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In the late 1960’s, R. P. Langlands gradually became convinced of the existence
of a deep and systematic relation between number theory, specifically the Galois
theory of number fields, and the theory of automorphic forms, which can be de-
scribed as harmonic analysis on a certain class of locally compact groups and their
homogeneous spaces, also defined in terms of number theory.1 The nature of this
relation formed the basis of a network of interrelated and increasingly precise con-
jectures known at first (and still, to some extent) as the “Langlands philosophy”,
more recently as the “Langlands program”.

Since Langlands began to formulate his conjectures, the influence of his in-
sights has grown spectacularly. The Langlands program has by now assimilated the
greater part of the traditional theory of automorphic forms. Many scattered and
curious phenomena in the classical theory of automorphic forms were “explained”
a posteriori in terms of Langlands’ framework and the expected relation to num-
ber theory. More strikingly, Langlands’ conjectures, when specialized, give rise
to an endless stream of predictions regarding properties of automorphic forms on
specific groups which have proved astonishingly accurate. Indeed, the expressions
“automorphic forms” and “Langlands program” are now often used interchange-
ably, although this is an error. Conjectures analogous to those of Langlands have
become prominent in algebraic geometry and mathematical physics and in nearly
every branch of representation theory and harmonic analysis on groups. Finally,
and most importantly from the standpoint of the book under review, the Langlands
perspective has become pervasive in number theory; no one contemplating a career
in number theory can reasonably hope to escape.

Any attempt to give a brief account of the Langlands program faces a simple but
fundamental pedagogical paradox: one cannot state accurately any of Langlands’
conjectures, much less explain such proofs as are known, in the space of a readable
article. The statements of the conjectures combine the full theory of reductive
algebraic groups with the framework of modern number theory. The former is
well known to be heavy on notation and combinatorics, whereas the latter makes
essential use of the language of adèles, little known outside the specialty. To make
matters worse, the only known statement of the full Langlands conjectures for
number fields is in terms of the representation theory of a conjectural generalization
of the absolute Galois group known as the Langlands group, whose properties are

2000 Mathematics Subject Classification. Primary 11Mxx, 11Fxx, 11R39, 11S37, 14Hxx,
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1There were of course precedents, especially the work of Eichler and Shimura on the zeta
functions of modular curves, as well as the conjecture formulated by Taniyama and Shimura on
the modularity of elliptic curves over Q, which first appeared in print, in a more precise form,
in Weil’s celebrated article. Historians may some day have the chance to sort this out. In this
review I want to stress the systematic nature of the relations conjectured by Langlands, based on
his principle of functoriality, as well as the central role of representation theory.
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next to impossible to explain without circularity. As for proofs, they typically
require the complete theory of representations of reductive groups over local fields,
including Harish-Chandra’s theory of representations of real groups; the theory of
arithmetic groups as presented at the AMS Boulder conference (Proc. Symp. Pure
Math. 9); a good dose of spectral theory and complex analysis; class field theory and
the full strength of Shimura’s theory of canonical models of hermitian symmetric
domains (“Shimura varieties”); in the same vein, any available techniques from
arithmetic algebraic geometry; and, increasingly, analytic number theory.

With this list of prerequisites it’s not surprising that automorphic forms is re-
puted to be a difficult field, particularly but not exclusively by graduate students
seeking thesis projects. Moreover, while the Langlands conjectures themselves,
though highly technical, can with some effort be presented concisely and systemat-
ically, available methods are mostly ad hoc and can treat only very special cases,
and in practice the theory of automorphic forms appears to some people as

“a diffuse, disordered subject driven as much by the availability of techniques as by
any high esthetic purpose.” (Langlands, Where Stands Functoriality Today?, Proc.
Symp. Pure Math. 61 (1997) 457-471).

In other words, if, like Joseph Bernstein and Stephen Gelbart and the six con-
tributors to the book under review, you have set yourself the goal of producing a
short, aesthetically compelling but realistic introduction to the Langlands program
– or if you are reviewing such a book – it’s hard to know where to start. Bern-
stein and Gelbart start with number theory, postponing the harsh encounter with
reductive group theory until the end of the book. I will begin my review by trying
to explain what an automorphic form is.

