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J.E. Littlewood called it the Bible. After so many years, it is more the Bible
than ever: it is a message of permanent value, an absolute chef-d’oeuvre, and a
reference book for now and for years to come.

This “third edition”, apart from an illuminating foreword by Robert Fefferman as
an heir of Zygmund’s “Chicago school”, is just a reproduction of the second edition
of the book, printed first in 1959 and again in 1968 and 1977. The first edition
was published in 1935 as volume V of the Polish series Monografje Matematyczne
and was entitled Trigonometrical Series. Trigonometrical Series was a much smaller
book than Trigonometric Series, but it was already full of content, methods, results,
and ideas, all expressed in a pure and rigorous style. Let us compare these two
books, the Old Bible and the New One. It gives us an opportunity to enter the
history of the subject.

Trigonometrical Series was the work of a young man vigorously involved in the
renewal of the subject that took place in the years 1900-1930. In 1900, Fejér’s
theorem gave a new look to the theory of Fourier series; indeed, there were strange
phenomena about convergence, namely, the example of du Bois Reymond of a con-
tinuous function whose Fourier series diverges at a given point, but the simplest
summability method, by arithmetical means, avoided all difficulties of that kind.
Summability methods, convolutions, positive kernels, and regularization of func-
tions reestablished Fourier series as one of the central subjects in mathematics.
The main step in the renewal of the theory, however, was the new concept of an
integral by Lebesgue in 1901. The Riemann integral had been introduced in or-
der to give a precise meaning to Fourier’s formulas, namely, the computation of
coefficients by means of integrals. The Lebesgue integral soon appeared as a much
better tool, so that the use of the term “Fourier series” became reserved for trigono-
metric series whose coefficients are obtained through Fourier formulas in the sense
of Lebesgue. In modern notations, L!(T) became the natural frame for Fourier
series. However, there is no easy characterization of Fourier coefficients in this
context. The simple case is L?(T), and the Riesz-Fischer theorem (1907) expresses
that the Fourier formulas provide an isomorphism between L?(T) and ¢2(Z). Both
Fischer and F. Riesz used the fact that L?(T) is complete (except that the sentence
“LP is complete” needed a new set of definitions and was popularized in this form
only in 1930 in the book of Banach, Théorie des opérations linéaires, tom I, of the
Monograpfje Matematiczne). The Lebesgue integral established a strong interplay
between trigonometric series, integration, derivation, functions of a real variable
(this already appeared with Lebesgue), functions of a complex variable (Fatou),
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functional analysis (F. Riesz and Fischer), and later probability theory (Steinhaus,
Wiener, Kolmogorov).

All these connections appear in Trigonometrical Series. Between 1935 and 1959,
many young mathematicians, including me, learned a good deal of analysis in this
book, either by a systematic study or just by a random walk through statements
and exercises. Other books look like beautiful gardens, with entrance gates and
large avenues; Trigonometrical Series is more like a forest full of strange things to
be explored by means of a huge assortment of tricks and devices. Some of these
devices are actually part of established theories, but it is only when they are needed
that they appear in the book. For example, convex functions and inequalities are
introduced in the chapter on classes of functions and Fourier series. Linear spaces
and complete metric spaces are defined and developed only after the reader has
encountered several examples, like the Riesz-Fischer theorem. The Riesz-Fischer
theorem is also a motivation for the Rademacher functions and their use in random-
izing trigonometric series (if the coefficients are not in £2, the randomized series fails
almost surely to be a Fourier-Lebesgue series). The theory of Hardy spaces is pre-
sented as a tool for conjugate Fourier series. One chapter is entitled “Properties of
some special series”, and it contains a world of interesting objects and methods, like
the “Van der Corput lemma”, which is now constantly used for estimating trigono-
metric sums. But special series, in particular, lacunary trigonometric series studied
by Szidon, Banach, and Zygmund himself, appear throughout the book. Convexity
comes back in the form of the convexity theorem of Marcel Riesz in order to estab-
lish the LP — £? substitutes of the Riesz-Fischer theorem, called Hausdorff-Young
and F. Riesz’s inequalities, through the new technique of interpolation of operators.
Subtle relations between derivatives and integrals take place in different parts of
the book, starting from variations on Lebesque’s theorem that says an integrable
function is equal to the derivative of its integral almost everywhere (applied to a
test of convergence of Fourier series), continuing with the generalized derivatives of
de la Vallée Poussin (applied to a summability problem), and ending with one of
the actual origins of the theory, the Riemann theory of trigonometric series, which
consists in studying the symmetric second derivative of the function obtained in
a formal double integration of the given series. Here again, convexity comes back
and plays a crucial role.

