. The geodesic flow is defined by

φt(v) = γ′(t).

It is a flow on the tangent bundle, not on the surface. Its orbits are curves of tangent
vectors. In fact, |γ′(t)| = |v|, which is to say that the geodesic flow preserves
the length of tangent vectors and it defines a flow on the unit tangent bundle,
T1M = {v ∈ TM : |v| = 1}. When speaking of the geodesic flow, it will be
understood that it is the restriction of φ to the unit tangent bundle. If M has
dimension n, then T1M has dimension 2n− 1.

Remark . The fact that the geodesic flow occurs on the tangent bundle T1M and
not on the manifold M is a major stumbling block to overcome when first reading
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about the subject. Orbits of the geodesic flow are not geodesics. After all, geodesics
cross each other and orbits never do. Although dimension constraints restrict us to
drawing pictures of geodesics, the intent is to suggest tangent vectors in motion.

The unit tangent bundle supports a natural measure, Liouville measure. It is a
smooth volume form. The geodesic flow leaves Liouville measure invariant.

The curvature of a surface is positive, zero, or negative in a neighborhood of
a point p, according to whether two geodesics initially perpendicular to a short
geodesic arc through p converge, stay parallel, or diverge. See Figure 2.

Figure 2. Divergence of initially parallel geodesics on a saddle.

Locally a surface of positive curvature resembles a sphere, a surface of zero
curvature is a plane, and a surface of negative curvature resembles a saddle.

As will be clear in what follows, it is negative curvature that captures our interest,
and in that case we give a geometric description of the geodesic flow as follows. We
begin with the upper half plane H = {x + iy = z ∈ C : y > 0} and equip it with
the hyperbolic Riemann structure

〈u, v〉z =
u · v
y2

where u, v ∈ TzH ≈ R2 and u · v is the Euclidean dot product. With respect to
this Riemann structure, the geodesics are the vertical half-lines and the semi-circles
that meet the x-axis perpendicularly. (The geodesics all meet ∂H perpendicularly –
the verticals do so at infinity.) With respect to the hyperbolic Riemann structure,
H has constant curvature −1. See Figure 3.

Assume that M has constant negative curvature. Rescaling M lets us assume
that the curvature is −1. The universal cover of M is H, and the geodesic flow
on T1M is merely a quotient of the geodesic flow on T1H, so it is enough to study
H. (Equivalently, one could study the unit disc ∆ equipped with the hyperbolic
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Figure 3. Geodesics in the upper half plane model of H are ver-
tical lines and semi-circles perpendicular to the x-axis.

Riemann structure 〈u, v〉z = (4 u · v)/(1− r2)2 where r = |z|, for H is isometric to
∆. The factor 4 is chosen to get curvature −1.)

A horocycle is a circle in H that is tangent to ∂H. This includes the case of a
horizontal line `. It is tangent to ∂H at infinity. Each vector v ∈ T1H determines
a horocycle H to which it and its negative are perpendicular. Let ν+(H) be the
inward pointing unit normal bundle of H . When H = `, inward means upward
because in both cases the vector aims its geodesic toward the point at which the
horocycle is tangent to ∂H. Under the geodesic flow Φ on T1H, vectors in ν+(H)
flow to vectors in ν+(Ht) where Ht is inside H . The hyperbolic distance between
vectors in ν+(Ht) tends exponentially to zero as t → ∞. To check this assertion,
consider the horocycle ` through the imaginary number i. Vectors v ∈ ν+(`) flow to
upward unit vectors at points of the horizontal line `t through eti. The Euclidean
length of Φt(v) is et, but its hyperbolic length remains 1. The distance between
vectors in ν+(`t) decreases exponentially because for large y, hyperbolic distance
is much less than Euclidean distance. Isometries act transitively on H, so if H is a
general horocycle, there is an isometry that carries ` to H and carries the upward
flowing normal bundle ν+(`t) to the inward flowing normal bundle ν+(Ht). See
Figure 4.

This means that all vectors in ν+(H) belong to the same stable manifold, and
symmetrically, all vectors in the outward unit normal bundle ν−(H) belong to the
same unstable manifold:

W s(v) = ν+(H) Wu(−v) = ν−(H)

for all v ∈ ν+(H). In short, the stable and unstable manifolds are unit inward and
outward normal bundles to horocycles. From this geometric description it follows
that

Φ and its quotient φ on T1M are hyperbolic flows.

See Section 14 for an algebraic description of all this.
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Figure 4. How vectors perpendicular to a horocycle flow in pos-
itive time.

4. Anosov’s thesis – the short version

The curvature concept makes sense also in higher dimensions and has a sim-
ilar description in terms of geodesic convergence/divergence. A central result in
Anosov’s thesis is

Anosov’s Ergodicty Theorem. The geodesic flow for a manifold of negative
curvature is ergodic; in fact it is stably ergodic.

See Section 8 for a sketch of the proof and Section 12 for a proof that the time-t
map itself is stably ergodic, t 6= 0. Anosov’s proof proceeds in four main steps.

First, by the Lobachevsky-Hadamard Theorem, negative curvature implies that
the geodesic flow on the unit tangent bundle is hyperbolic: its tangent has a three-
way splitting as above. (Keep in mind that the tangent to the geodesic flow lives
on the second tangent bundle, or more exactly, it lives on T (T1M) ⊂ T 2M .)

Second, according to the Hadamard-Perron Theorem, a hyperbolic flow has sta-
ble and unstable manifolds as in Figure 1, and they foliate the phase space of the
flow.

Third, the Birkhoff Ergodic Theorem implies that a measurable invariant set
consists essentially of whole unstable manifolds and essentially of whole stable man-
ifolds. Here, “essentially” means “up to a zero set”.

Fourth, a set consisting essentially of whole unstable and whole stable manifolds
has measure zero or its complement does, and thus the geodesic flow is ergodic.

None of these steps was easy, in part because the classical ODE theorems needed
to be re-proved globally, but the last two steps were hardest. The difficulty arises
from the fact that although the unstable and stable manifolds themselves are
smooth as individual manifolds, their assembly as foliations may not be smooth. To
put it another way, the subbundles Eu, Es integrate (in the sense of the Frobenius
Theorem about integrating a distribution) to the invariant foliations Wu, Ws, but
as subbundles they may not be smooth. They are only Hölder continuous.∗

∗ If you have not thought about this before, you will find it instructive to devise a prototype
of this situation, namely a continuous vector field in the plane having three properties: it has
a unique integral curve through each point, the integral curves are smooth, but the vector field
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Figure 5. The holonomy map when n = 3 and s = 1.

It turns out that in the two-dimensional case, a negatively curved surface’s stable
and unstable manifold foliations (they are merely general solutions of ODEs when
M is two-dimensional) are better than continuous. They are of class C1. This
fact let Hopf give a proof of ergodicity for surfaces [Ho]. In higher dimensions the
foliations are not always C1, but they have a weaker property that can be used in
place of differentiability. It is absolute continuity and is defined as follows.

Consider a foliation F of an n-manifold N by leaves of dimension s. Assume that
the leaves are smooth and that the tangent planes to the leaves vary continuously –
as is the case with the stable manifold foliation. Embed smooth (n−s)-dimensional
discs transverse to a leaf of F , say at nearby points p, q in the leaf. See Figure 5.
Call the discs Dp, Dq, and consider the natural holonomy map h : Dp → Dq,
which sends y ∈ Dp to the unique point h(y) ∈ Dq such that y and h(y) lie in the
same local leaf of F . The holonomy map is a homeomorphism from a neighborhood
of p in Dp to a neighborhood of q in Dq. A foliation is absolutely continuous if
its holonomy maps transform zero sets of Dp to zero sets of Dq. The measure on the
transversal discs can be any smooth (n− s)-dimensional volume, since all of them
define the same collection of zero sets. Corresponding to a choice of such volumes,
say mp and mq, it is a standard fact from measure theory that the holonomy map
has an L1 Radon-Nikodym derivative RNx(h) satisfying

mq(h(A)) =
∫
A

RNx(h) dmp

for measurable subsets A of Dp.
The result that let Anosov proceed with his four-step proof of ergodicity is

that the stable and unstable foliations are absolutely continuous and the Radon-
Nikodym derivatives of their holonomy maps are continuous. This is Theorem 10
in Anosov’s thesis, and as he correctly remarks, it is the cornerstone to his analy-
sis. He refers to it as a technical result because it addresses the technical issue of
the degree of smoothness of a foliation. Previously, mathematicians had felt that
showing that the stable and unstable foliations were of class C1 for manifolds of

is nowhere Lipschitz. In terms of differential equations, you have smooth solutions of a non-
smooth ODE. This is even possible with “smooth” replaced by “analytic”, and by the same token,
analyticity of the geodesic flow is no guarantee of smoothness of the invariant foliations.
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dimension ≥ 3 was mainly a matter of working harder. Anosov realized this was
not so and that the generalization lay in a different direction. What Hopf saw as C1

foliations were actually the one-dimensional embodiment of absolutely continuous
foliations whose holonomy maps have continuous Radon-Nikodym derivatives.

A key fact from elementary measure theory used by Anosov is the Lebesgue
Density Theorem, which states that almost every point x of a Lebesgue measurable
set A in Euclidean space is a density point of A in the sense that

lim
r→0

m(A ∩Br(x))
m(Br(x))

= 1,

where Br(x) is the ball at x of radius r and m is Lebesgue measure. See Figure 6.
The fraction above is the concentration of A in the ball Br(x), and up to a zero
set of points x, it approaches the characteristic function of A. The Lebesgue Den-
sity Theorem expresses, in our opinion, the single most useful feature of Lebesgue
measure for dynamics, and it is a pity that it gets so little attention in standard
measure theory courses. We will have more to say about density points in Section 8.

Remark . If the holonomy map h happens to be differentiable, then its Radon-
Nikodym derivative is the Jacobian determinant,

RNx(h) = det(Dh)x.

The derivative (Dh)x is an (n − s) × (n − s) matrix, so the existence of RNx(h)
without the existence of (Dh)x is rather like the grin of the Cheshire Cat. The
determinant persists although the matrix does not.

Figure 6. A density point.
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5. Partial hyperbolicity

In the late 60s and early 70s, together with Moe Hirsch in [HPS1] and [HPS], we
studied partially hyperbolic systems in the guise of normally hyperbolic foliations.
Around the same time, Brin and Pesin [BriP] formalized the idea of partially hy-
perbolic dynamics, and proved a version of our Theorem E, below. The whole idea
is to relax hyperbolicity by permitting a center direction in addition to the stable
and unstable directions. The simplest example is the time-t map of a hyperbolic
flow. In that case the center direction is the tangent bundle to the orbits. Here is
the formal definition.