If G is a locally compact group, say a Lie group, or more specifically SL(n,R),
and if Γ ⊂ G is a discrete subgroup, then the space L2(Γ\G) affords a Hilbert space
representation of the group G that can be decomposed as a direct integral of unitary
representations of G. The study of this decomposition is what we understand loosely
as “harmonic analysis” on Γ\G and includes as a special case the Plancherel formula
on G itself when Γ is the trivial group. When G is a reductive Lie group and Γ\G
has finite volume – for example, G = SL(n,R) and Γ is a subgroup of finite index in
SL(n,Z) – Harish-Chandra singled out a special class of C∞ functions f : Γ\G → C
to qualify as automorphic forms: (a) the translations of f under a (chosen) maximal
compact subgroup K ⊂ G (e.g., SO(n) ⊂ SL(n,R)) must be contained in a finite-
dimensional space of functions; (b) f must satisfy a large collection of G-invariant
differential equations (more precisely, f must be annihilated by an ideal of finite
codimension in the center of the universal enveloping algebra of the complexified
Lie algebra of G); (c) finally, if Γ\G is non-compact, f must satisfy a condition
of moderate growth at the boundary. The L2-condition is optional but will be
assumed for the sake of exposition.

In the arithmetic theory of automorphic forms one can begin with a group G
as above of the form G(R), where G is a reductive linear algebraic group over
the field Q or, more generally, a finite extension F of Q. Thus if G is the group
SL(n) viewed as an algebraic group over Q, then G is SL(n,R) as above. If instead
G is SL(n) viewed as an algebraic group over F , then G = SL(n, F ⊗Q R) =∏
SL(n,R)r1 × SL(n,C)r2, where r1 is the number of field embeddings of F in

R and r2 is the number of pairs of complex conjugate embeddings of F in C, so
that r1 + 2r2 = [F : Q]. One can choose a faithful rational matrix representation
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ρ : G → GL(N) for some large N , defined over Q (resp. F ), and take Γ to be the
group Γρ of elements g ∈ G such that the matrix coefficients of ρ(g) lie in Z (resp.
in the ring OF of algebraic integers in F ) or more generally a subgroup of Γρ of
finite index, defined by a congruence condition on the matrix coefficients. One can
develop the entire theory in this setting, but the relations between the automorphic
forms for different choices of ρ and Γ are by no means obvious. It is more canonical
to take Γ = G(F ), the group of all points of G with values in F (if this is defined
as before via a faithful rational matrix representation ρ, it is independent of the
choices) and to find a locally compact group G that contains G(F ) as a discrete
subgroup.

The natural choice is to take G to be the group of points of G with values in
the adèles of F . To construct the adèles of Q one first takes the ring R ×

∏
pQp

(direct product) where if p is a prime number, Zp = lim←−N Z/p
NZ is the compact

totally disconnected ring of p-adic integers, Qp = Q ⊗Z Zp its fraction field, which
contains Q as a dense subring, and the product runs over all prime numbers. This
direct product contains Q as a discrete subring but is too big to be locally compact,
so it is replaced by the subring AQ of sequences (x∞, (xp)) where xp ∈ Zp for all
but finitely many p. This has a natural locally compact topology and contains
Q as a discrete subring with compact quotient. More generally we define AF =
AQ ⊗Q F . Now if G is a semisimple algebraic group over F , then the quotient
G(F )\G(AF ), though in general not compact, has finite invariant volume, and one
defines an automorphic form on G to be a function f : G(F )\G(AF ) → C that
is locally constant in the p-adic variables for all p, C∞ in the real and complex
variables, where it also satisfies the analogues of conditions (a), (b), and (c) above.
In fact, when G is semisimple the quotient G(F )\G(AF ) can be interpreted as a
projective limit of C∞ manifolds, each of which can be identified with a finite union
of the homogeneous spaces of the form Γ\G(R) considered above. But the adèlic
perspective has a precious advantage: the groupG(AF ) acts by right translation2 on
the space C(G) of automorphic forms on G and stabilizes the subspace of L2-forms,
which decomposes as a direct integral over irreducible unitary representations of
G(AF ). An irreducible G(AF )-invariant direct summand of C(G) we will call an
automorphic representation (this is more restrictive than the standard definition).

The set of automorphic representations of G is denoted A(G). Note that the
object of interest is no longer the individual automorphic form f but the auto-
morphic representation it generates. In the classical case G = SL(2)Q, one can
identify (certain) automorphic forms f in this sense with holomorphic elliptic mod-
ular forms. This is carried out in the second of Kudla’s contributions to the volume
under review. The property of belonging to an irreducible automorphic represen-
tation corresponds in the classical language to being an eigenvector for almost all
the classical Hecke operators.

