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1. GROUPS IN HOMOTOPY THEORY

All over mathematics we find the benefits of embodying the classification of a
class of objects in a universal example. The universal example can then be studied,
dissected and manipulated to learn about the original class. The classifying space
BG of a group G is a prime example of this, but its real importance, and the reason
for the existence of the book under review, is that BG is the homotopy theoretic
embodiment of the group itself. It is rather surprising that the soft mathematics
of homotopy theory can say anything very much about a strict algebraic object
like a group. Early efforts gave the sort of soft conclusions that one might expect,
but it is one of the surprises of the last 20 years that by imposing the right sort of
finiteness hypotheses, one may understand a great deal about groups using purely
homotopy theoretic methods: groups are much more rigid than expected. The
technical advances that made this possible go back to work of Carlsson [3], Miller
[13] and Lannes [10] on the Segal and Sullivan conjectures in the early 1980s, but
the apparatus for processing and exploiting it has been steadily developed since
then. The book under review provides introductions to two of the main ingredients
for studying groups from a homotopy theoretic point of view.

2. CLASSIFYING SPACES

We describe two rather different reasons for considering the classifying space.
The first is more familiar and lets us give some examples, but the second explains
the importance of BG in studying groups.

The space BG is called a classifying space since it classifies free G-spaces (or
equivalently principal G bundles), in the sense that homotopy classes of maps
X — BG correspond to homotopy types of free G-spaces X with X /G = X (or
equivalently to isomorphism classes of principal G-bundles X —X ). This rather
indirect description characterizes BG up to homotopy equivalence and shows that
it may be constructed as (EG)/G for any contractible free G-space EG. Thus for
example if G is a subgroup of the circle, then we may construct EG as follows.
First note that G acts by scalar multiplication on C™ and that it acts freely on the
unit sphere S(C™). Taking the union over all n we obtain

EG = 5(C*) =]Js(cm).

Hence BG = S(C*)/G; for example the classifying space BCs for the group of
order 2 is infinite real projective space RP*° and the classifying space for the circle
group BS! is infinite complex projective space CP*>. Equally, it is clear that
E(Gx H)=EGx FEH sothat B(Gx H) = BG x BH, so this gives explicit models
for the classifying space of any abelian compact Lie group.

2000 Mathematics Subject Classification. Primary 20J05; Secondary 20J06, 14F35, 55U10.

(©2004 American Mathematical Society

369



370 BOOK REVIEWS

For a finite group the classifying space also embodies features of the representa-
tion theory of the group. Indeed, the fact that EG is G-free and contractible shows
that its chains give a ZG-free resolution of Z and hence the cohomology of BG is
the algebraic group cohomology H*(BG) = Ext;(Z,Z).

The classifying space plays another rather different role: indeed the space G
and the group multiplication on it can both be recovered up to homotopy from
BG so that it simultaneously captures both aspects of the object. In fact the
space QBG of based loops in BG is equivalent to G and the concatenation of
loops corresponds to the group multiplication. This gives a very flexible way of
studying the interaction between the underlying space of a topological group and its
multiplication. These interact in interesting ways. For example most spaces do not
admit a multiplication making them a topological group at all (the first condition
being that the fundamental group is abelian). We can then vary the constraints
on the multiplication map. When a smooth manifold admits the structure of a
topological group, Hilbert’s 5th problem asks whether the multiplication can be
taken to be smooth, and the solution of Gleason and Montgomery-Zippin answers
that it can. We thus reach the class of Lie groups, and the structure is so rigid
that compact connected Lie groups can be classified. In the other direction we can
ask: if the multiplication satisfies the group axioms only up to homotopy, can it
be rigidified to satisfy the condition strictly? This time the answer is no: there are
uncountably many distinct homotopy multiplications on S® Rector [15], whereas
only one of them gives a group structure.

Having decided to study spaces like BG, it is natural to consider them one prime
at a time by completion. This has the usual benefit that the situation is simplified
and the interactions between various primes are easier to understand. It is also a
much more rigid object: quite often multiplications are unique at each individual
prime. This leads to the Dwyer-Wilkerson notion of a p-compact group [6], which
is the homotopical analogue of a compact Lie group with group of components a
p-group. It turns out that much of the classification of connected compact Lie
groups can be carried out using only the methods of homotopy theory: connected
p-compact groups at odd primes p have been completely classified [1], and although
there are several classes of additional examples, they share many features with Lie
groups.