Definition. A diffeomorphism f : M → M is partially hyperbolic if there is a
continuous Tf -invariant splitting TM = Eu ⊕Ec ⊕Es such that Tf is hyperbolic
on Eu ⊕ Es and the hyperbolicity dominates Tf on Ec in the sense that for some
τ, λ with 1 ≤ τ < λ and positive constants c, C we have

(a) For all v ∈ Eu and all n ≥ 0, cλn|v| ≤ |Tfn(v)|.
(b) For all v ∈ Es and all n ≥ 0, |Tfn(v)| ≤ Cλ−n|v|.
(c) For all v ∈ Ec and all n ≥ 0, cτ−n|v| ≤ |Tfn(v)| ≤ Cτn|v|.
(d) The bundles Eu, Es are non-zero.

Condition (d) is present to avoid triviality. Without it, every diffeomorphism
would be partially hyperbolic, for we could take Ec as TM . Sometimes, one only
requires Eu⊕Es 6= 0, but for simplicity we use the stronger assumption (d) in this
paper.

The normally hyperbolic foliations studied throughout [HPS] are nothing more
than the center foliations for a partially hyperbolic system. That is, “normal hy-
perbolicity = partial hyperbolicity plus Ec-integrability”.

Partial hyperbolicity means that under Tfn, vectors in Ec grow or shrink more
gradually than do vectors in Eu and Es. The center vectors behave in a relatively
neutral fashion. The definition can be recast in several different ways. For instance,
expansion of Eu under positive iteration of Tf can be replaced by contraction
under negative iteration. Also, non-symmetric rates can be used for expansion and
contraction. More significantly, one could permit pointwise domination instead of
the absolute domination as above. This would permit the growth rates λ and τ of
vectors in TpM to depend (continuously) on the point p ∈M . Although pointwise
partial hyperbolicity would require sup τp/λp < 1, it would permit sup τp ≥ inf λp,
contrary to the definition above. See [BuW1].

For dynamical systems in which time is modeled on R or a Lie group, the def-
inition is similar. Necessarily the tangent bundle to the orbits is contained in the
center bundle, Eo ⊂ Ec. For simplicity we concentrate on the discrete time case,
and we use the symmetric, absolute definition of partial hyperbolicity given above.

The general question we have pursued for the past several years is:

How frequently is partial hyperbolicity the main reason
that a dynamical system is ergodic or stably ergodic?

Anosov had shown that hyperbolic volume preserving diffeomorphisms and non-
suspension, hyperbolic flows on compact manifolds are ergodic and indeed are stably
ergodic. See Section 8 for a proof in the discrete time case.
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With Matt Grayson, we began by looking at the simplest non-hyperbolic case –
the time-one map of the geodesic flow for a surface of constant negative curvature.
(There is no important difference between the time-one map and the time-t map,
t 6= 0.) It is a volume preserving diffeomorphism of a compact 3-manifold, f = φ1 :
T1M → T1M . Ergodicity, and even stable ergodicity, of the geodesic flow φ as a
flow was well known. But the question concerned the diffeomorphism on its own,
not as part of a flow. That is, are all C2 small volume preserving diffeomorphism
perturbations of φ1 ergodic? (Few such perturbations embed in flows, so stable
ergodicity of φ is no help.) In [GPS] we showed that the answer is “yes,” thereby
producing the first dynamical system that is stably ergodic but not hyperbolic. In
her Berkeley thesis [Wi1], [Wi2] Amie Wilkinson showed that the same is true for
surfaces of variable negative curvature. We took her result to higher dimensions as:

Theorem C. If M is a compact Riemann manifold with negative curvature and
φ is its geodesic flow, then f = φt is stably ergodic, t 6= 0; i.e., if f ′ is volume
preserving and the C2 distance between f and f ′ is sufficiently small, then f ′ is
ergodic.

This result and many others are corollaries of a general stable ergodicity theorem
presented in Section 7. The proof of Theorem C appears in Section 12.

6. Ergodicity

The way that ergodicity was originally formulated in statistical mechanics in-
volves averages. Given an L1 function g : M → R, its average over the manifold
is

1
m(M)

∫
M

g dm.

It is the space average of g. Without loss of generality, we assume m(M) = 1.
The average of g along the forward orbit of p under a diffeomorphism f is the limit,
if it exists,

B+(g, p, f) = lim
n→∞

1
n+ 1

n∑
k=0

g ◦ fk(p).

In the case of a flow ϕ we have

B+(g, p, ϕ) = lim
T→∞

1
T

∫ T

0

g ◦ ϕt(p) dt.

Using reverse orbits gives averages B−. The averages B± are time averages. It is
a well known fact that (a), (b), (c) are equivalent for volume preserving dynamical
systems on M , and it is clear that (c) implies (d).

(a) Ergodicity in the sense discussed in the introduction – only trivial measur-
able invariant sets.

(b) Only constant L1 invariant functions.
(c) For each L1 function g, the space average equals the time average for almost

all orbits.
(d) For each continuous function g, the space average equals the time average

for almost all orbits.

Remark. (c) is why ergodicity is good. Most orbits visit all parts of the phase space
M in such a regular way that they sample the values of the function g fairly. It
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is said in statistical mechanics that the space average of a function may be sought
but is hard to compute, while a trajectory that courses systematically through the
phase space may be easier to find, and then calculating the average value of g along
it will be simpler. Stable ergodicity is better yet. While ergodicity implies that for
calculating the space average, the choice of sampling orbit is essentially irrelevant,
stable ergodicity gives us latitude in choosing the dynamical system itself.

That (d) implies (c) is a consequence of the

Birkhoff Ergodic Theorem. Let σ be a volume-reserving dynamical system on
M . The maps g 7→ B+g, g 7→ B−g are well defined continuous linear projections

L1(M)→ Inv(σ)

where Inv(σ) denotes the σ-invariant L1 functions M → R. The two projections
are equal.

Proof that (d) ⇒ (c). Let C denote the subset of continuous functions in L1, and
let K denote the constant functions. By (d), B±(C) = K. Since K is a one-
dimensional subspace it is a closed set. Since B± is continuous and C is dense in
L1, B±(C) is dense in B±(L1) = Inv(σ) and hence Inv(σ) = K, which is (c). �

In the proof of Theorem E we will use a simple fact about Birkhoff averages.

Lemma 6.1. The forward Birkhoff average of a continuous function is constant on
stable manifolds, and its reverse Birkhoff average is constant on unstable manifolds.

Proof. Let f be the partially hyperbolic diffeomorphism and g : M → R a contin-
uous function. Let M+ be the set of points at which B+ is defined. If p ∈ M+

and q ∈ W s(p), we claim that B+(q) exists and equals B+(p). Let ε > 0 be
given. Since g is continuous there exists a large enough N so that if k ≥ N , then
|g(fk(p))− g(fk(q))| < ε/2. Then, for n� N we have

|B+
n (p)−B+

n (q)| = 1
n+ 1

∣∣∣ n∑
k=0

g(fk(p))− g(fk(q))
∣∣∣

≤ 1
n+ 1

(N−1∑
k=0

+
n∑

k=N

)
|g(fk(p)) − g(fk(q))|

≤ 2N
n+ 1

sup|g|+
(n−N + 1

n+ 1

)( ε
2

)
< ε.

Hence, for all ε > 0 and all large n, |B+(p)−B+
n (q)| ≤ ε and hence B+(p) = B+(q).

This means that B+ is constant onW s(p). Symmetrically, B− is constant onWu(p)
if p ∈M− where M− is the domain of definition of B−. �

Remark . The same result holds for flows. Sums become integrals.

7. Sufficient dynamical conditions for ergodicity

We have conjectured that ergodicity should be a consequence of partial hyper-
bolicity, an accessibility property, and a few technical conditions. A set S ⊂ M
is u-saturated if p ∈ S implies Wu(p) ⊂ S; it is s-saturated if p ∈ S implies
W s(p) ⊂ S, and it is us-saturated if it is saturated both ways.

Definition. An m-preserving diffeomorphism f : M →M belongs to the class E if
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(a) f is partially hyperbolic.
(b) Each measurable us-saturated set is a zero set or its complement is a zero

set. (This is the e-accessibility property.)
(c) The bundles Eu, Ecu = Eu⊕Ec Ec, Ecs = Ec⊕Es, and Es are tangent to

foliations such that the Eu- and Ec-leaves subfoliate the Ecu-leaves, while
the Ec- and Es-leaves subfoliate the Ecs-leaves. (This is the dynamical
coherence property.)

(d) The ratio (τ−1)/(λ−1) is sufficiently small. (This is the center bunching
property.)

Theorem E. Diffeomorphisms of class E are ergodic.

Corollary. Diffeomorphisms interior to E are stably ergodic.

The corollary is of course a trivial consequence of the theorem. It says that to
check stable ergodicity of f , it suffices that f has properties (a) - (d) above and that
they persist for perturbations. Properties (a) and (d), being essentially inequalities,
always persist. The other two are more problematic. See Sections 11 and 12 for a
further discussion of these hypotheses. They are valid for time-one maps of geodesic
flows for manifolds of negative curvature and many other examples. Theorem E
and its corollary imply Theorem C. See Section 12.

8. Absolute continuity of the invariant foliations

Anosov’s original proof that the stable and unstable foliations are absolutely
continuous deals with the continuous differential forms that define them. Since
these differential forms do not have exterior derivatives in the usual sense, this
approach is necessarily difficult. In [PS1] we gave a proof of absolute continuity by
somewhat different means. It bears a relation to [AnS] and [BriS].

We say that a homeomorphism h : X → Y between topological measure spaces
is RN-regular if its Radon-Nikodym derivative exists everywhere, is positive, and
is continuous. As mentioned above, Theorem 10 of Anosov’s thesis states that the
holonomy maps are RN-regular. Our variation of the proof basically showed that
the class of RN-regular maps is complete and that a naturally defined sequence of
smooth maps hn approximating the holonomy map h in the C0 sense is Cauchy in
the CRN sense.

Key to the Cauchyness proof is that the dynamical system is better than class C1.
In fact, not only does the proof fail for non-C1+ε dynamical systems, the result is
false. The stable and unstable foliations may fail to be absolutely continuous. This
was first shown in an example of Bowen [Bow1] and later extended by Robinson
and Young [RY]. See Section 21 for a discussion of the fascinating pathology that
arises naturally and stably from some dynamical foliations that are not absolutely
continuous.

One of the useful features of an absolutely continuous foliation F is a version of
Fubini’s theorem. See [PS1] for its natural proof.

Theorem 8.1. If Z ⊂M is a zero set, then the union of the leaves of F that meet
Z in sets of positive leaf outer measure is a zero set. Conversely, if a set Z meets
all leaves of F in leaf zero sets, then it is a zero set.

Leaf measure means a smooth s-dimensional volume on each leaf of F .
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Corollary 8.2. The Birkhoff average of a continuous function is almost constant
on almost every stable manifold, and almost constant on almost every unstable
manifold.