This definition has the additional advantage of carrying over unchanged when
F is the field of rational functions k(X) on a smooth proper algebraic curve X
over a finite field k. In defining the adèles of k(X) one takes instead of R or Qp
the fields k̂(X)x of formal power series in a neighborhood of the point x in X(k̄),

2Not quite; condition (a) is incompatible with an action of the group G(F ⊗Q R) of real points
of G, which has to be replaced by the enveloping algebra of its complexified Lie algebra. This is
just one of the seemingly endless list of details that makes exposition of the theory so difficult,
and we will just wish them away for the sake of this review.
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where two points are identified if they belong to the same orbit under Gal(k̄/k). In
what follows, “function fields” will be fields of the form k(X), necessarily of positive
characteristic, in contrast to “number fields” which are finite extensions of Q.

When G is merely reductive rather than semisimple – e.g., G = GL(n), in
principle the most important example – then G(F )\G(AF ) does not have finite
volume, and to speak of automorphic representations one has to amend the theory
in one of several more or less inelegant ways. It’s enough to add the condition that
the center of G(F ⊗Q R) acts by a character. The group GL(1,AF ) = A×F is the
idèle group of F , and an automorphic form in this setting is just a complex-valued
character of the locally compact abelian group F×\A×F , the idèle class group. Here
is where number theory enters the picture. Let A(GL(1))fin ⊂ A(GL(1)) denote
the set of (complex) characters of the idèle class group of finite order. The main
theorem of (abelian) class field theory, valid for function fields as well as for number
fields, can be interpreted to assert a canonical identification between A(GL(1))fin
and the set G(GL(1)) of characters Gal(F̄ /F )→ C× of the absolute Galois group
of F , or equivalently of the Galois group of the maximal abelian extension of F .

It would be wonderful to be able to say at this point that the Langlands conjec-
tures predict that the elements of A(G) correspond to something Galois-theoretic
for general reductive groups G, but this would be wrong on several grounds. For
general G there is a distinguished subset A(G)alg ⊂ A(G) (“alg” for “algebraic”),
extending the set A(GL(1))fin introduced above, but more general even for G =
GL(1), whose members should have Galois-theoretic meaning. A bit more pre-
cisely, the elements of A(G)alg are (conjecturally) parametrized by certain kinds of
representations of Gal(F̄ /F ) in a way to be described in a bit more detail below.
When F is a function field there is essentially no difference between A(G)alg (see
below) and A(G), but for number fields non-algebraic automorphic representations,
including the classical Maass forms, arise from many sources, including the spectral
theory of locally symmetric spaces, and are of great importance in analytic number
theory.

The only way proposed to account for non-algebraic members of A(G) is to
parametrize them by representations of the conjectural Langlands group mentioned
above. I will not try to explain what this means but instead describe what is meant
by a parametrization. To each (connected) reductive group G over F Langlands
associates a complex (connected) reductive group Ĝ, the (Langlands) dual group,
generalizing the classical duality of tori. The formula is explicit but a bit tricky.
Langlands duality switches groups of type B with those of type C, otherwise leaving
the types alone; it also switches simply connected and adjoint groups. Fortunately
ĜL(n) = GL(n), and generally Ĝ depends only on G over F̄ . The L-group LG is
(in one version) a semi-direct product Ĝ o Gal(F̄ /F ), where the action depends
on the specific form of G over F . A (Galois-theoretic) Langlands parameter is
then a homomorphism φ : Gal(F̄ /F ) → LG satisfying certain axioms. One would
now like to say that such φ parametrize elements of A(G)alg at least, but there
are additional complications. In the first place, the same φ can parametrize an
L-packet consisting of several (even infinitely many) distinct elements of A(G)alg ;
this is the phenomenon of endoscopy or L-indistinguishability. This complication is
fortunately absent when G = GL(n). In the second place, for general automorphic
representations Langlands parameters have to be supplemented by the more general
Arthur parameters. I will not even pretend to define these but simply mention that
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here again, the situation is under control for GL(n), thanks to work of Moeglin and
Waldspurger.