Trigonometrical Series is organized in twelve chapters:

Trigonometrical series and Fourier series.

Fourier coefficients. Tests for the convergence of Fourier series.
Summability of Fourier series.

Classes of functions and Fourier series.

Properties of some special series.

The absolute convergence of trigonometrical series.

Conjugate series and complex methods in the theory of Fourier series.
Divergence of Fourier series. Gibbs phenomenon.

. Further theorems on Fourier coefficients. Integration of fractional order.

10 Further theorems on the summability and convergence of Fourier series.

11. Riemann’s theory of trigonometrical series.

12. Fourier integrals.

Here are some excerpts from the short preface, dated January 1935:
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“The theory of trigonometrical series of a single variable is very extensive and is
developing rapidly every year, but the space devoted to it in the existing text-books
is small....”

“The object of this treatise is to give an account of the present state of the
theory....”

“Except for Lebesgue integration, an acquaintance with which is assumed, the
book does not presuppose any special knowledge....”

“This book owes very much to Miss Mary L. Cartwright...and Dr. S. Saks....”

These names merit a few comments.

M.L. Cartwright was one of the English continuators of Hardy and Littlewood.
A. Zygmund knew her personally through his visit to Oxford and Cambridge in
1929-1930. It was on this occasion that he met and worked with R.E.A.C. Paley.
Paley died in 1933, just before Zygmund wrote his book.

S. Saks wrote another bestseller of the Monografje Matematyczne, Theory of
the Integral. Another excellent book of this series is due to the collaboration of
S. Saks and A. Zygmund and was first written in Polish. It was translated into
English in 1952 as Analytic Functions. Incidentally, Saks is the author of the proof
of the Banach—Steinhaus theorem that is based on Baire’s theorem. This is now
the standard proof given in courses and textbooks—the role of Saks is mentioned
in a footnote in Trigonometrical Series, p. 98. Saks died in 1942. Here is what
Zygmund wrote in the preface to the English edition of their book:

“Stanislaw Saks was a man of moral as well as physical courage, of rare intel-
ligence and wit. To his colleagues and pupils he was an inspiration not only as a
mathematician but as a human being. In the period between the two world wars
he exerted great influence upon a whole generation of Polish mathematicians in
Warsaw and in Lwow. In November 1942, at the age of 45, Saks died in a Warsaw
prison, victim of a policy of extermination.”

The first lines of Trigonometric Series are a dedication: “to the memories of
A. Rajchman and J. Marcinkiewicz, my teacher and my pupil.” Both Rajchman and
Marcinkiewicz died during World War II, the first as a Jew in a concentration camp
and the second as a Polish officer on the Russian front “in circumstances not quite
clear, time indeterminate, probably in the Spring of 1940,” as Zygmund wrote in his
introduction to the Collected Papers of Marcinkiewicz. The last paper of Zygmund
(1987) is an obituary of Alexander Rajchman. About Josef Marcinkiewicz he wrote
that “but for his premature death he would probably have been one of the most
outstanding contemporary mathematicians.”

If only because of the dedication of Trigonometric Series, it is justified to as-
sociate the names of Rajchman, Zygmund, and Marcinkiewicz. In 2000, The
Institute of Mathematics of the Polish Academy of Sciences sponsored a Rajchman—
Zygmund—Marcinkiewicz Symposium; it was a unique opportunity to appreciate the
permanent influence of their ideas and work [4].

Trigonometric Series is by no means restricted to the work of Zygmund and his
collaborators. Nevertheless, the flavor of the book is partly a result of these collab-
orations. Before 1935, Zygmund’s main collaborators were Rajchman, Saks, and
Paley. Between 1935 and 1941, almost all Zygmund’s papers have Marcinkiewicz
as coauthor. From 1945 to 1959 his closest friend and collaborator was Salem.
His collaboration with A. Calderén began during this period and extended after
1959. Zygmund had a number of students in Chicago. Among them, Mary Weiss
and Elias Stein wrote joint papers with him. The direct and personal influence of
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Zygmund was carried by his former students and their own pupils, but extended
also around the world. For young mathematicians, it was a significant honor to be
introduced to Antoni Zygmund, whom they already knew as the author of either
Trigonometrical Series or Trigonometric Series, depending on their age.