Proof. If g : M → R is continuous, then its Birkhoff averages B±(p) exist and are
equal at all points of a set M0 such that Z = M \M0 is a zero set. Let B(p) be
the common value of B±(p) for p ∈M0. The stable manifold foliation is absolutely
continuous, so Theorem 8.1 implies that except for a zero set of stable manifolds,
Z meets each W s in a leaf zero set; i.e., M0 meets almost every W s in a set of full
leaf measure. By Lemma 6.1, B+ is constant on stable manifolds. Since B = B+

on M0, B is almost constant on almost every stable manifold. Symmetrically, the
same is true for unstable manifolds. �
Note. The almost constant value of B on one stable manifold need not be the
same as on another.

Here we see in the simplest case how to get ergodicity.

Theorem. Hyperbolicity plus absolute continuity implies ergodicity.

Proof. We assume f : M → M is hyperbolic and volume preserving. We claim f
is ergodic, and so are its perturbations. As explained in Section 6, it is enough
to check constancy of the Birkhoff averages of an arbitrary continuous function
g : M → R. The Birkhoff average B(p) = B(p, g, f) exists at all points of a set
M0 ⊂ M of full measure. Theorem 8.1 implies that M0 meets almost every stable
and unstable manifold in sets of full leaf measure. Let Z0 be the union of these
invariant manifolds that fail to meet M0 in sets of full leaf measure. It is a zero
set, and every p ∈M1 = M0 \Z0 has the property that Wu(p) and W s(p) meet M0

in sets of full leaf measure. Consider nearby points p, q ∈ M1 and the local stable
holonomy map h : Wu

loc(p) → Wu
loc(q). Since h is absolutely continuous it carries

the set Wu
loc(p) ∩M0 to a set of full leaf measure in Wu

loc(q). Sets of full measure
intersect in sets of full measure, so h(Wu

loc(p)) ∩M0 intersects Wu
loc(q) ∩M0, say

at the point y. This means that h(x) = y for some x ∈ Wu
loc(p) ∩M0. That is,

y ∈ W s(x). By Corollary 8.2, applied first in Wu(p), then in W s(x), and last in
Wu(q), we have

B(p) = B(x) = B(y) = B(q),
for p, x, y, q all lie in M0. Thus, B has the same (constant) value on Wu

loc(p) ∩M0

and Wu
loc(q) ∩M0, which shows that, except for a zero set, B is locally constant.

Connectedness of M completes the proof. �

9. Juliennes

As discussed in Sections 4 and 8 the foliations Wu and Ws are RN-regular.
From the measure theoretic point of view, this is as good as it gets, but to make
full use of RN-regularity we need to understand the infinitesimal holonomy map h
more geometrically. We need to understand how it affects density points. If h were
differentiable this would be straightforward, but since h is only continuous we have
a problem. Our solution is to redefine density points – instead of balls that shrink
to a point, we use sets that are more adapted to the dynamics. They are small
but highly eccentric in the sense that the ratio of their diameter to their inradius is
large. (The inradius of a set is the radius of the largest ball it contains.) We refer
to them as juliennes because they resemble slivered vegetables. See Figure 7.
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Figure 7. A three-dimensional center stable julienne with one-
dimensional center.

If you have read Falconer’s book about fractals [Fa], you will realize this is a
risky business, for in [Nik], Nikodym constructs an example of a “paradoxical set”
N in the plane that has Lebesgue area zero, and yet for each p ∈ N there is a
sequence of rectangles Rn shrinking to p such that

lim
n→∞

m(N ∩Rn)
m(Rn)

= 1.

m is Lebesgue area. The rectangles do not have axis-parallel edges, and their
eccentricity tends to infinity. In terms of these rectangles, the zero set N acts like
a set of full measure. See Figure 8.

Figure 8. Nikodym rectangles shrinking to a point.

Our juliennes resemble Nikodym’s rectangles in that the smaller they are, the
thinner they are. Being non-linear, juliennes are potentially worse. The properties
that distinguish juliennes from arbitrary eccentric rectangles are:

(a) The elongation axes of juliennes are Hölder controlled.
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(b) The eccentricity of a julienne and its diameter are both exponential func-
tions of a common number n, the number of dynamical iterations.

(c) The non-linearity, nesting, and shape-scaling properties of the juliennes are
governed by a fixed, smooth dynamical system.

One of the facts we need about the juliennes is that they form a density basis.
This means that they comprise a family J =

⋃
p∈M J (p) such that for each p ∈M

there is a sequence of juliennes in J (p) that shrinks to p, and for every measurable
set A ⊂M

lim
J↓p

m(A ∩ J)
m(J)

= χA(p)

almost everywhere. (χA is the characteristic function of A, and J ↓ p means that
J ∈ J (p) shrinks down to p.) The Lebesgue Density Theorem states that the
family of balls in Euclidean space is a density basis. In particular, being a density
basis rules out the Nikodym phenomenon.

Juliennes are constructed for a diffeomorphism of class E as follows. Using a fixed
Riemann metric on M , write Wu

loc(x) for the local unstable manifold of x ∈M and
Wu(x, r) for the disc of radius r in Wu

loc(x). When r is small, this disc is quite
round; i.e., its inradius approximates half its diameter. Define W c(x, r), W s(x, r)
similarly. Fix an integer n ≥ 0 and a point p ∈ M . Take a small disc D in the
center manifold at p,

D = W c(p, σn),
where σ < 1 depends on the hyperbolicity and center bunching constants. Let
Y be the fn-image of the disc W s(f−np, τn) where τ < σ also depends on the
hyperbolicity and bunching constants. When n is large, Y is much smaller than D,
but it may be quite eccentric. The center stable julienne is the local foliation
product

Jcsn (p) = {z = W c
loc(q) ∩W s

loc(y) : q ∈ D and y ∈ Y }.
It is a neighborhood of p in W cs(p). A similar definition applies for the center
unstable julienne, using in place of Y the set X = f−nWu(fnp, τn). The solid
julienne is the foliation product

Jn(p) = {z ∈Wu
loc(x) ∩W s

loc(y) : x ∈ Jcu(p, n) and y ∈ Jcs(p, n)}.
See Figure 9.

The julienne bases are

J cs =
⋃
p

{Jcsn (p) : n ∈ N} J cu =
⋃
p

{Jcun (p) : n ∈ N} J =
⋃
p

{Jn(p) : n ∈ N}.

It is clear that as n → ∞, Jcun (p), Jcsn (p), and Jn(p) shrink down to p. In [PS3]
we show that the families of these juliennes are density bases. The center unstable
juliennes are a density basis on W cu(p) with respect to the smooth leaf measure
mcu
p on W cu(p), the center stable juliennes are a density basis on W cs(p) with

respect to the smooth leaf measure mcs
p on W cs(p), and the solid juliennes are a

density basis with respect to the smooth measure m on M . The proof is based on
two properties, which we state for the solid juliennes.

(a) Scaling: for any fixed k ≥ 0,
m(Jn(p))
m(Jn+k(p))

is uniformly bounded as n→∞.
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Figure 9. The solid julienne is a local foliation product.

(b) Engulfing: there is a uniform L such that

Jn+L(p) ∩ Jn+L(q) 6= ∅ ⇒ (Jn+L(p) ∪ Jn+L(q)) ⊂ Jn(p).

These are properties possessed by the family of round balls in Euclidean space, and
they underlie the proof of the Lebesgue Density Theorem.

Denote the solid julienne density points of a measurable set A ⊂M as

DJ(A) = {p ∈M : lim
n→∞

m(A ∩ Jn(p))
m(Jn(p))

= 1}.

The fact that the juliennes form a density basis implies that A = DJ(A) modulo a
zero set. Although DJ(A) and the set of Lebesgue density points differ by a zero
set, it is a crucial zero set.

The final property of juliennes we use is julienne quasi-conformality. It
describes how juliennes behave under holonomy and is what we mean when we say
that juliennes are adapted to the dynamics. There is a uniform k ≥ 0 such that
if p, q ∈ M are connected by an arc on an unstable manifold that has length ≤ 1,
then the unstable holonomy map h : W cs

loc(p)→W cs
loc(q) satisfies

Jcsn+k(q) ⊂ h(Jcsn (p)) ⊂ Jcsn−k(q).

As n→∞ the juliennes have progressively more elongated shapes, but they nest in
a way similar to balls. Furthermore, h does not disrupt this nesting much. It is as
though, judged in a world where juliennes, not balls, are the norm, the holonomy
map preserves shape.

An intuitive description of differentiability of a map h : X → Y is often given
in visual terms. Magnifying glasses of increasing power are placed at p ∈ X and
q = h(p) ∈ Y , and thereby h is viewed more and more locally. Differentiability
means that shapes of small sets near p are affected nearly linearly under increasing
magnification. Quasi-conformality means that the shapes are not grossly distorted.
Julienne quasi-conformality requires new magnifying glasses. They should magnify
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eccentrically elongated neighborhoods of p and q, the eccentricity increasing with
the magnification, and then shapes of small sets near p should not appear grossly
distorted. With the right choice of such magnifying glasses, the holonomy maps do
not grossly distort shape.

Some manipulation with the foregoing julienne properties shows that h preserves
center stable julienne density points. That is, if p is a density point of a set W ⊂
W cs(p) with respect to J cs(p) and q = h(p), then q is a density point of h(W )
with respect to J cs(q). Further manipulation lets us pass from leaf juliennes to
solid juliennes and obtain the following theorem. Corresponding to saturation as
explained in Section 7, we say that A ⊂ M is almost u-saturated if, except for
a zero set, it consists of almost whole unstable manifolds. That is, A = A0 ∪ Z
such that Z is a zero set, and if p ∈ A0, then Wu(p) \ A has leaf measure zero.
The same applies to stable leaves. We say that A is almost us-saturated if it is
almost u-saturated and almost s-saturated.

Theorem J. [PS3] If A ⊂M is measurable and almost u-saturated, then its set of
solid julienne density points is u-saturated. The same is true for s-saturation.

Corollary. If A ⊂ M is measurable and almost us-saturated, then its set of solid
julienne density points is us-saturated and differs from A by a zero set.

Proof. Let A0 be a set that equals A modulo a zero set Z and consists of almost
whole unstable manifolds. Because the juliennes are a density basis,

(a) DJ(A) = DJ(A0).
(b) A = DJ(A0) modulo a zero set.