This process of concentrating at a prime is embodied in a space. The prop-
erties of BG at p can be captured in the Bousfield-Kan p-completion BGQ, and
BG itself can be reassembled from the local pieces using the Hasse square. The
p-completion BG — BGQ has the property that it induces an isomorphism of
mod p cohomology. If G is a p-group, p-completion has no effect on BG. On the
other hand p-completion is quite drastic in general. For example, if G is a finite
group, (BGQ) = G/OP(G), the largest p-quotient of G. Furthermore, passage
to loop spaces does not commute with completion, so that although QBG is the
compact manifold G, it is no longer necessarily true that Q(BGQ) is finite, even as a
p-adic complex. This means that even from the point of view of homotopy theory,
compact Lie groups whose group of components is a p-group are much simpler than
in general. In fact there is a hierarchy of behaviour of groups at a prime depending
on the size of the mod p cohomology of Q(BGQ): it is finite for p-groups, and
R. Levi [12] has shown that it is either polynomial or semi-exponential for other
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finite groups. In a precise sense [4], this corresponds to the hierarchy of commuta-
tive local rings which are regular, complete intersection or Gorenstein (remarkably,
all groups have the latter duality property).

For simplicity, in this review we will generally restrict our attention to finite
groups G. However, the fact that the methods extend (to compact Lie groups, to
p-compact groups, to p-local generalizations of finite groups [2], to arithmetic
groups, to mapping class groups and beyond) is one of their main attractions and
explicit in much of the book. Since we are studying groups at a fixed prime p, all
cohomology has coefficients in Fp,.

3. QUILLEN’S THEOREM

We described the classifying spaces of abelian compact Lie groups above, but
in general it is much harder to give a small and illuminating construction, even at
a single prime p. We would like to explain how BG is built from simpler spaces,
either precisely or just up to cohomology. This is the purpose of the book under
review.

The simplest groups of all are the elementary abelian 2-groups V = Cy x - - - x C.
Since BCy = RP>, we find H*(BC5;F3) = Fay], and it follows that the cohomol-
ogy of V is polynomial. Similarly, the mod p cohomology of an elementary abelian
p-group V = C), x --- x C}, is polynomial tensor exterior.

Quillen’s theorem [I4] describes the cohomology of a compact Lie group in terms
of elementary abelian groups and thereby determines its cruder features, such as
its Krull dimension. He considered the category £ of elementary abelian subgroups
of G with morphisms E — E’ consisting of group homomorphisms effected by
conjugation in G. Since conjugation by an element of G induces the identity in
H*(BG), there is a map

¢ : H*(BG) — lim H*(BE).
— FE

Quillen showed that for a large class of groups (including finite groups, compact
Lie groups, arithmetic groups and mapping class groups) the map gg is an isomor-
phism up to nilpotents, in the strong sense that elements of the kernel are nilpotent
and any element of the codomain has a p™th power in the image for some n. In
particular g¢ induces an isomorphism of varieties, and so the variety of H*(BG) is
completely described by the category £. On the other hand, g¢ is not usually an
exact isomorphism. For instance, gg is injective if and only if the cohomology of G
is detected on elementary abelian subgroups. This holds for dihedral 2-groups, but
not for the cyclic group of order 4.

Furthermore, Quillen also showed that the category £ does encode how to con-
struct the mod p homotopy type of BG from the classifying spaces of elementary
abelian subgroups. This makes it natural to look for variations and improvements.
One might seek to use a little more algebraic structure from £ in attempting to
describe the cohomology, hoping to get a better approximation. One might also
consider different ways of building categories from subgroups of GG, and one might
then play the whole game over again for each one. The two parts of the book take
these two points of view.
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4. HOMOLOGY DECOMPOSITIONS

We begin at the geometric level: we want a way to build a space approximating
BG using classifying spaces of subgroups of GG. The simpler the subgroups, the less
complicated their classifying spaces will be, but we also need to ensure that they
are assembled in a simple way; in practice we must balance these two aims. This
is the subject of the half of the book written by Dwyer.

Before descending into abstraction, it is worth describing the very early example
of the group G = Sp(1) of unit quaternions. Dwyer, Miller and Wilkerson [5]
proved that the homotopy type of BSp(1l) is determined by its cohomology, and
a major input was the fact that the space BSp(1) is 2-adically equivalent to the
homotopy pushout of a diagram BGss «— B@16 — BQ arising from the diagram
Gis — Q16 — Q of subgroups of Sp(1), where Gus is the binary octahedral
group of order 48, Q14 is the quaternion group of order 16 and @ is the normalizer
of a circle in Sp(1).