At this point one might incautiously predict that A(GL(n)F )alg, at least, is
in bijection with the set of Langlands (or Arthur) parameters φ : Gal(F̄ /F ) →
LGL(n) = GL(n,C)×Gal(F̄ /F ), and in fact it’s enough to consider the first factor
φ0 : Gal(F̄ /F ) → GL(n,C). But one would still be wrong; only the analogues of
A(GL(1))fin can be parametrized in this way, and more general algebraic automor-
phic representations of GL(n) are best parametrized by something more involved –
either by compatible families of `-adic representations, or by a single `-adic repre-
sentation that is geometric in the sense of Fontaine-Mazur, or else by reference once
again to the conjectural Langlands group. The problem is that φ as above is always
assumed continuous; hence the image of φ0 in GL(n,C) is a finite group. However,
the conjecture that such a φ0 actually parametrizes an automorphic representation
of GL(n)F subsumes the Artin conjecture, by general consensus one of the deepest
open questions in algebraic number theory.

It is natural to hope that the parametrization I have avoided defining precisely
is not merely a set-theoretic bijection but is so devised as to permit translation
of important properties of the Galois side to the automorphic side and vice versa.
As with abelian class field theory, this is indeed the case. The best way to char-
acterize the bijection is to postulate that it identifies the L-functions of the terms
on both sides. For our purposes, an L-function is a Dirichlet series – i.e., an ex-
pression of the form L(s) =

∑∞
n=1

an
ns for Re(s) sufficiently large, with (i) an Euler

product factorization L(s) =
∏
p Lp(s), where p runs through primes and Lp(s)

is the reciprocal of a polynomial in p−s with constant term 1, and (ii) meromor-
phic continuation to C, satisfying a functional equation analogous to that of the
Riemann zeta function. The historical starting point of the Langlands conjectures
was Langlands’ discovery, using his theory of Eisenstein series, that (in general,
several) L-functions with these properties could be attached to most automorphic
representations. This approach, refined and extended by Shahidi, is now known as
the Langlands-Shahidi method of analytic continuation of L-functions and has been
shown to attach entire L-functions to large classes of automorphic forms on many
different groups. A second approach to the analytic continuation of L-functions,
generalizing constructions first introduced by Hecke, Rankin, Selberg, and Shimura
in the setting of elliptic modular forms, is usually called the method of integral
representations or, in somewhat more specialized circumstances, the Rankin-Selberg
method.

On the other hand, Artin showed how to attach an Euler product L(s, φ0) to
a continuous homomorphism φ0 : Gal(F̄ /F ) → GL(n,C) as above, and Brauer
proved the meromorphic continuation and functional equation. When n = 1 and
φ0 is trivial, one obtains the Riemann zeta function. The Artin conjecture is that
L(s, φ0) is entire if φ0 is irreducible and non-trivial. The Artin conjecture for
φ0 would follow from the existence of a cuspidal3 automorphic representation π
of GL(n)F with L(s, π) = L(s, φ0) (as Euler products, not merely as analytic
functions).

3Roughly, an automorphic representation of G is cuspidal if it does not come by parabolic
induction from an automorphic representation of a Levi factor of a proper parabolic subgroup of
G.
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When n = 2, Langlands, Tunnell, and quite recently Taylor and his collaborators
(for F = Q) have established the Artin conjecture for a large class (most?) of φ0.
This is practically all that is known regarding the Artin conjecture for number fields.
The situation for function fields is much better. Readers are undoubtedly aware that
Lafforgue received the Fields Medal in 2002 for his proof of the Langlands conjecture
for GL(n)F when F is a function field of characteristic p > 0. Fortunately, it is
reasonably simple to give a precise statement of the theorem Lafforgue proved [L].
We can let A0(GL(n)F )alg denote the set of cuspidal automorphic representations
of GL(n)F for which the center – the idèles of F – acts via a character of finite order.
Let ` denote a prime different from p. In the function field case automorphic forms
on GL(n)F are locally constant functions on GL(n,AF ), so we lose no generality
by assuming they take values in the algebraic closure Q` of Q`. We let G0

n,alg(F )
denote the set of equivalence classes of irreducible n-dimensional representations
of Gal(F̄ /F ) with coefficients in Q`, which are unramified outside a finite set S
of places, with determinant a character of finite order. Viewing F as the function
field over k of the smooth projective curve X and S as a finite set of (Gal(F̄ /F )-
orbits of) points on X , one sees that elements of G0

n,alg(F ) correspond to `-adic
representations of the fundamental group over k of the complement of S in X . The
L-function L(s, φ) associated to an element φ of G0

n,alg(F ) is known to be entire by
Grothendieck’s theory. Lafforgue’s theorem is that there is a bijection between the
sets G0

n,alg(F ) and A0(GL(n)F )alg that preserves a number of arithmetic invariants,
notably the L-functions of the two sides.