Note that (a) is an exact equality, not an equality modulo a zero set, because
DJ(Z) = ∅. Theorem J asserts that DJ(A0) consists of whole unstable manifolds,
so (a) implies that DJ(A) consists of whole unstable manifolds. Symmetrically,
DJ(A) consists of whole stable manifolds, so it is us-saturated. (a) and (b) imply
that DJ (A) equals A modulo a zero set. �

10. The proof of Theorem E

Let f ∈ E be given. We must prove it is ergodic. By the Birkhoff Ergodic
Theorem and its consequences discussed in Section 6, it suffices to check that the
Birkhoff average of an arbitrary continuous function g : M → R is constant as an
element of L1. That is, B is essentially constant, where B(p) = B(g, p, f) is the
common value of B±(g, p, f) at points in the set M0 where both averages exist and
are equal. Fix any c ∈ R and consider the set

A = B−1(0, c) = {p ∈M0 : B(p) < c}.

A is measurable because B is measurable. By Corollary 8.2, B is almost constant
on almost every stable manifold and almost every unstable manifold. Therefore A
is almost us-saturated. By the corollary to Theorem J in Section 9, the set DJ (A)
of julienne density points of A equals A modulo a zero set and is us-saturated.
e-accessibility implies that DJ(A) or its complement is a zero set. Therefore A or
its complement is a zero set. This is true for each c and shows that B is constant,
for non-constancy of B would imply that for some c, both B−1(−∞, c) and its
complement B−1[c,∞) have positive measure.
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11. Center bunching and dynamical coherence

The center bunching condition quantifies how neutral the center is. We regard
center bunching as largely technical but have been unable to get around it. Writing
Tf = T uf ⊕ T cf ⊕ T sf , the center growth rate is

τ = lim sup
|n|→∞

‖T cfn‖1/|n|,

and the overall growth rate is

κ = lim sup
|n|→∞

‖Tfn‖1/|n|.

The unstable and stable growth rates are

λu = lim sup
n→−∞

‖T ufn‖1/n λs = lim sup
n→∞

‖T sfn‖1/n,

and the hyperbolic growth rate is λ = min{λu, 1/λs}. It is automatic that λ ≤ κ.
Partial hyperbolicity requires 1 ≤ τ < λ. As shown in [An] and [HPS], the number

θ0 =
logλ− log τ

log κ

has the property that for all θ < θ0, the partially hyperbolic splitting is θ-Hölder.
In [PS3], we defined center bunching as the requirement that

τ2+2/θ0 < λ.

Clearly this means that (τ − 1)/(λ− 1) is small. In [BuW2], Burns and Wilkinson
have shown that a weaker form of center bunching suffices for Theorem E, namely

τ1/θ0 < λ,

which is equivalent to S − 1 > W , where

S =
logλ
log τ

W =
log κ
logλ

.

S is the logarithmic separation between the hyperbolic and center bands of the
spectrum of Tf , while W is the logarithmic width of the hyperbolic bands.

We adopt the Burns-Wilkinson definition of center bunching. Since it is an
inequality, center bunching is an open condition. It is stable under perturbation.
Burns and Wilkinson point out two interesting facts:

(a) If θ0 > 1/2, then center bunching is automatic.
(b) If the center bunching condition is violated, the center bundle need not be

integrable. See [Wi1].
(b) means that center bunching affects dynamical coherence.

Dynamical coherence requires that the various foliations exist and fit together
correctly. See Figure 10. By [HPS],

(a) The invariant foliations Wu and Ws always exist.
(b) Existence of the center foliation Wc implies existence of a center unstable

and a center stable manifold, W cu and W cs, through each center mani-
fold. The families of these center unstable and center stable manifolds are
invariant under f , but do not a priori foliate M .

(c) W cu and W cs are sub-foliated by Wu and Ws respectively.
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Figure 10. Dynamical coherence.

(d) If the center bundle is uniquely integrable, then the families of center un-
stable and center stable manifolds do foliate M , and we have dynamical
coherence.

Integrability, let alone unique integrability, of Ec is an open question. It is not
hard to prove the existence of a semi-invariant family of “center plaques,” but in
general, as stated above, Wilkinson showed that without center bunching, they
may not cohere to make a foliation. It is unknown whether center bunching implies
the existence of a center foliation, and even if a center foliation does exist, it is
not known to persist under dynamical perturbation without some extra hypothesis
such as “plaque expansiveness”; see [HPS].

Brin [Br3] proves dynamical coherence from a quasi-isometry assumption on the
stable and unstable foliations. Moreover, Brin, Burago and Ivanov [BriBI] establish
dynamical coherence for all partially hyperbolic diffeomorphisms of the 3-torus.

We suspect that dynamical coherence is always stable under C1 perturbations.
Apart from the cases mentioned above the main tool we have in this direction is:

Proposition 11.1. [PS2, Proposition 2.3] If the center foliation Wc exists and is
of class C1, then f is dynamically coherent, as is any f ′ close enough to f in the
C1 topology.

For hyperbolic flows or any of the affine diffeomorphism examples we consider
below or the direct products in Theorem A, the center foliations are C1, so stable
dynamical coherence is not an issue.

12. Accessibility and the proof of Theorem C

Accessibility is a concept in control theory. Given smooth vector fieldsX1, . . . , Xk

and a point p ∈ M , one says that q is accessible from p if there is a path from
p to q that consists of finitely many arcs, each of which is an Xi-trajectory arc,
1 ≤ i ≤ k. The points p might represent the configurations of a multi-jointed robot
arm, and the vector fields might generate motions of the arm due to flexing the
joints. It is natural to ask what the set of accessible points looks like. Lie brackets
of the vector fields play a large role in finding the answer.

We have adapted the accessibility notion to our situation. Points of a us-
saturated set can be joined by a us-path, i.e., a path consisting of finitely many
smooth arcs alternately in stable and unstable manifolds. See Figure 11. A key
difference between this and control theory accessibility is that lack of smoothness
of Eu and Es precludes the use of Lie brackets.
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Figure 11. A us-path alternates between unstable and stable
arcs. It is potentially like a corkscrew.

There are three types of accessibility to consider:
(a) e-accessibility as defined above – us-saturated sets are zero sets or comple-

ments of zero sets.
(b) us-accessibility – M itself is us-saturated.
(c) h-accessibility – us-accessibility plus homotopy nontriviality. See below.

h-accessibility requires that for each p and q in M there is a us-path γ from p
to q that is homotopically nontrivial in the following sense. There should exist
a continuous n-parameter family Γµ : [0, 1]→M of us-paths from p to points in a
ball neighborhood U of q, where n is the dimension of M , such that

(i) Γ0 = γ.
(ii) For some (n − 1)-sphere S around µ = 0 in µ-space, the map µ 7→ Γµ(1)

sends S into U \q and has non-zero degree on the (n−1)st homology groups.
It is clear that:

h-accessibility ⇒ us-accessibility ⇒ e-accessibility.

Since the unstable and stable bundles depend continuously on f , h-accessibility is
stable under perturbation. It is unknown whether this is true for us-accessibility,
although in [PS3, Section 11] there is a non-dynamical example indicating that
it may not be. Brin [Br1] has dynamical examples in which e-accessibility is not
stable.

As a consequence we have

Proof of Theorem C. Given a Riemann structure on M with negative curvature,
we must show that the time-one map f of its geodesic flow is stably ergodic. Before
perturbation, f is partially hyperbolic, dynamically coherent, and center bunched
because these are properties of the geodesic flow. The center constant of f is τ = 1.

Partial hyperbolicity and center bunching are stable properties.
The center foliation is smooth because it is the orbit foliation of the geodesic

flow. By Proposition 11.1, f is stably dynamically coherent.
From Katok and Kononenko [KaK] the bundle Eu⊕Es is differentiable and given

by a contact form. The everywhere non-integrability of this bundle implies that we
can generate the flow direction by us-paths and verify h-accessibility. Therefore,
f is stably e-accessible. The upshot is that f lies in the interior of E and so by
Theorem E, it is stably ergodic. �
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The previous proof amounts to checkable conditions for stable ergodicity, namely

Theorem 12.1. If f ∈ E, Ec is C1, and we have h-accessibility, then f is stably
ergodic.

An added condition that makes us-accessibility equivalent to h-accessibility is
smoothness.

Theorem 12.2. [PS2] If Eu and Es are C1, then us-accessibility implies h-accessi-
bility.

Remark . One may view this as a middle stage in the evolution of stably ergodic
diffeomorphisms, at least from the point of view of accessibility considerations.
The initial stage is due to Anosov, who used the fact that all hyperbolic volume
preserving diffeomorphisms have us-accessibility. Persistence under perturbations is
automatic in the Anosov case. Our results use h-accessibility to get stability, while
in the latest stage Rodriguez Hertz uses only e-accessibility, [R-H]. See Sections 15
and 16. He has found the first example of a stably e-accessible diffeomorphism that
is not h-accessible.

Note. In our other papers on stable ergodicity we called e-accessibility essential
accessibility. The “e” could also indicate “ergodic accessibility”. It is an unfortu-
nate coincidence that in topology, “essential” refers to the property of not being
null homotopic used in the definition of h-accessibility. At times we referred to
h-accessibility as engulfing accessibility.

13. Proof of Theorem A

Let f : M →M and g : N → N be volume preserving diffeomorphisms. We have
in mind the case that f is hyperbolic and g is KAM. The product diffeomorphism
f × g : M × N → M × N represents the dynamics of the uncoupled system. The
dynamics on M and N evolve independently. If either of the diffeomorphisms f or
g is not ergodic, then the diffeomorphism f × g is also not ergodic. If h : M ×N →
M ×N is an approximation of f × g, then h is a weak coupling of f and g.

Suppose that f is hyperbolic with splitting TM = Eu ⊕ Es. Then f × g has
an invariant splitting T (M × N) = Eu ⊕ TN ⊕ Es. If the hyperbolicity of f is
sufficiently large, then f × g is partially hyperbolic and center bunched.

The following result is what we meant in Theorem A by saying that a weak
coupling of f × g is often stably ergodic.

Theorem 13.1 (Theorem A). [ShW1], [BuPSW] Let f and g be volume pre-
serving diffeomorphisms of M and N as above. If f × g is partially hyperbolic and
center bunched, then it can be arbitrarily well approximated by a volume preserving
stably ergodic diffeomorphism h.

Proof. Since the center foliation are the fibers p × N , p ∈ M , the center foliation
is smooth and hence all diffeomorphisms in a neighborhood of f × g are dynam-
ically coherent. It remains to find a diffeomorphism h in the neighborhood with
h-accessibility. But this is accomplished using the Brin quadrilateral construction
as in [ShW1], [BuPSW]. �

Remark . Let f and g be volume preserving diffeomorphisms of M and N , with f
hyperbolic.
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(a) There is an n ≥ 1 such that fn × g is arbitrarily well approximated by
stably ergodic diffeomorphisms, for the hyperbolicity of fn tends to ∞ as
n→∞.

(b) Revisiting the proofs in [ShW1] and [BuPSW], one can show that the the-
orem holds whenever f is the time-t map of a geodesic flow for a manifold
of constant negative curvature and |t| is large.