The pushout is a special case of constructing a space from a diagram of spaces,
encoded as a functor F' : D — Spaces. We may form its direct limit (or colimit),
1i£n F, which has the universal property that compatible maps F'(d) — T assemble

to a map lim ' — T. However, it may be hard to calculate the cohomology of

the direct limit because it depends on the actual values of F' and not just on
their homotopy type. The solution is to form the homotopy direct limit holim F,

which is homotopy invariant and has the desired property; since there is a map
holim FF — hm F', we obtain a comparison map hohm F—T.

—

To understand BG we want to construct the dlagram D and the functor F' out
of the group theory of G, so that F(d) ~ BH(d) for a subgroup H(d) of G. We say
that F' gives a mod p homology decomposition of G if the map

holim ' — BG

is a mod p homology isomorphism. This gives a spectral sequence

R'lim H*(BH(d)) = H*(BG),
—d

where R*lim refers to the derived functors of the inverse limit functor. To use

this we certainly need to know the cohomology of H(d), but if the diagram is
complicated, the calculation of the derived functors may be hard, so it is not enough
by itself to know H*(BH (d)). We would really like it if R?1lim = 0 for i > 0. When

this happens the homology decomposition is said to be sharp, and in that case
lim H*(BH(d)) = H*(BG).
—d

This is the ideal situation, and we can think of a sharp decomposition as reducing
the calculation of the cohomology of G to the cohomology of the smaller groups
H(d).

In practice we construct a diagram D and a functor F' from a collection C of
subgroups. There are three different ways to do this: the subgroups H(d) with
F(d) = BH(d) are either (i) subgroups in C or (ii) an intersection of normalizers
of subgroups in C or (iii) centralizers of subgroups in C. These give the subgroup
approximation, the normalizer approximation and the centralizer approximation
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to BG, associated to C, and we seek collections C so that the approximations are
actually homology decompositions.

There are two key ideas. Firstly, we may form the finite simplicial complex K¢
whose simplices are the chains Hy C Hy C --- C H, in C. This complex with the
natural action of G controls the situation and is used to organize the study. If the
Borel homology of K¢ is that of a point, the collection C is said to be ample, and
all three of the functors give homology decompositions. Secondly, if any one of the
three functors associated to C give a homology decomposition, so do the other two,
and K¢ is ample. On the other hand, if the decompositions are ample, then one
can be sharp without the others being sharp.

To tie this to the discussion above, it turns out that the collection C of non-trivial
elementary abelian subgroups is ample. It is centralizer and normalizer sharp, but
not generally subgroup sharp. Another important ample collection is that of the
subgroups which are both p-centric and p-radical (a p-subgroup P is p-centric if its
centre is a Sylow p-subgroup of the centralizer C(P); it is p-radical if Ng(P)/P
has no normal p-subgroup). This is useful because it provides a fairly small class
C which is subgroup sharp, and has been important in studying maps between
classifying spaces and decompositions of p-compact groups [§], [9].

5. ALGEBRAIC APPROXIMATIONS

Let us return to the inspiration of Quillen’s theorem and move on in a different
direction. This time we concentrate on the fact that it is based on the collection of
elementary abelian groups. The collection of elementary abelian groups is ample, so
the homotopy type of BG at p is completely determined by the diagram of elemen-
tary abelian subgroups. However, the collection is rarely subgroup sharp, so the
action of the isotropy groups on the cohomology of elementary abelian subgroups
contributes to H*(BG). We would like to add this information in an algebraically
accessible way and improve the algebraic approximation. It turns out that if we
include information from cohomology operations, we need only a little extra infor-
mation from the cohomology of centralizers of elementary abelian groups to give
the whole answer up to a finite error. This is the subject of the half of the book by
Henn.

For definiteness we restrict attention to p = 2 for the rest of the review. The
Steenrod squares Sq' : H"(X) — H""%(X) give natural operations on the mod 2
cohomology of a space. These operations satisfy certain universal identities (the
Adem relations) and generate the mod 2 Steenrod algebra 4. However, the coho-
mology of a space is not a typical module over A since it is unstable in the sense that
Sq'(z) = 0 if i > deg(w). The category U of modules satisfying this is called the
category of unstable modules over A. Actually, H*(X) is also an algebra with the
Steenrod squares acting on products via the Cartan formula, and with S¢’(z) = 22
if = is of degree i; the category K of algebras which are unstable as modules and
satisfy these additional properties is called the category of unstable algebras. These
categories were studied in the 1960s by Steenrod and Massey-Peterson, but they
became fundamental in understanding maps between classifying spaces because of
the special algebraic property of H*(BV): Carlsson proved [3] in early work on
the Segal conjecture that for any elementary abelian 2-group V the cohomology
H*(BV) is injective in the category U. Using this, the work of Lannes [10], [I1]
since the 1980s transformed them into a powerful tool.
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The other sign that this might be relevant to Quillen’s theorem arises since one
may detect the fact that the kernel and cokernel of Quillen’s map are nilpotent in the
category of unstable modules. One says that an unstable module M is nilpotent if
for any element x we have S¢2"1*! - .. S¢?I#1Sql*l2z = 0 for sufficiently large n (which
coincides with the usual notion if M is an unstable algebra). It turns out that M is
nilpotent if and only if Homy, (M, H*(BV)) = 0 for all V. The fact that the kernel
and cokernel of Quillen’s map g¢ are nilpotent is thus equivalent to requiring that
Homy(qq, H*(BV)) is an isomorphism for each V. We are thus led to consider
Homy (M, N @ H*(BV)).