The exact title of the work published by Cambridge University Press in 1959 is
Trigonometric Series, Second Edition, Volumes I and II. In the preface, Zygmund
insisted that Trigonometrical Series was the first edition of the book: “The first
edition of this book was written almost twenty five years ago. Since then the theory
of trigonometric series has undergone considerable changes. It has always been one
of the central parts of Analysis, but now we see its notions and methods appearing,
in abstract form, in distant fields like the theory of groups, algebra, theory of
numbers....” This preface is the only part of the book where Zygmund expresses his
views and opinions on the subject; therefore, it deserves particular attention. First,
he declares that he will not treat the abstract extensions but stay on the classical
theory of Fourier series, “the meeting ground of the Real and Complex Variables.”
Then a few examples emphasize the role of this theory as “a source of new ideas for
analysts during the last two centuries,” namely, the general notion of a function,
the definitions of integrals, and the theory of sets.

Concerning “the main problems of the present-day theory of trigonometric
series,” he considers the summability of Fourier series and the convergence at in-
dividual points as closed chapters. However, “as regards the convergence or diver-
gence almost everywhere, much still remains to be done. For example, the problem
of the existence of a continuous function with an everywhere divergent Fourier
series is still open.” He adds that “two other major problems of the theory also
await their solution: ...the structure of the sets of uniqueness and the structure of
the functions with absolutely convergent Fourier series.”

Among other problems or domains, he mentions the behavior of trigonometric
series on sets of positive measure, further developments of complex methods, and
multiple Fourier series. He then compares the advancement of the theory and that
of its applications to other areas of mathematics rather critically: He notes, for
example, that “convergence in norm...bypasses earlier difficulties,” which refers to
the need to show some kind of pointwise convergence. He adds some advice: “More
subtle results of the theory, however, if we look at them in proper perspective, can
give far-reaching applications.” As possible applications, he mentions partial dif-
ferential equations of elliptic type and the boundary behavior of analytic functions
of several complex variables. The rest of the preface describes the organization of
the book and expresses thanks to a number of colleagues.

There was no third edition while Zygmund was still living. The book was
reprinted in 1968 (for the first time with Volumes I and II combined) and again
in 1977. Zygmund wrote a very short “note on the 1968 impression” and a few
lines as a “note on the 1977 impression”: “We have not attempted to deal with
the remarkable transformation of perspective in the field of almost everywhere con-
vergence of Fourier series which was brought about by Carleson through the proof
of his celebrated theorem on almost everywhere convergence of Fourier Series of
L2-functions, a result subsequently extended by Hunt to LT (p > 1).”

Fortunately the present “third edition” contains this preface and notes, together
with the content of the “1977 impression”. As I have already mentioned, this new
edition is the 1977 version of the second edition, plus the foreword by Robert Feffer-
man. To give an idea of the content, I shall first indicate the general organization
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of the book and how it differs form the first edition. I shall then stroll through
several topics according to my own taste.

As indicated in the preface to Trigonometric Series, important new material had
to be added to the first edition. Instead of 12 chapters and 329 pages, the second edi-
tion has 17 chapters and 747 pages. The Paley-Littlewood theory, just mentioned
in the first edition, needs two chapters for a complete exposition. Throughout the
book, one finds important results by Marcinkiewicz or by Marcinkiewicz and Zyg-
mund that were developed after the first edition. The same is true for results by
Salem and by Salem and Zygmund. Not only Calderén’s results but also unpub-
lished ideas or proofs of known theorems by Calderén appear at several places. The
bibliography contains about 350 references, most of which appeared in the period
1935-1959. There are even more references to work prior to 1935 than in the first
edition. An index was added in 1959 and completed in 1968.

From a historical point of view, the main innovation is a series of notes at the end
of each volume and a considerable extension of the “miscellaneous theorems and
examples” given at the end of each chapter. The miscellaneous theorems and exam-
ples are stated in the form of problems to solve, with references instead of solutions.
The notes give additional comments and references, and no reader should read a
chapter without consulting the notes. They give a great amount of information in
a very condensed format.