(c) From our Main Conjecture it would follow that not only is f × g approx-
imable by stably ergodic diffeomorphisms but that stable ergodicity is lo-
cally generic.

(d) Volume preserving may be replaced by symplectic in the theorem.

The situation for product diffeomorphisms is even better when f and g are both
partially hyperbolic. The proof of the following theorem is straightforward.

Theorem 13.2. Let f and g be volume preserving diffeomorphisms of M and N as
above. Suppose that f and g are partially hyperbolic, stably dynamically coherent,
h-accessible, and center bunched with the same bunching conditions. Then f × g is
stably ergodic.

Corollary 13.3. The Cartesian product of time-t maps of geodesic flows for man-
ifolds of negative curvature is stably ergodic.

Proof. Let φi be the time-ti map of the geodesic flow for Mi where Mi has negative
curvature, ti 6= 0, and i = 1, . . . , k. The center constants are all τi = 1, so the
maps φi have the same center bunching conditions. As in the proof of Theorem C
in Section 12, each φi is stably dynamically coherent and has the h-accessibility
property. So the same is true for f. By Theorem 13.2, f = φ1 × · · · × φk is stably
ergodic. �

14. The algebraic description of the geodesic flow

In the next section, we will define a class of affine diffeomorphisms of homoge-
neous spaces to which our theory applies, but first we discuss the special case of the
time-t map of the diagonal flow on SL(2,R) and quotients, namely geodesic flows
for compact surfaces of constant negative curvature.

Real 2×2 matrices A =
[
a b
c d

]
such that ad−bc = 1 comprise the special linear

Lie group G = SL(2,R). Positive diagonal matrices have a, d > 0 and b = c = 0;
they form a subgroup D, with a 1-parameter representation

Dt =
[
et/2 0

0 e−t/2

]
.

The diagonal flow on G is left multiplication by Dt, its orbits being DtA. Fix
t > 0 and let f be the time-t map of the flow. It is left multiplication by g = Dt,

f = Lg : G→ G.

We claim that the affine diffeomorphism f is partially hyperbolic with respect to
any right invariant Riemann structure. (To get such a Riemann structure, choose
any inner product on TidG and define the inner product on the general tangent space
TxG so that TRx : TidG→ TxG is an isometry, where Rx is right multiplication by
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x.) Since f is linear, the effect of Tf on TidG is then isometric to the adjoint

Ad(Tidf) = TgRg−1 ◦ TidLg :
[
a b
c d

]
7→
[
a etb

e−tc d

]
.

The three relevant subgroups of G are U , D, L, where U and L consist of upper
and lower triangular matrices [

1 b
0 1

] [
1 0
c 1

]
.

The left cosets of U , D, and L foliate G, and the map f preserves the foliations.

According to the preceding adjoint formula, the effect of Tf on a vector
[
0 1
0 0

]
tangent to U at the identity is isometric to expansion by et. By right invariance of
the Riemann structure the same is true at all x ∈ G. Thus f expands along the
U -coset foliation, and symmetrically it contracts along the L-coset foliation, while
it sends each D-coset isometrically onto itself.

This verifies partial hyperbolicity of f ; the left U -cosets form the unstable fo-
liation, the left D-cosets form the center foliation, and the left L-cosets form the
stable foliation. Clearly f is center bunched. Its center constant is τ = 1. It is dy-
namically coherent because, as sets of matrix products, UD = DU and LD = DL
are groups. It has the us-accessibility property because the smallest subgroup con-
taining U and L is the whole group SL(2,R). Since its stable and unstable bundles
are smooth, Theorem 12.2 gives h-accessibility.

There is a close and well known relation between the diagonal flow and the
geodesic flow for a compact surface M of constant negative curvature – the geodesic
flow is a quotient of the diagonal flow. This one sees as follows.

As in Section 4, rescale M so that its curvature is −1, and consider the universal
covering space of M . It is the upper half plane H = {x + iy = z ∈ C : y > 0},
which we equip with the hyperbolic Riemann structure

〈u, v〉z =
u · v
y2

where u, v ∈ TzH ≈ R2 and u · v is the Euclidean dot product. The curvature of H
is −1, the covering map π : H→M is a local isometry, and M is just H modulo a
uniform discrete subgroup Γ of isometries of H. We claim that the geodesic flow for
M is smoothly conjugate to a quotient of the diagonal flow. This means that the
time-t map of the geodesic flow can equally well be considered in a purely algebraic
context.

The isometries H→ H are Möbius transformations

µ(z) =
az + b

cz + d

where a, b, c, d are real numbers and ad − bc = 1. That is, they are elements of
SL(2,R) which act on H according to the previous formula for µ. The map

h : SL(2,R)→ Isom(H)

A =
[
a b
c d

]
7→ az + b

cz + d

is a 2 : 1 epimorphism whose kernel is {id,− id}.
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Above, we discussed the left diagonal flow on SL(2,R), but there is also the right
diagonal flow whose orbits are ADt. Under inversion inv : SL(2,R)→ SL(2,R), it
is smoothly conjugate to the time-reversed left diagonal flow as

inv(ADt) = D−t inv(A).

We claim that the orbits of the right diagonal flow correspond to geodesics in H,
i.e., that µ(Dt(i)) is a geodesic. If µ is the identity, this is obvious because

Dt(i) =
et/2i+ 0

0i+ e−t/2
= eti

is the unit speed geodesic that is tangent to the upward vector e2 ∈ TiH at t = 0.
Since µ acts on H as an isometry, the curve µ(Dt(i)) is also a geodesic.

Define k : SL(2,R)→ T1H by

k : A 7→ TiA(e2).

(In this expression, TiA is the tangent at i to the Möbius transformation defined
by A.) We claim that k is a 2 : 1 semi-conjugacy from the right diagonal flow to
the geodesic flow Φ on T1H. By the chain rule

d

dt

∣∣∣
t=0

ADt(i) = TiA(e2) ∈ TA(i)H,

which implies that k sends orbits of the right diagonal flow to orbits of Φ. As
is shown in complex variables courses, Möbius transformations have the following
transitivity property: given unit vectors u ∈ TzH, u′ ∈ Tz′H, there exists a unique
µ such that

Tzµ(u) = u′.

Thus k is onto. It is 2 : 1 because the only ambiguity between Möbius transforma-
tions and matrices in SL(2,R) is that A and −A correspond to the same µ.

Now we return to the geodesic flow φ on T1M . Since M = H/Γ where Γ is
a uniform discrete subgroup of isometries, φ is the quotient of the geodesic flow
Φ on T1H, which is semi-conjugate to the left diagonal flow. Pulling Γ back to a
subgroup h−1Γ ⊂ SL(2,R), we observe that φ is conjugate to the left diagonal flow
on SL(2,R)/h−1Γ, for h−1Γ automatically includes the normal subgroup {id,− id},
and this removes the ±A ambiguity.

Remark . In the definition of affine diffeomorphisms below, we prefer group mul-
tiplication on the left (it is consistent with function composition) and division by
subgroups such as Γ on the right. Other left/right choices make little mathematical
difference. However, one should note that the orbits of the left diagonal flow do
not correspond to geodesics in the same fashion as do orbits of the right diagonal
flow: DtA(i) is not a geodesic.

In summary, we have:
The geodesic flow for a surface of constant negative curvature is conjugate to

the diagonal flow on a quotient of SL(2,R), and its stable and unstable manifolds
correspond to quotients of the cosets of the U and L subgroups. All facts about
time-t maps of the diagonal flow project to facts about time-t maps of the geodesic
flow.
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15. Affine diffeomorphisms

We now place linear hyperbolic diffeomorphisms and hyperbolic geodesic flows
in the unifying context of affine diffeomorphisms of homogeneous spaces.

Suppose that G is a connected Lie group, A : G → G is an automorphism,
B is a closed subgroup of G with A(B) = B, g ∈ G is given, and the affine
diffeomorphism

f : G/B → G/B

is defined as f(xB) = gA(x)B. It is covered by the diffeomorphism

f̄ = Lg ◦A : G→ G,

where Lg : G→ G is left multiplication by g.
We have already seen some examples of affine diffeomorphisms. For the Thom

diffeomorphism of Section 2, G = R2, B = Z2, the automorphism A =
[
2 1
1 1

]
, and

g = 0. For the algebraic version of the geodesic flow, G = SL(2,R), B = Γ, and the

affine diffeomorphism is given by left translation, f = Lg where g =
[
e

1
2 0

0 e−
1
2

]
.

The automorphism A is the identity.
An affine diffeomorphism f̄ induces an automorphism of the Lie algebra g = TeG,

a(f̄) = Adg ◦TeA, where Adg is the adjoint action of g, and g splits into generalized
eigenspaces,

g = gu ⊕ gc ⊕ gs,

such that the eigenvalues of a(f̄) are respectively outside, on, or inside the unit
circle. These eigenspaces and the direct sums gcu = gu ⊕ gc, gcs = gc ⊕ gs are Lie
subalgebras and hence tangent to connected subgroups Gu, Gc, Gs, Gcu, Gcs.

Theorem 15.1. [PSS] Let f : G/B → G/B be an affine diffeomorphism as above
such that G/B is compact and supports a smooth G-invariant volume. Let G∗ be
any of the groups Gu, Gc, Gs, Gcu, Gcs. Then the orbits of the left G∗-action on
G/B foliate G/B. Moreover, f exponentially expands the Gu-leaves, exponentially
contracts the Gs-leaves, and affects the Gc-leaves subexponentially.

Remark . If G/B is compact and the subgroup B is discrete, then G/B always
supports a smooth G-invariant volume, so the hypothesis on the existence of such
a volume is redundant. (Invariance refers to left multiplication by elements of G.)
On the other hand, if B is not discrete, the theorem is false without the volume hy-
pothesis. Consider G = GL(n,R) and B the subgroup of upper triangular matrices.
If A ∈ GL(n,R) has real eigenvalues whose moduli are distinct, left multiplication
by A on G/B is a Morse-Smale diffeomorphism with n! fixed points. The orbits
of Gu are the unstable manifolds of these points and vary in dimension from 0 to
n(n − 1)/2. They do not foliate. See [ShV], and see [St1] as a general reference
for dynamical systems on homogeneous spaces as well as for many illuminating
examples.

Now we characterize partial hyperbolicity, bunching, dynamical coherence, and
accessibility in the context of affine diffeomorphisms. Let h denote the smallest Lie
subalgebra of g containing gu ∪ gs. It is not hard to see that h is an ideal in g. We
call it the hyperbolic Lie subalgebra of f̄ , and we denote by H the connected
subgroup of G tangent to h, calling it the hyperbolic subgroup of f̄ . Finally, let
b denote the Lie algebra of B, b ⊂ g.
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Theorem 15.2. [PS3], [BreS] Let f : G/B → G/B be an affine diffeomorphism as
above such that G/B is compact and supports a smooth G-invariant volume. Then

(a) f is partially hyperbolic if and only if the hyperbolic Lie subalgebra of f̄ is
not contained in the Lie algebra of B, h 6⊂ b.