The general Langlands conjectures for number fields are much more difficult to
state correctly. But once one admits the notion of parametrization of automorphic
representations by some sort of representations with values in the L-group, one
is naturally led to Langlands’ functoriality conjectures, which lie at the heart of
Langlands’ approach to automorphic forms. Suppose G and H are two reductive
groups over F , and suppose r : LH → LG is an L-homomorphism, meaning a
homomorphism of complex algebraic groups satisfying some additional axioms I
will not specify. Composing r with a Langlands parameter for H yields a Lang-
lands parameter for G and thus conjecturally a functorial transfer of (L-packets of)
automorphic representations of H to (packets of) automorphic representations of
G. This is by no means simpler than the global conjectures sketched above. For
example, the general Artin conjecture is roughly the special case of the functori-
ality conjecture with G = GL(n) and H = {1} the trivial group. Nevertheless,
there has recently been significant progress if G = GL(n) is a general linear group
(and so is LG), notably when H is a classical group (orthogonal or symplectic)
with the standard L-homomorphism [CKPSS], [GRS], or when H = GL(2) (resp.
H = GL(2)×GL(3)) and n ≤ 5 (resp. n = 6) (this is due to Kim and Shahidi; cf.
[S] for a general account).

The results mentioned in the last two paragraphs, together with the final steps
in the proof of the local Langlands conjecture for GL(n) [LRS], [HT], [He], and the
proof of the modularity of elliptic curves over Q, begun in [W], [TW] – with Wiles’
proof of Fermat’s Last Theorem as a corollary – and completed in [BCDT], are a
striking vindication of Langlands’ insight and form the background for the book un-
der review. They also form the principal subject matter of three lectures by Cogdell,
which come near the end but represent the core of the book. Cogdell’s first chapter
contains a concise and readable sketch of the analytic theory of the tensor product
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L-functions L(s,Π1×Π2) where Πi is a cuspidal automorphic representation of the
group GL(ni), i = 1, 2. In this he follows the method of integral representations
due to Jacquet, Piatetski-Shapiro, and Shalika, leading to his own results with
Piatetski-Shapiro on the generalized converse theorems4 for GL(n), which, com-
bined with the Langlands-Shahidi method, form one of the most powerful methods
presently known for proving special cases of the functoriality conjecture. (The
Arthur-Selberg trace formula, its principal rival, gets equal time below.) Cogdell
includes just enough details to make the material plausible without losing sight of
the goal. His second and third chapters treat respectively the Langlands conjec-
tures for GL(n) and the framework of functoriality for general reductive groups.
Taken together, Cogdell’s chapters provide the best introductory account currently
available of the state of Langlands’ functoriality conjectures – the state as of early
2002, when the lectures were submitted for publication.

Most of the rest of the book consists of a gradual introduction to the theory
of automorphic forms, concentrating on the groups GL(1), SL(2), and GL(2), as
preparation for Cogdell’s articles. It may be too much to expect that a reader who
encounters the material in these preliminary chapters for the first time will actually
be able to make the leap to the generality required for the Langlands conjectures.
This is all right, because the material stands on its own as an introduction to the
analytic theory of automorphic forms on adèle groups, with applications to number
theory. There are very few proofs, but the exposition is at a uniformly high level.

The first two chapters, by Emmanuel Kowalski, contain a thorough presentation
of elementary algebraic number theory from the standpoint of L-functions and their
analytic properties. Given the centrality of L-functions to the Langlands program,
nothing would seem more natural, but in fact the properties of L-functions tradi-
tionally of interest to analytic number theorists – for example, the location of zeroes
in the critical strip (the Generalized Riemann Hypothesis) – have historically had
little to do with the preoccupations of the Langlands program. Thanks largely to
the efforts of a few charismatic and determined individuals, this is beginning to
change, and Langlands himself has in recent years turned to methods from ana-
lytic number theory in an attempt to get beyond the visible limits – more about
this below – of the techniques developed over the last few decades. In this sense
Kowalski’s articles are a welcome sign of the times. They are also written in a
polished and appealing discursive style, with frequent references to the history of
the subject. In a few short pages Kowalski manages to present the major results of
a standard introductory course in algebraic number theory, including a statement
of (one form of) the main theorem of class field theory. Kowalski’s articles also in-
clude coherent and convincing sketches of Hecke’s proof of the functional equations
of Hecke L-series, the explicit formulas relating the zeroes of the Riemann zeta
function and Dirichlet L-functions to prime numbers, and the convexity bounds for
the magnitude of L-functions in the critical strip – a particularly active point of
contact between automorphic forms and analytic number theory.