There is a change in the exposition from the first to second edition. Part of what
I called tricks and devices and pieces of general theories is now organized in the first
chapter, although many such items are still found in other chapters. Here are the
titles of the chapters, inspired by but different from the titles of the first edition:

1. Trigonometric series and Fourier series, auxiliary results.

2. Fourier coefficients, elementary theorems on the convergence of S(f) and

5(5).

3. Summability of Fourier series.

4. Classes of functions and Fourier series.

5. Special trigonometric series.

6. The absolute convergence of trigonometric series.

7. Complex methods in Fourier series.

8. Divergence of Fourier series.

9. Riemann’s theory of trigonometric series.

10. Trigonometric interpolation.

11. Differentiation of series, generalized derivatives.

12. Interpolation of linear operations, more about Fourier coefficients.

13. Convergence and summability almost everywhere.

14. More about complex methods.

15. Applications of the Littlewood-Paley function to Fourier series.

16. Fourier integrals.

17. A topic in multiple Fourier series.

Volume 1 consists of Chapters 1 to 9; Volume II of Chapters 10 to 17.

I shall not try to describe the content of the book chapter by chapter. As far as
it is possible, this was done in an excellent way by Raphael Salem in this Bulletin
in 1960 [26] and also by Edwin Hewitt in the Mathematical Reviews (21 6498). I
do, however, invite you on a promenade, an eclectic tour of Trigonometric Series.
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Trigonometric series and their conjugates are just the real and imaginary parts
of formal power series

o0
Z anz"
n=0
it

where a, is real and z is considered on the unit circle, z = e*. They can be
studied either by using purely real methods or by using Taylor series and analytic
functions in the unit disc. Roughly speaking, the real-variable methods are mainly
in Volume 1 (although they reappear constantly in Volume 2), and complex vari-
ables methods are mainly in Volume 2 (although they are already introduced in
Chapter 7).

There are two main formulas (or points of view) in the theory of trigonometric
series. The first says that a function is given by a trigonometric series. The second
expresses the trigonometric coefficients when the function is given. We usually
start from the second (harmonic analysis) viewpoint and then consider the first
(harmonic synthesis). Synthesis was the point of view of Fourier and Dirichlet, and
it is still the most important by far. It appears in the first chapters of the book and
leads to a great variety of methods and results. It is, however, possible to start from
the first and investigate trigonometric series as such and, in particular, functions
that are given as sums of everywhere convergent trigonometric series. This kind of
investigation began with Riemann, and it is the subject matter of Chapter 9.

Nothing prevents the reader from beginning with Chapter 9. It is elementary:
no integration theory is needed, and complex variables are not used. On the other
hand, it is ingenuous and difficult. When the coefficients tend to zero the double
integration of the series gives a continuous function F' that satisfies the condition
F(t+h)+ F(t—h)—2F(t) = o(h) (h — 0) uniformly, which is a “smooth function”
in the sense of Zygmund. When the trigonometric series converges, its sum is equal
to the second symmetric derivative of F': it is Riemann’s summation process. If the
series converges to zero everywhere, then it is necessarily the null series: this is the
uniqueness theorem of Cantor. The same conclusion holds when the convergence
to zero is assumed on the complement of a closed countable set: this extension is
due to Cantor and was the opportunity for him to introduce fundamental notions
on sets of real numbers. All methods used in this chapter are purely real and antic-
ipate some aspects of the theory of Schwartz distributions: integration, derivation,
formal multiplication, and localization. The saga of sets of uniqueness, or U-sets,
begins here. They are the sets of real numbers such that, if two trigonometric series
converge and have the same sum on the complement of the set, they are the same.
They have necessarily a vanishing Lebesgue measure, but that is not a sufficient
condition (Mengov). The triadic Cantor set is a U-set (Rajchman). Countable
unions of closed U-sets are U-sets (Bari, also Zygmund, though he hid his contri-
bution and stated the result as “theorem of Nina Bari” (see [I], p. xxv)). Linear
functions transform U-sets into U-sets (Marcinkiewicz-Zygmund). There are vari-
ations about U-sets. One can replace convergence by summability with respect to
a method M; the corresponding Ups-sets were studied by Marcel Riesz. One can
assume that the coefficients are O(e,, ), where € = (e,) is a given sequence tending
to zero, and Zygmund proved that the corresponding U (e) sets can have a positive
Lebesgue measure whatever ¢ may be. The question asked in the book, whether
there are U(e)-sets of full measure, was solved in a positive way by Kahane and
Katznelson in 1973. Before leaving this chapter, let me point out that U-sets were
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the closest meeting point of Rajchman, Marcinkiewicz, and Zygmund. They were
also the subject of a beautiful collaboration between Salem and Zygmund. Here is
their theorem about Cantor sets with ratio of dissection 1/6 instead of 1/3 (6 > 2):
such a Cantor set is a U-set if and only if  is an algebraic integer whose conjugates
(other than @ itself) are inside the unit disk of the complex plane (in brief, § € S).
This is explained in Chapter 12. Important applications of the class S and sim-
plifications of the proof of the Salem—Zygmund theorem were given later by Yves
Meyer (see [13] and also [9], 1994, pp. 203-204).