(b) If f is partially hyperbolic, then it is center bunched and dynamically co-
herent.

(c) f has the us-accessibility property if and only if g = b + h.
(d) f has the e-accessibility property if and only if HB = G.

When the stable and unstable foliations are smooth, as in Theorems 15.1 and
15.2, then by Theorem 12.2, us-accessibility is stable. Thus we have:

Theorem 15.3. [PS3] Let f : G/B → G/B be an affine diffeomorphism as above
such that G/B is compact and supports a smooth G-invariant volume. Then f is
stably ergodic among C2 volume preserving diffeomorphisms of G/B if (merely) the
hyperbolic Lie subalgebra h is large enough that g = b + h.

If G is simple, then any non-trivial h is large enough since it is an ideal. Thus,

Corollary 15.4. Let f : G/B → G/B be as above, with G simple. Then f is
stably ergodic among C2 volume preserving diffeomorphisms of G/B if (merely) the
hyperbolic Lie subalgebra h is non-zero, h 6= 0.

This gives a generalization of the ergodicity of our geodesic flow example in
all dimensions. Suppose that A ∈ SL(n,R) has some eigenvalues that are not of
modulus one, and suppose that Γ is a uniform discrete subgroup of SL(n,R). Set
M = SL(n,R)/Γ. Then left multiplication by A, LA : M → M , is stably ergodic
in Diff2

m(M). The case where n is large and all but two eigenvalues have modulus
one is interesting, in that the dimension of Gu and Gs is n− 1 while the dimension
of Gc is (n− 1)2, so the dimension of Gc is much larger than that of Gu and Gs.

At the other extreme are abelian groups. If G = Rn and B = Zn, then transla-
tions on the torus Tn = Rn/Zn may be ergodic if the entries of the element defining
the translation are rationally independent, but they are never stably ergodic. For
an automorphism A, however, the hyperbolic Lie subalgebra equals Rn if and only
if A is hyperbolic.

It may be instructive here to recall that an automorphism A of Tn is ergodic if
and only if A has no eigenvalues that are roots of unity, or equivalently if the orbits
of all non-zero lattice points under A (or under its transpose A∗) are infinite. The
classical proof of this fact is simple and illustrative of the different techniques used
to study affine diffeomorphisms and non-linear dynamics in general. Here it is.

Suppose that A has no eigenvalues which are roots of unity. Let B ⊂ Tn be an
A-invariant set of positive measure, and let χB be its characteristic function. Then
χB ◦A = χB. Writing Fourier series we have

χB(x) =
∑

aze
<z,x> =

∑
aze

<A∗z,x> = χB ◦A.
The sums are taken over the lattice points z ∈ Zn. Thus az = aA∗z, and as the
orbits are infinite, az = 0 for all z 6= 0. Thus χB(x) is almost everywhere constant,
equal to 1, and B has measure 1.

A little bit of algebra quickly shows that the hypothesis that A has no eigenvalues
which are roots of unity is equivalent to the hypothesis that HZn = Rn where H is
the hyperbolically generated subgroup of Rn. We sketch one direction. If HZn 6=
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Rn, then H is an invariant proper rational subspace of Rn and the characteristic
polynomial of A splits over the rationals and hence splits over the integers into a
product of two monic polynomials over the integers, one with all roots off the unit
circle and one with all roots on the unit circle. But the roots of a monic polynomial
over the integers with all roots on the unit circle are all roots of unity.

We have concentrated on the accessibility condition because accessibility is a
topological property and as such it is not difficult to stipulate easily verifiable
conditions which guarantee that it persists under small perturbations.

In a recent remarkable paper, Federico Rodriguez Hertz gives the first examples
of stably e-accessible diffeomorphisms that are not us-accessible, [R-H]. They are
ergodic, non-hyperbolic diffeomorphisms of tori. The first such occurs in dimension
four and was written down by Peter Walters [Walt] as

0 0 0 −1
1 0 0 8
0 1 0 −6
0 0 1 8

 .
Another example is due to Doug Lind [Li].
Rodriguez Hertz sometimes uses a technical assumption on the automorphism

A, namely
(∗) The characteristic polynomial of A is irreducible over the integers and is

not a polynomial in tn for all n > 1.
This assumption is true for the examples of Walters and Lind.

Theorem 15.5. [R-H] Let A be an ergodic toral automorphism of Tn.
(a) If n ≤ 5, then A is stably ergodic in Diff22

m (Tn).
(b) If n ≥ 6, Ec is two-dimensional, and A satisfies (∗), then A is stably ergodic

in Diff5(Tn).

The differentiability degrees 22 and 5 are not misprints.
Part of Rodriguez Hertz’s proof involves an alternative. Either the perturbation

is us-accessible or the stable and unstable manifold foliations are differentiably
conjugate to the foliations of the linear example and hence the perturbation has
the e-accessibility property.

Problem. Is every ergodic toral automorphism stably ergodic in the Cr topology
for some r?

In Section 16 we will discuss a more general version of this problem.

The next result shows that at least they often lie in the closure of the stably
ergodic diffeomorphisms.

Theorem 15.6. [ShW1] Every ergodic toral automorphism of Tn that is an isom-
etry on the center bundle Ec can be approximated arbitrarily well in Diff∞m (Tn) by
a stably us-accessible, stably ergodic diffeomorphism.

At this point it is natural to ask if every e-accessible diffeomorphism can be ap-
proximated by a stably us-accessible diffeomorphism. In fact we have conjectured
in [PS2, Conjecture 4] and [PS3, Conjecture 2] that partially hyperbolic diffeo-
morphisms which are us-accessible are open and dense in the partially hyperbolic
diffeomorphisms, volume preserving or not. See also Conjecture 18.4 in Section 18.
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There are connections between ergodic automorphisms of the torus and Salem
polynomials. These are integral, monic, reciprocal polynomials of even degree d ≥ 4
having one positive real root λ outside the unit circle, one inside the unit circle,
and the remaining roots on the circle. Reciprocal means that ad−i = ai for all 0 ≤
i ≤ d/2. If the characteristic polynomial of the automorphism A of Td is a Salem
polynomial, then A is ergodic. Such automorphisms are at the opposite extreme
from the class covered by Theorem 15.5 (except in dimension 4). David Boyd lists
Salem polynomials with small λ in [Boy]. The corresponding automorphisms of the
torus are poorly bunched. For degree four polynomials Boyd has told us how to get
all Salem polynomials. Namely, let P (x) = x4− ax3 + bx2− ax+ 1 with a positive.
Then P is Salem if and only if −2a− 2 < b < 2a− 2. A general reference for Salem
numbers is [BDGPS].

Further examples of partially hyperbolic stably ergodic diffeomorphisms are con-
sidered in [BuPSW]. These include skew products, frame flows, and Anosov-like
diffeomorphisms. We discuss skew products below.

16. Decisiveness and the proof of Theorem B

In this section we make use of the idea that stability with respect to a small
class of perturbations is decisive for stability with respect to a larger class. For
example, structural stability of a linear map Rn → Rn where only diagonal linear
perturbations are permitted is equivalent to structural stability where all C1 small
perturbations are permitted. The usage is made clear in what follows.

Theorem 16.1 (Theorem B). Suppose that f : G/B → G/B is an affine dif-
feomorphism such that M = G/B is compact and supports a smooth G-invariant
volume. Assume that G is simple. Stable ergodicity of f with respect to perturbation
by left translations is decisive for stable ergodicity of f in Diff2

m(M).

The proof is based on the theorem of Starkov which appears in the appendix to
this paper.

Theorem 16.2. [St2] With hypotheses as in Theorem 16.1, except that G need not
be simple, the following are equivalent.

(a) f is stably ergodic under perturbation by left translations.
(b) HB = G where H is the hyperbolically generated subgroup of G.

Proof of Theorem B. We may assume that B 6= G and that f is stably er-
godic with respect to perturbation by left translations. Theorem 16.2 implies that
HB = G so H is non-trivial. As H is normal and G is simple, H = G. Now by
Theorem 15.3, f is stably ergodic in Diff2

m(M). �

A second class where decisiveness occurs is skew products. Let G be a compact
Lie group and let f : N → N be a hyperbolic diffeomorphism of a compact manifold
N . Each smooth map ϕ : N → G defines a skew product diffeomorphism fϕ :
M →M where M = N ×G and

fϕ(p, g) = (f(p), ϕ(p)g).

Left translations are isometries of G in the bi-invariant metric, which implies that
fϕ is partially hyperbolic and center bunched. If f preserves a smooth volume mN ,
then fϕ preserves the smooth volume m = mN × ν, where ν is normalized Haar
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measure on G. Skew products over f are also called G-extensions of f . The set of
all C2 skew products over f ,

Skew(f,G) = {fϕ : ϕ ∈ C2(N,G)},
is a closed subset of Diff2

m(M).
The ergodic properties of such skew products were studied by Brin [Br2]. He

proved that ergodic diffeomorphisms form an open and dense subset of Skew(f,G).
Burns and Wilkinson have shown:

Theorem 16.3. [BuW1] With f,G,N,M as above
(a) Stable ergodicity is open and dense in Skew(f,G).
(b) If f : N → N is infranil (see Section 20), then stable ergodicity of fϕ in

Skew(f,G) is decisive for stable ergodicity in Diff2
m(M).

The proof is based on a classification of those skew products that are not stably
ergodic. Stable ergodicity of skew products has been studied in more generality,
and there is now a considerable literature on the subject. Some of the references
are [PaP], [FiP], [FiMT], [FiN1], [FiN2], and [Walk].

We end with a question from [BuPSW] of a very different nature. We have used
both the strong unstable and strong stable foliations in our proof of ergodicity, but
we do not know an example where this is strictly necessary.

Question . For a partially hyperbolic C2 ergodic diffeomorphism f with the e-
accessibility property, are the unstable and stable foliations already uniquely er-
godic?

Unique ergodicity of Wu and Ws was proved by Bowen and Marcus [BowM]
in the case where f is the time-one map of a hyperbolic flow. Rodriguez Hertz’s
result adds more cases in which the invariant foliations are uniquely ergodic, namely
those in which they are differentiably conjugate to the invariant foliations of a linear
ergodic toral automorphism.

In the topological category Bonnatti, Dı́az, and Ures [BonDU] prove the mini-
mality of the stable and unstable foliations for an open and dense set of robustly
transitive diffeomorphisms.

17. The Mautner phenomenon

Theorem B and Rodriguez Hertz’s results make the decisiveness situation very
suggestive: Is perturbation by left translations decisive for stable ergodicity of affine
diffeomorphisms in Diffrm(M) where M = G/B and r is large enough?

