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Differential Galois theory is basically Galois theory for differential equations.
This theory has its origins at the end of the nineteenth century in the works of
Picard ([20], [21], [22]) and Vessiot [28] dealing with linear differential equations.
For this reason the Galois theory of linear differential equations is also called the
Picard-Vessiot theory.

The Picard-Vessiot theory was translated into the modern language of extensions
of differential fields by Kolchin in the middle of the twentieth century (see [14],
[11], and references therein). In a manner similar to the classical Galois theory of
polynomials, in this approach we start with a differential field K containing the
coeflicients of the linear differential equation

(1) y = Ay,

with A € Mat(n, K). Then we consider the smallest differential field L that con-
tains K and all of the solutions of this linear differential equation. Kolchin proved
the existence and uniqueness of the extension L/K, provided that the characteristic
of K is zero and has an algebraically closed field of constants. Kolchin called this
extension the Picard-Vessiot extension associated to the linear differential equa-
tion. As in the Galois theory of polynomials, the Galois group of equation (1),
G = Gal(L/K), is defined as the set of (differential) automorphisms of L that
leaves the coefficient field K fixed; furthermore, G is a linear algebraic group. An
important result is that the Galois group gives a characterization of the linear
equations that can be integrated in “closed form”: a closed form solution is one
for which the general solution is obtained by a combination of algebraic functions,
quadratures and exponential of quadratures. This is similar to the Galois theorem
about the solvability of a polynomial equation by radicals. We call these kinds of
equations integrable.

Kolchin also extended the differential Galois theory to some special nonlinear
differential equations in such a way that the associated differential extensions have
nice normality properties; these extensions are called the strongly normal extensions
[14]. From the complex algebraic-geometric point of view, the structure of the
strongly normal extensions was studied by Buium [§]. Roughly speaking, strongly
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normal extensions of the complex field are given by solutions of linear differential
equations with coefficients in a field of abelian functions.

From the 1940s to the 1970s, differential Galois theory was essentially studied
only by Kolchin’s school, and it seems that, during these years, the small but nice
book [11] was the only available monograph on the subject. Nonetheless this book
contributed in an essential way to development of the field. In the late 1970s the
situation changed somewhat as an increasing number of mathematicians around
the world turned their attention to the differential Galois theory.

For linear differential equations with meromorphic coefficients in some domain
of the complex plane, recall that the singular points are given by the poles of the
matrix A. The singular points are classified as regular and irregular. A singular
point is regular if the growth of any solution around it is polynomial when the
singularity is placed at infinity; otherwise it is irregular. A Fuchsian equation is
an equation with only regular singular points. Then, motivated by the asymptotic
analysis of the solutions around an irregular singular point [29], Ramis proved
that the Stokes matrices associated to such a point belong to the Galois group of
the linear differential equation. To be more precise, Ramis proved that the group
generated by the Stokes matrices and other “formal” matrices is Zariski-dense in
the Galois group of the equation. This is the Ramis density theorem ([I5], [18]); see
also [4]. This result can be viewed as a generalization of the classical Schlesinger
density theorem for Fuchsian differential equations.

On the other hand, the Picard-Vessiot theory for a linear differential equation
with meromorphic coefficients was formulated from the linear connection point of
view — or its algebraic counterpart of D-modules — by Katz [12] and complemented
by Deligne [I0]. At the heart of this formulation is the Chevalley characterization of
a linear algebraic group G by means of the representations of G on suitable tensorial
constructions [9]. Usually this geometrical (or D-module) approach to the Galois
theory of linear differential equations is called the Tannakian approach. Bertrand
and André in Paris later became interested in this approach to the Picard-Vessiot
theory (3], [1]); for more information and references about the Tannakian approach
I recommend Bertrand’s review of the Magid book in this Bulletin [5]. A recent
additional reference not included in the above is the paper of André [2].