For apparently different reasons, Lannes introduced a functorial algebraic ap-
proximation to the cohomology of the function space map(BV, X ) using only H*(X)
as an unstable module. The function space is detected by maps into it: in topology,
any map f : A — map(BV, X) is adjoint to a map f: A x BV — X. The map
f induces a map f* : H*(X) — H*(BV) ® H*(A) of unstable modules over the
Steenrod algebra. It is a formality that tensoring with H*(BV') has a left adjoint Ty
so that f* is adjoint to a map Ty H*(X) — H*(A). Taking A = map(BV, X) and
f to be the identity, we obtain a comparison map Ty H*(X) — H*(map(BV, X)).
Lannes has shown that under very mild hypotheses this is an isomorphism. The
three remarkable properties of the functor Ty which make it so powerful are (i)
it is exact, (ii) it preserves tensor products, and (iii) it takes unstable algebras
to unstable algebras and again behaves as the adjoint to tensor product in that
context.

Applying this to a finite group, one finds that any group homomorphism p :
V — G gives a map Bp : BV — BG,; and evidently if two maps p are conjugate
in G, the maps Bp are homotopic, so the maps are indexed by Rep(V, G). It turns
out that these give all the components of map(BV, BG). Considering the group
homomorphism V' x C¢(p) — G, we obtain a map BV x BCg(p) — BG and by
the formal properties of the T-functor, a map

lc: TvH*(BG) — [ H*(BCa(p)).
pERep(V,G)

An important theorem of Lannes states that this is an isomorphism for any finite
group G. Thanks to the theorem of Adams-Gunawardena-Miller stating

Homy (H*(BW), H*(BV')) = Fa[Hom(V, W],

the fact that lg is an isomorphism in degree 0 is equivalent to Quillen’s theorem,
so Lannes’ theorem is already a considerable strengthening.

The way to exploit the information in higher degrees is to note that there are
two maps V x V x Cg(V) — V x Cg(V) which become equal in Cg(F), namely
those sending (u, v, g) to (uv, g) or to (u,vg). Extending this to allow for inclusions
and conjugations, there is a map from H*(BG) into the equalizer of the fork

[[1BV)x H*(BCs(vV)<" = [ H*(BVi)x H*(BVa) x H*(BCc(Va))<",
\% Vi—V2

where M <" means the part of M in degrees less than n. When n = 1 this equalizer
is Quillen’s inverse limit, but for higher n it takes into account a little information
about C¢ (V). Henn, Lannes and Schwartz [[7] use the machinery to state precisely
the sense in which this becomes a steadily better approximation to H*(BG) as n



BOOK REVIEWS 375

increases. The book goes on to discuss other approximations using centralizers and
their uses in calculations, such as his exact calculation of H*(BSL(3,Z[1/2]);F5).

6. THE BOOK

The book is in two parts; both parts are written by authors who were intricately
involved in the development of the theory. They fit together because of their subject
matter, but they have different styles.

The first part of the book, by Dwyer, considers homology decompositions. On
the way it provides a beautifully economical and elegant introduction to simplicial
methods, homotopy direct limits and many other useful techniques. The route is so
carefully chosen that it appears almost effortless, and almost all proofs are given, at
least in outline. It is elementary in a certain sense and could be highly recommended
as an introduction. It does not attempt to do things in great generality and refers
to the many developments and applications of the methods only in passing.

The second, by Henn, has more of the character of a survey. Because of the
substantial literature, this is very valuable. By the nature of the subject he is
obliged to omit more details, but he takes care to summarize the salient facts
and outlines enough of proofs to give the essential ideas. He measures the abstract
theory he describes against its success in calculations of cohomology groups relevant
to stable homotopy theory and algebraic K-theory.

Both parts of the book provide valuable introductions to important techniques
that should be known to all algebraic topologists and group cohomologists.
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