The problem revolves around the question of what happens to the accessibility
classes under perturbations when HB = G. Starkov’s proof that HB = G implies
the stable ergodicity of the affine diffeomorphism f also shows that the group H
can only get larger under perturbation. Thus the perturbed accessibility classes
contain the old ones. Since the H-orbits are smooth it follows by the arguments of
[PS2] that under C2 perturbations, accessibility classes cannot get smaller (at least
in the homological sense), but they do move about. On the other hand they might
get larger, even to the extent of becoming the whole manifold. It is conceivable that
the only way the accessibility classes do not get larger is if they stay differentiable.
Then a kind of rigidity argument along the lines of KAM theory may show that
e-accessibility persists. This is Rodriguez Hertz’s argument in the cases he has so
far accomplished.
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Here is how a slight variant of our proof of Theorem E goes for the special case
of an affine diffeomorphism f . (Smoothness of the invariant foliations obviates
juliennes and absolute continuity.) Let k ∈ L1(M) be an f -invariant function,
where M = G/B as above. The set of group elements g ∈ G that leave k invariant
is closed. By Lemma 6.1 and the smoothness of the invariant foliations, k must be
almost constant on unstable and stable manifolds; i.e., it is almost constant on the
Gu and Gs orbits. Hence for every element g ∈ Gu∪Gs, k(gx) = k(x). (This is the
analogue of our Theorem J.) Thus k is invariant for every g ∈ H , the hyperbolically
generated normal subgroup. (This is the analogue of the corollary to Theorem J.)
Now since k is defined on G/B, k is constant on HB orbits. As HB = G, k is
constant.

The proof we presented here is an instance of what is called the Mautner
phenomenon in the ergodic theory of flows on homogeneous spaces or group rep-
resentation theory. Our Theorem J, its corollary, and Theorem E may be thought
of as a non-linear generalization of the Mautner phenomenon.

Gelfand and Fomin [GeF] view the geodesic flow as a flow on a homogeneous
space, and the Mautner phenomenon [Mau1],[Mau2] was initially applied in that
context. It has taken on a much wider scope in the theory of flows on homogeneous
spaces and representation theory. The hyperbolically generated group H was con-
sidered by Auslander and Green in [AuG] and a generalization by Moore [Mo]. See
[St1] for a general discussion. There are elegant proofs of the Mautner phenome-
non in the literature, different from the one outlined above, and sometimes more
general; see for example the one by Parry in [Par].

18. The Main Conjecture

For r ≥ 1, let us denote by PHr(M) the partially hyperbolic Cr diffeomorphisms
of M , and by PHr

m(M) those that are volume preserving. We equip these spaces
with the Cr topology. We denote by SE the set of stably ergodic diffeomorphisms.
In Section 1 we stated our Main Conjecture that for r ≥ 2, SE is an open and
dense subset of PHr

m(M). Besides the results discussed above, most of the progress
on our Main Conjecture is limited to the case where the dimension of the center
bundle Ec is one. Here are three results in that case.

Theorem 18.1. [Do2] If the dimension of M is three, then SE∩PH2
m(M) is open

and dense in PH2
m(M).

Theorem 18.2. [BuPW] If the dimension of M is three, then for almost all hy-
perbolic flows on M (i.e., for those that are not suspensions) the time-t maps are
stably ergodic for all t 6= 0.

Theorem 18.3. [BonMVW] Among partially hyperbolic C2 volume preserving dif-
feomorphisms with one-dimensional center bundle, the stably ergodic ones are C1

dense.

Remark. Theorem 18.1 essentially verifies our Main Conjecture in dimension three.
Theorem 18.2 is not a direct corollary of Theorem 18.1 since time-t maps of hy-
perbolic flows do not form an open subset of Diff2

m(M). Theorem 18.3 has mixed
topologies: each f ∈ PH2

m with one-dimensional center can be C1 approximated by
an f ′ ∈ SE∩PH2

m.
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In general, the Main Conjecture can be split into two parts. The first part
concerns the prevalence of stable accessibility.

Conjecture 18.4. [PS2, Conjecture 4] and [PS3, Conjecture 2] For r ≥ 1,
e-accessibility holds for open and dense subsets of PHr and PHr

m.

In this direction there are three results.

Theorem 18.5. [NiT] Conjecture 18.4 is valid for all r ≥ 1 when the center is
one-dimensional and there exist two nearby compact center leaves.

Theorem 18.6. [Do2] Conjecture 18.4 is valid when the manifold has dimension
three and r = 2.

Theorem 18.7. [DoW] For all r ≥ 1, among partially hyperbolic Cr diffeomor-
phisms with one-dimensional center bundle, the stably us-accessible (and therefore
stably e-accessible) ones are C1 dense.

The second part of the Main Conjecture concerns the bunching and dynamical
coherence hypotheses in Theorem E.

Conjecture 18.8. [PS3, Conjecture 3] A partially hyperbolicC2 volume preserving
diffeomorphism with the e-accessibility property is ergodic.

Not much progress has been made on Conjecture 18.8 except that Burns and
Wilkinson [BuW2] have improved the center bunching conditions.

19. Dominated splitting

We have seen above that partial hyperbolicity is necessary for stable ergodicity in
the context of affine diffeomorphisms. As Tahzibi shows in [Ta], this is not generally
the case. Diffeomorphisms of tori introduced by Bonatti and Viana in [BonV] are
stably ergodic but not partially hyperbolic. They do however satisfy a similar but
more general notion introduced by Mañé [Ma1], [Ma2], [Ma3] and independently
by Liao [Liao] and Pliss [Pl] of having a dominated splitting.

A continuous Tf -invariant splitting E ⊕ F is dominated if there is a norm on
TM such that point by point, Tf affects all vectors in Ep more expansively than
any vectors in Fp. Domination requires neither ‖Tf |Fp‖ < 1 nor ‖(Tf |Ep)−1‖ < 1.
Rather, for all unit vectors u ∈ Ep, v ∈ Fp, one should have

|Tf(u)| > |Tf(v)|.
For a partially hyperbolic diffeomorphism f , there are two dominated splittings:
E ⊕ F = (Eu ⊕ Ec)⊕ Es and E ⊕ F = Eu ⊕ (Ec ⊕ Es).

There is a considerable literature on dominated splitting and its relationship to
stable or robust transitivity. In fact the literature has gotten so large that we do
not attempt to survey it here. See instead the articles by Dı́az [Dı́], Pujals [Puj],
and the references therein. It would be interesting to extend more of the results
on partial hyperbolicity and stable ergodicity in this direction. From the literature
and the examples currently known it is natural to speculate as Tahzibi does that a
dominated splitting is necessary for stable ergodicity.

In fact there is the following recent result of Bochi, Fayad, and Pujals. Let
Diff1+

m (M) be the set of m-preserving diffeomorphisms whose derivative is Hölder
continuous, equipped with the C1 topology, and let SE be the subset of stably
ergodic ones. (As usual, m is a smooth volume on the compact manifold M .)
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Theorem 19.1. [BocFP] There is an open and dense subset of SE each of whose el-
ements f is non-uniformly hyperbolic, admits dominated splitting, and is Bernoulli.

A similar result is proved concerning dominated splittings and robust transitivity
in [ArbM].

20. Existence

Which manifolds support partially hyperbolic diffeomorphisms? Already the
question as to which manifolds support hyperbolic diffeomorphisms or flows is not
well understood, so the question will be difficult.† There may be some hope in
understanding the problem in low dimensions. In dimension three, Pujals has sug-
gested that all manifolds that support partially hyperbolic diffeomorphisms either
support hyperbolic flows or are circle bundles over the torus. Bonatti and Wilkin-
son [BonW] take a step in this direction, and Brin, Burago and Ivanov [BriBI]
prove that there are no partially hyperbolic diffeomorphisms on S3 or on any other
compact 3-manifold with a finite fundamental group.

Here are two off-the-top-of-the-head questions. Let f : M → M be a partially
hyperbolic diffeomorphism.

(1) We have made examples of partially hyperbolic diffeomorphisms on ho-
mogeneous spaces, fiber bundles, and direct products. Does there exist a
manifold N of dimension less than the dimension of M , other than a point,
and a locally trivial fibration π : M → N?

(2) Do the strong stable and unstable manifolds represent non-trivial homology
classes in the homology of M? (See Ruelle-Sullivan [RuS] for the Anosov
case.)

Relevant to these questions is a beautiful conjecture dating back to the 60s
about the classification of hyperbolic (i.e., Anosov) diffeomorphisms. Let N be a
simply connected nilpotent Lie group, Γ a uniform discrete subgroup of N , and
A an automorphism of N that preserves Γ. Then A : N/Γ → N/Γ is an affine
diffeomorphism. If the tangent TeA : TeN → TeN is a hyperbolic linear map,
then A : N/Γ → N/Γ is hyperbolic. The manifold N/Γ is called a nilmanifold
and the affine diffeomorphism is a nilmanifold Anosov diffeomorphism. Examples
of these diffeomorphisms were constructed by Smale [Sm1], and he suggested that
they may comprise all the Anosov diffeomorphisms up to topological conjugacy.
Shub [Sh] realized that there may be an additional finite group of symmetries, and
he constructed an example of an Anosov diffeomorphism on a manifold that is not
itself a nilmanifold but is finitely covered by one.

N
A−−−−−−−−→ Ny y

N/Γ A−−−−−−−−→ N/Γ

π
y yπ
M

f−−−−−−−−→ M

† From the definition of partial hyperbolicity the tangent bundle must admit a non-trivial
direct sum decomposition, and this is already a restriction. But the class seems much more
restricted.
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π is finite-to-one. These examples are called infranil Anosov diffeomorphisms, and
no new examples of Anosov diffeomorphisms have been added in thirty-six years.
At the time, Smale was cautious about calling his suggestion a conjecture, but by
now it is certainly reasonable.

Conjecture. Every Anosov diffeomorphism is topologically conjugate to an infranil
example.

There are a lot of partial results, but we do not survey them here. See [Sm2]
and [Sm3] for details. Credence is lent to the conjecture by the fact that the
corresponding conjecture is true for expanding maps, [Gr].

21. Fubini’s nightmare

In a product measure space X × Y , Fubini detects a zero set Z slice by slice.
Almost every slice Zx should be a zero set in Y . Slices look like local leaves (plaques)
of a foliation, and one would expect a Fubini type of theorem. In fact, quite the
opposite is true for many dynamically defined foliations – each slice of a zero set
can have full slice measure – and one must face the fact that this anti-Fubini
phenomenon, dubbed “Fubini’s Nightmare” by Flaminio, is natural and perhaps
even typical.