Most of this material has been presented elsewhere, but rarely with such clar-
ity and efficiency. The same can be said of Kowalski’s third chapter, devoted to

4The method of integral representations shows that an Euler product admits an analytic con-
tinuation and functional equation if it is attached to an automorphic representation. A converse
theorem shows, conversely, that if the Euler product admits an analytic continuation that satisfies
enough functional equations, then it comes from an automorphic representation. For GL(2) there
are celebrated converse theorems due to Hecke, Maass, Weil, and Jacquet-Langlands.
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the classical theory of automorphic forms on SL(2,R). The Langlands conjectures
make no distinction in principle between holomorphic modular forms and their non-
holomorphic analogues, the Maass forms, which typically arise as eigenfunctions of
the invariant Laplacian on arithmetic quotients of the Poincaré upper half-plan.
However, only the former are amenable to methods of arithmetic algebraic geome-
try, whereas Maass forms are more sparse and can only be handled using analytic
techniques. As a result, most introductions concentrate on holomorphic modular
forms. Kowalski treats both cases on an equal footing.

Ehud de Shalit’s contribution consists of one chapter each on Artin L-functions
and on the relations between elliptic curves over Q and elliptic modular forms.
As far as arithmetic algebraic geometers are concerned, this is the payoff of the
Langlands program, and one can hardly imagine a book of this kind omitting this
material. This also means that there is nothing really novel in de Shalit’s pre-
sentation, but it is comprehensive – there are good sketches of the theory of local
constants of Artin L-functions and of Hasse’s theory of the zeta function of an
elliptic curve over a finite field – and should be useful to non-specialists.

The two chapters by Stephen S. Kudla introduce adelic methods on GL(1) and
GL(2), respectively. The chapter on GL(1) is devoted to Tate’s thesis, in which
the functional equation of Hecke L-functions was proved by Fourier analysis on
the adèles. Tate’s thesis remains the model for all subsequent proofs of analytic
continuation and functional equations of L-functions by the method of integral
representations, and Kudla’s presentation is written with this in mind. This is one
of two chapters to contain detailed proofs. The exposition is limpid and, by choosing
to follow a Bourbaki report of Weil emphasizing the role of equivariant distributions
on groups over local fields, Kudla’s article provides an excellent introduction to the
higher-dimensional theory. Kudla’s second article is a standard account of the
dictionary between classical and adelic modular forms and contains no surprises.

Daniel Bump’s chapter on spectral theory and the trace formula on SL(2,R) is
the longest in the book. It is also the only chapter that gives any indication that
the recent progress in the Langlands program comes at a considerable technical
cost. Viewing L2(Γ\G) as a direct integral over the set (or space) Ĝ of unitary rep-
resentations of G, the problem of spectral theory is to describe this direct integral
explicitly. The technique of choice is to study the traces of a good class of inte-
gral operators – usually the smooth compactly supported functions φ on G when
G = G(R) or G(A) – in the regular representation R on L2(Γ\G).5 The tool of
choice is the Selberg trace formula in one of its modern variants, which expresses
the trace of R(φ) as a sum of explicit geometrically defined distributions on φ, the
orbital integrals and their weighted variants. For Langlands and his closest collab-
orators, the trace formula has always been the royal road to at least the simplest
cases of functoriality, because the orbital integrals are geometrically explicit and
therefore can in principle be compared for different groups H and G. This gives
rise to comparisons of A(H) and A(G), in keeping with the predictions of functori-
ality. The first successful comparison of this type was contained in the final chapter
of the massive treatise of Jacquet and Langlands, relating automorphic forms on
the multiplicative group of a quaternion algebra over F to automorphic forms on
GL(2)F . A simplified variant of this example is sketched, convincingly, at the end of
Bump’s chapter. Bump’s discussion of the trace formula for the most part reflects