Another reason for the revival of interest in differential Galois theory of linear
differential equations comes from applications. I mention only two of these ap-
plications that arose in the late 1980s. Motivated by a theorem of Ziglin about
the structure of the monodromy group of the Poincaré variational equation along
a particular solution of a completely integrable complex analytic Hamiltonian sys-
tem, Churchill, Rod and this reviewer introduced differential Galois methods in the
study of the non-integrability of these systems. This type of result led to a theorem
of Ramis and the reviewer (see [19] and references therein). On the other hand,
Beukers, Brownawell and Heckman showed that a classical result of Siegel (with
some improvements by Sidlovskii and others) about the algebraic independence of
some set of numbers related to values of solutions of linear differential equations,
can be read in the context of the differential Galois group of the equation. Two
of the main ingredients of this approach include a result by Kolchin that the de-
gree of transcendence of the Picard-Vessiot extension is equal to the dimension of
the Galois group, and the consideration of some symmetric powers of the equation
typical of the Tannakian approach [7].
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From the 1970s forward the differential Galois theory began to develop in several
different directions. Some of these new directions are:

- The local theory of linear differential equations around an irregular singular
point. The objective of the local theory involving equation (1) is to try to copy the
method of reduction to normal form when the matrix A is a constant matrix. This
process consists of two steps: the formal theory and the analytical theory. The for-
mal theory is essentially algebraic and can be generalized to other fields of constants
different from C. The analytical theory is transcendental, and it is here where the
Stokes matrices enter the picture. The local theory goes back to Poincaré, Fabry,
Birkhoff, Hukuhara and Turritin, and it was studied more recently by Deligne,
Malgrange, Ramis, Sibuya, Babit and Varadarajan, Loday-Richaud, Barkatou and
others. The connection with the Picard-Vessiot theory is given by the Ramis density
theorem. This topic can be considered to be more or less complete, at least when
we are dealing with a fixed linear differential equation, but unfortunately in the
applications we are usually confronted with a family of differential equations; i.e.,
the equation depends on parameters. For precise references and more information
about this aspect, I recommend the nice survey of Varadarajan [27].

- The Riemann-Hilbert and inverse Galois problems for linear differential equa-
tions. The Riemann-Hilbert problem is Hilbert’s 21st problem: this problem asks
if a given linear representation of the fundamental group of the Riemann sphere Pg
with a finite set of points deleted is the monodromy representation of a Fuchsian
linear differential equation. Of course, it is possible to give several formulations
and generalizations of this problem: for example, to ask for a constructive solution,
to fix the dimension of the space of solutions and the class of the representation,
to consider other compact Riemann surfaces different from P}, to consider non-
Fuchsian equations (in this case we must also include other objects like Stokes
matrices as part of the monodromy data), what kind of fiber bundles are allowed,
etc.... This problem goes back to Riemann’s P-equation, to Hilbert himself, and
to Schlesinger, Birkhoff and Lappo-Danilevsky. It was believed in the 1960s that
Plemelj had given a definitive answer to the constructive classical problem over Pg
[23], but about 35 years later Bolibrukh found a gap in the Plemelj proof [6]. The
non-constructive existence theorem for a solution of the Riemann-Hilbert problem
was obtained in a very general setting by Deligne and Rorlh. The Riemann-Hilbert
problem continues today as an important area of research with many ramifications
in the study of the isomonodromic deformations of linear differential equations. For
more references and details, see the already cited survey of Varadarajan.

Another related problem is the inverse problem of the Picard-Vessiot theory.
This question asks if an algebraic linear group G over a characteristic zero and alge-
braically closed constant field C' is the Galois group of a linear differential equation.
As for the Riemann-Hilbert problem, it can be formulated in several ways, but one
of the differences between these two problems is that the inverse Picard-Vessiot
problem admits also a purely algebraic formulation, without any mention of com-
plex analysis; i.e., the constant field C' and the coefficient field are not necessarily
the complex field and a field of meromorphic functions, respectively. Early work
on this inverse problem, for a broad class of differential fields of coefficients and a
connected solvable G, was given by Biaclynicki-Birula and by Kovacic in the 1960s.
At the end of the 1970s, C. Tretkoff and M. Tretkoff solved the existence problem
in the category of Fuchsian differential equations over the Riemann sphere. Their
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method relies on the Schlesinger density theorem and on the Riemann-Hilbert prob-
lem. Later Ramis solved the problem in full generality for equations over compact
Riemann surfaces; i.e., he obtained a complete characterization of the Galois groups
of linear differential equations with meromorphic coefficients over compact Riemann
surfaces. The Ramis approach was used by Mitschi and Singer to solve the inverse
problem for connected Galois groups over C' and linear differential equations with
coefficient field C'(z), where C' is any algebraically closed field of characteristic zero.
The inverse problem was also studied by Magid for some specific Galois groups. For
more information and precise references, see the survey by Singer [25] and van der
Put’s Bourbaki seminar [24].