It all comes down to center subbundle Ec, and often in the measure theoretic
sense Ec can be almost eradicated. One begins with a linear hyperbolic diffeomor-
phism A : T2 → T2 having a splitting T (T2) = Eu0 ⊕ Es0 . The center leaves of the
partially hyperbolic skew product f0 = A × id : T3 → T3 are circles z × S1 tan-
gent to the bundle Ec0. These circles are fibers of a normally hyperbolic invariant
fibration,

T3 f−−−−−−−−→ T3

π
y yπ
T2 A−−−−−−−−→ T2,

the stability of which was one of the starting points for our study of normally
hyperbolic foliations and laminations in [HPS]. We showed that corresponding to
each small perturbation f of f0 there is a unique equivariant fibration

T3 f−−−−−−−−→ T3

πf
y yπf
T2 A−−−−−−−−→ T2.

The fibers of πf are smooth simple closed curves, but πf may only be Hölder.
By the results of Burns and Wilkinson (Theorem 16.3) f0 can first be approxi-

mated by a stably ergodic skew product f1, and then by the construction of Shub
and Wilkinson [ShW2] f1 can be perturbed to a volume preserving diffeomorphism
f : T3 → T3 for which the Lyapunov exponent along its center leaves is almost ev-
erywhere positive. The Shub-Wilkinson diffeomorphism f is partially hyperbolic.
It has a unique invariant splitting

T (T3) = Eu ⊕ Es ⊕ Ec,
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which is continuous and defined everywhere, but it also has a unique Lyapunov
splitting

T (T3) = Lu ⊕ Ls

such that vectors in Lu have positive Lyapunov exponent while vectors in Ls have
negative Lyapunov exponent. The subbundles Lu, Ls are defined almost everywhere
and are measurable instead of continuous. Likewise their expansion/contraction
rates are only measurable. Thus,

Lu = Eu ⊕ Ec and Ls = Es almost everywhere,

which is what we mean by almost eradicating the center bundle. On a set P ⊂M
of full measure, the center bundle is part of the Lyapunov unstable bundle. A
diffeomorphism like f whose Lyapunov exponents are non-zero almost everywhere is
called non-uniformly hyperbolic. Such dynamical systems were first considered
by Pesin [Pe], who did much of the fundamental work on them.

But what does this mean for the center leaves? They are simple closed curves
whose lengths are bounded above and below. Thus, arclength in a center leaf cannot
grow exponentially under fn, and it follows that P meets each center leaf in a set
of arclength zero, so the center foliation Wc of f , although unique and natural, is
not absolutely continuous. Rather, it is absolutely singular. The pathology persists
under perturbation, which is why we think it may be the rule, not the exception.

It is a nice exercise to picture the juliennes for these examples. Are they small
hourglasses with exponentially thin multiple waists?

Previously, Katok had constructed a dynamically invariant foliation that is not
absolutely continuous; it was presented by Milnor [Mi] under the title Fubini foiled.
Subsequently, Dolgopyat [Do2] proved a similar theorem for the time-one map f of
the geodesic flow for surfaces of negative curvature. He shows f has a neighborhood
N ⊂ Diff2

m(T1M) such that for all f ′ in an open-dense subset N ′ ⊂ N , f ′ has non-
zero Lyapunov exponent in the center direction. It then follows from arguments
communicated to us long ago by Mañé [Ma4] that these maps have non-absolutely
continuous center foliations.

Worse than non-absolute continuity of a foliation F is the property that for some
sets P of full measure,

k = sup{#(F ∩ P ) : F is a leaf of F } <∞.

P meets every leaf in at most k points. Katok’s example in [Mi] has this property
with k = 1. Ruelle and Wilkinson [RuW] and Katok have shown that the Shub-
Wilkinson examples have a similar property: for each such example there is a finite
number k such that the set

P = {p ∈M : the Lyapunov exponent in the center direction is positive}

meets almost every center leaf in exactly k points. Katok has pointed out that it is
possible to have k > 1; this is achieved by versions of the Shub-Wilkinson construc-
tion that commute with a finite group of symmetries. It would be interesting to
prove that there are such examples with k = 1. Then it would follow from entropy
considerations that the Hölder continuous fibration πf is a Lebesgue isomorphism
from T3 to T2 whose fibers are C1 circles. Of course, it is well known that T3 and T2

are Lebesgue isomorphic, but it would be somewhat surprising to have an explicitly
constructible example of such an isomorphism arising naturally via considerations
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of dynamics. The fibers πf are easy to calculate numerically since they are given
by the contraction mapping theorem.

There is a dramatic difference between manifolds that support hyperbolic diffeo-
morphisms, or even partially hyperbolic diffeomorphisms, and those that support
non-uniformly hyperbolic diffeomorphisms. In [DoP], Dolgopyat and Pesin prove
the latter exist on all manifolds of dimension ≥ 2. Their examples are isotopic to
the identity, while the Shub-Wilkinson non-uniformly hyperbolic examples are not.
This leads one to the question: Are there non-uniformly hyperbolic diffeomorphisms
of manifolds of dimension ≥ 2 in all isotopy classes?

22. Other measures

Even though a dynamical system refuses to preserve a smooth volume m, it may
preserve other measures that capture the behavior of almost all (with respect to m)
orbits. Such SRB measures were constructed by Sinai, Ruelle and Bowen in the 70s
for Axiom A dynamical systems. See [Si], [Ru], [BowR], [Bow2]. Axiom A systems
include hyperbolic diffeomorphisms and flows, and also some systems with chaotic
attractors. The SRB measure is supported on the attractor, so the space average
of a function is its average over the attractor. Ergodicity means that for almost
all (with respect to m) orbits, the forward time average equals the space average.
Stable ergodicity in the SRB context presents a tantalizing avenue of research.

At a recent 65th birthday celebration for Yasha Sinai and David Ruelle, Lai-Sang
Young [You] surveyed the work on these measures. We recommend this article to
anyone interested in pursuing the subject, and mention a few references closely tied
to stable ergodicity or partial hyperbolicity: [AlBV], [BonV], [BuDP], [Do1], [Do3],
[PeS].

Rufus Bowen died suddenly of a brain aneurism in 1978. He was born in 1947.
So he would have been too young anyway for a 65th birthday party.
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Appendix: Stable ergodicity among left translations

Alexander Starkov
‡

Let G be a connected Lie group and B ⊂ G be a closed subgroup. The homoge-
neous space G/B is said to be of finite volume if G/B admits a finite G-invariant
measure. An affine map f : G/B → G/B is a composition f = Lg ◦ A where
Lg : G/B → G/B is left translation by an element g ∈ G and A : G/B → G/B
is the map induced by an automorphism Ā : G → G such that Ā(B) = B. As
explained in Section 15 above, f induces an automorphism a(f) = Adg ◦TeA of the
Lie algebra g = TeG where Adg is the adjoint action of g. The a(f)-invariant sub-
space of generalized eigenvectors with eigenvalues off the unit circle is a Lie algebra
h tangent to the hyperbolic subgroup H of G.

Theorem 1. Let f : G/B → G/B be an affine map of the finite volume homoge-
neous space G/B with hyperbolic subgroup H. Then the following are equivalent:

(a) f is stably ergodic among left translations; i.e. there exists a neighborhood
O(g) ⊂ G such that the affine map fx = Lx◦A is ergodic for each x ∈ O(g).

(b) f is stably a K-automorphism among left translations; i.e. there exists a
neighborhood O(g) ⊂ G such that the affine map fx = Lx ◦ A is a K-
automorphism for each x ∈ O(g).

(c) G equals the closure HB.

Proof. We need a simple property that the hyperbolic subgroup H = Hg can only
enlarge when we perturb g.

Proposition 1. There exists a neighborhood O(g) ⊂ G such that H is contained
in the hyperbolic subgroup Hx of fx = Lx ◦A for every x ∈ O(g).

Proof. Recall that the Lie algebra h ⊂ g of H is the smallest ideal in g invariant
under Adg ◦ dĀ such that the operator Adg ◦ dĀ on g/h has all its eigenvalues of
absolute value 1. It follows that h is invariant under dĀ as well as under every
operator Adx, x ∈ G.

Let hx be the Lie algebra of Hx. Notice that hx is invariant under Adg ◦ dĀ.
Suppose that H is not contained in Hx. Then the operator Adg ◦ dĀ on g/hx

has an eigenvalue λ with |λ| 6= 1. Taking a quotient eliminates eigenvalues but
does not change the ones that remain. Thus λ does not depend on x. As x → g,
Adx ◦ dĀ → Adg ◦ dĀ, contrary to the fact that all eigenvalues of Adx ◦ dĀ on
g/hx are of modulus 1. �

According to Dani [Da1], [Da2], the affine map f is a K-automorphism on G/B
if and only if G = HB. It follows from Proposition 1 that (c) implies (b), and (b)
evidently implies (a). It remains to show that (a) implies (c), i.e., that HB 6= G
implies that f is not stably ergodic.

If HB 6= G, we take G′ = G/H,B′ = HB/H , and let f ′ be the affine map of
G′/B′ = G/HB induced by f . Notice that the hyperbolic subgroup of G′ for f ′ is

‡ The author was supported by the Leading Scientific School Grant No. 457.2003.1.
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trivial (so f ′ has zero entropy). It suffices to prove that f ′ is not stably ergodic.
So, replacing f by f ′ if needed, we can assume without loss of generality that H is
trivial and G/B is not trivial. We do so.

Recall that the cases when G is either semisimple or solvable (as well as a large
part of the general situation) were fully considered by Brezin and Shub [BS].

Remark. In short, the idea used in [BS] is as follows. If G is solvable and H is trivial,
then G/B admits a toral quotient on which f acts as a pure translation; hence f is
not stably ergodic. The case when G is semisimple reduces to the situation when
f = Lg and G has finite center. Since H is trivial, g is a quasi-unipotent element
of G. Then by the generalized Jacobson-Morozov Lemma, g can be approximated
by elements of finite order; hence again f is not stably ergodic.

Now, to prove that f is not stably ergodic if H is trivial, we only need to reduce
the general situation to these two basic cases. To do this, we apply the following
result of Starkov [St] and Witte [Wi] which solves certain problems related to the
structure of finite volume homogeneous spaces.

Proposition 2. Let G/B be a finite volume homogeneous space, and let f : G/B →
G/B be an ergodic affine map. Let R be the solvable radical of G. Then the product
group RB is closed.

Now there are two cases. Let G = SR be a Levi decomposition of G, R being
the solvable radical and S being a maximal semisimple connected subgroup of G.
If RB is a proper subgroup of G, then the space G/RB ' S/RB ∩ S is isomorphic
to a nontrivial homogeneous space of S. We fall into the semisimple case, and it
follows from Proposition 3.3 of [BS] that f is not stably ergodic.

If G = RB, then G/B ' R/B ∩ R, and hence we are in the solvable case. It
follows from Proposition 3.4 of [BS] that f is not stably ergodic. �
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