5Adjustments are necessary when G is reductive but not semisimple.
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Selberg’s original viewpoint, however, emphasizing Weyl’s law on the asymptotics
of the spectrum of Maass forms (presented without proof) and the analytic con-
tinuation of the Selberg zeta function, described as a geometric analogue of the
explicit formulas in the theory of the Riemann zeta function and proved in some
detail when G = SL(2,R) and Γ\G is compact. In this approach, the trace for-
mula for integral operators is a way to get at eigenvalues of the SL(2,R)-invariant
Laplacian on the upper half-plane. As a warmup, Bump develops the representa-
tion theory of spherical functions on SL(2,R) and gives a completely explicit proof
of the Plancherel formula in this setting, purely in terms of differential calculus
and the residue theorem. No Lie theory is involved at all, as Bump admits, and
the techniques do not generalize to higher dimensions, but the exposition has the
great merit of making representation theory concrete. Bump also proves analytic
continuation of the Eisenstein series, again by explicit methods, in the simplest case
where the discrete group Γ has a single cusp.

The book concludes with a short coda in the form of Gaitsgory’s introduction
to the geometric Langlands conjecture. This is an analogue of the Langlands cor-
respondence described above, in which Galois representations are replaced by n-
dimensional `-adic local systems on a curve X over a field k of characterstic different
from `, and automorphic representations are replaced by certain kinds of perverse
sheaves on the moduli stack classifying n-dimensional vector bundles over X . The
case k = C is specifically included, and the correspondence is highly non-trivial in
that case as well. This is one area in which there has been considerable progress
since 2001, when the lectures on which this book was based were presented: the
geometric Langlands conjecture for GL(n) is now a theorem, thanks to work of
Gaitsgory with Frenkel and Vilonen.

The book is not without flaws. The different contributors occasionally refer to
one another’s articles, but for the most part they do not; notation is not consistent
from one author to the next (and occasionally within a single article), and there
is some duplication of effort (why are there two essentially identical proofs of the
explicit formulas?).

The book’s chief weakness, however, lies in what it omits. I have already indi-
cated that the book is written with the approach to functoriality via the converse
theorem in mind, and that the alternative route, via the stable Arthur-Selberg trace
formula, is considered only briefly. For over two decades the problem of (twisted)
endoscopy has occupied the attention of a good number of people, under Langlands’
guidance, and it is now known that a large number of special cases of functorial-
ity will follow simultaneously from a specific assertion about harmonic analysis on
p-adic groups known misleadingly as the Fundamental Lemma. There has been
important recent progress toward proof of the fundamental lemma, though it is
still too soon to know how much remains to be done. Moreover, the trace formula
is the principal analytic tool in Lafforgue’s work on GL(n), where stabilization is
not a problem, and in the successful resolution of the local Langlands conjectures
for GL(n). This is duly mentioned in Cogdell’s final article, and one can hardly be
faulted for failing to treat this excruciatingly technical material in an introductory
text. Nevertheless, endoscopy is a central issue in the Langlands program, and the
editors could have found a way to make this clear.

At the same time, it is all too clear that the combined results to be expected from
endoscopy and from (currently accessible versions of the) converse theorem fall far
short of the scope of Langlands’ functoriality conjectures, even in the simplest case
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of Artin L-functions for GL(2). Langlands, always attentive to the limitations of
our present knowledge, has made this point forcefully in his most recent writings.
Again, the editors could have found room to stress the immense disproportion
between what our current techniques can provide and the full ambitions of the
Langlands program.

Finally, the editors apparently made a conscious decision to say as little as
possible about Lie theory. This is perfectly understandable, since introducing the
necessary notation alone would probably have doubled the size of the book. But
the theory of automorphic forms gets much, much harder once one leaves the case
of GL(2), where almost everything can be done by hand, so to speak. Readers
finishing this book may well not suspect just how hard it is.

The book lacks an introduction where all these issues could easily have been ad-
dressed. But these complaints6 should not obscure the book’s considerable merits.
I have already recommended it to graduate students as a remarkably well-written
introduction to the Langlands program and a gentle introduction to the techniques
of the modern theory of automorphic forms more generally. It is not, nor does it
pretend to be, the introduction to the Langlands program. There is room for many
more introductions as successful as this one.
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