- The algorithmic and computational aspects for linear differential equations.
Very important in certain applications is the computation of the Galois group of
specific linear differential equations, or at least the description of some of their prop-
erties. For instance, a typical problem is to ask for the values of the parameters for
which members of a family of differential equations is integrable; it is important
to remark that this problem includes as a special case the very difficult problem of
linear equations that are integrated by algebraic functions. These types of problems
have a long history that goes back to the nineteenth century with Schwartz’s char-
acterization of the hypergeometric equations with only algebraic solutions. Later
in that century, Hermite and others studied the integrability of the Lamé equation.
At the end of 1960s Kimura gave a complete characterization of the (classical) hy-
pergeometric equations which are integrable. By the end of the 1970s Baldassarri
and Dwork presented an algorithmic procedure for studying the second order equa-
tions with algebraic solutions, and their method goes back to classical works of the
nineteenth century by Klein and Fuchs.

From the differential Galois perspective, a new era started with an important
paper of Kovacic in 1986. This paper gives an efficient, purely algebraic algorithm
that decides if a second order equation with coefficients in C(z) is integrable or not
by computing one of the solutions in the integrable case. Previously Singer had
published an algorithm for differential equations of order n. More or less at the
same time Ramis’ density theorem and the Tannakian approach were also used:
Martinet and Ramis computed the Galois groups of classical confluent hyperge-
ometric equations by means of Ramis’ density theorem [18], and Katz used the
Tannakian approach joint with some results of Levelt and Gabber [13]. Some other
people that worked on this topic are Duval, Loday-Richaud, van der Put, Bron-
stein, J.-A. Weil, Ulmer, van Hoej and others. For more information see the survey
by Singer [25].

- The nonlinear differential Galois theory. In recent years a new Galois the-
ory for nonlinear differential equations has arisen. In 1996 Umemura presented a
rigorous formulation of the old Drach-Vessiot theory using modern methods [26].
More recently Malgrange was able to give a definition of the Galois groupoid associ-
ated to a foliation with meromorphic singularities ([I6], [I7]). For linear differential
equations, using the Tannakian approach, Malgrange showed that this groupoid co-
incides with the Galois group of the Picard-Vessiot theory. Although Malgrange’s
definition of Galois groupoid was given for foliations, a similar definition can be
given for vector fields, i.e., for systems of autonomous ordinary differential equa-
tions. Today this nonlinear differential theory is a very active area of research.

With the above in mind, the Picard-Vessiot theory can now be formulated from
at least three different points of view:
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1) the purely algebraic approach of Kolchin,

2) the Tannakian approach, and

3) the topological-analytic approach given by the Schlesinger and Ramis density
theorems.

All of the three approaches are useful and in some sense complement one another.
It is really a question of the specific problem at hand, or even the taste of the user,
as to which approach to use.

The book under review is devoted to the Picard-Vessiot theory. It is an extensive
monograph that covers for the first time the three points of view above. The book
is divided into two parts. The first part is entitled “Algebraic Theory”. It includes
the main algebraic definitions and results, the Tannakian approach, the formal local
theory and the algorithmic aspects of the computation of the Galois group. In my
opinion the Tannakian approach is stated in an abstract categorial way that is not
suitable for beginners. The second part is entitled “Analytical Theory”. This part is
essentially devoted to the topological-analytical approaches and the inverse Galois
problems. It also contains a final chapter on the case of positive characteristic. The
book also has four appendices and a complete bibliography.

The book will be very useful for researchers in differential Galois theory. Some
parts are also suitable for a first introduction to this theory; for instance, Chapter 1,
devoted to the algebraic Picard-Vessiot theory, together with Section 5.1, devoted
to a first study of the monodromy group and to a statement of Schlesinger’s density
theorem, can be useful as a brief introductory course on the algebraic and analytical
aspects, although there may be some technical aspects therein that are difficult to
follow for the non-specialist. This would include the proof that, in the Picard-
Vessiot extensions there are no new constants as well as the terminology involving
torsors.

In conclusion, I recommend this book for anyone interested in the differential
Galois theory, and I think that it will become a standard reference book in the field.
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When I was writing this review I received the obituary notice that on the 11th of

November 2003 Andrei Andreevich Bolibrukh passed away. I recall here his memory.
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