U-sets for multiple trigonometric series (convergence meaning spherical conver-
gence) became a field of investigation after the book was published. The first
contribution came from A. Zygmund in 1972; then came work by B. Connes in
1976, J. Bourgain in 1996, and the whole story is told in two articles of M. Ash and
C. Wang [17], [18].

Chapter 9, the Riemann theory, and the end of Chapter 12, the link with number
theory, do not require any prerequisite. The same is also true for other chapters.
Chapter 5, on special trigonometric series, can be read independently. It is a
vast collection of examples, beginning with series whose coefficients decrease mono-
tonically, then considering the case of coefficients with absolute values n=? and
phases either cnlogn (Hardy—Littlewood, Mary Weiss) or n~® (Hardy) (a rather
strange result is that the corresponding series is Fourier—Riemann for 5 > 0 and
Fourier-Lebesgue for § > %a). The sections that follow deal with lacunary se-
ries (Banach, Sidon, Zygmund), Riesz products of several kinds (F. Riesz, Salem),
and Rademacher functions and their use in random trigonometric series (Paley—
Zygmund, Salem—Zygmund). The final sections contain Ingham’s method for series
with small gaps and Salem’s refinement of the Van der Corput lemma used to ob-
tain continuous functions from L2-functions with regularly decreasing coefficients
by appropriate changes of the phases.

As a comment on this chapter, let me say that special trigonometric series deserve
attention for many reasons. 1. The local behaviour of their sums is now investigated
by new tools (wavelets) and raises interesting examples of “multifractal analysis”
(Y. Meyer, S. Jaffard [23]). 2. Lacunary series, Riesz products, and random series
were linked from the very beginning (say, the period 1920-1930), and one property
of lacunary series became the definition of Sidon sets, a subject of great interest by
itself [11], [21]. 3. Random methods were extended to the whole of analysis, with
remarkable solutions of long-standing problems [12].

Chapter 6, about the absolute convergence of trigonometric series, deserves par-
ticular attention, if only because Zygmund considered the structure of their sums as
an important open question. It contains two quite different parts, the first on sets
and the second on functions. Some sets, in particular sets of positive Lebesgue mea-
sure, have the property that a trigonometric series converges absolutely everywhere
as soon as it converges absolutely on the set. The sets with the opposite property
are a kind of thin set named sets N. A way to obtain a set IV is to use the theorem
of Dirichlet on diophantine approximation. The subject was introduced by Denjoy
and Lusin and developed by Salem, Erdos, and Marcinkiewicz. In particular, Salem
established that if E is a set N, the Fourier coefficients of any probability measure
carried by E have 1 as a limit point, and Zygmund asked in a note, p. 239, whether
it is also a sufficient condition for E to be a set N. Actually this is the case, as
proved by J. E. Bjork ([3]; see also [9], 1994, pp. 205-206). The sets N are now
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called “weak Dirichlet” sets, while Dirichlet sets are defined by the condition that
some infinite sequence of exponentials exp(int) converges to 1 uniformly on the set.

The structure of functions with an absolutely convergent Fourier series was stud-
ied by a number of authors, including Zygmund, from a descriptive point of view:
some regularity conditions on the function (say, belonging to a Holder class of order
a > 1/2 (S. Bernstein) or to a Holder class of order a > 0 together with the condi-
tion of bounded variation (A. Zygmund)) imply absolute convergence of the series.
It is essentially the point of view expressed in the book. Boundedness suffices if the
series is lacunary (Sidon). Analytic functions operate; that is, an analytic function
of a continuous function with an absolutely convergent Fourier series is again a
function with the same property (Wiener—Lévy). This theorem has several proofs,
and the proof given in the book, due to A. Calderén, is among the best.

Although the statements and the proofs are perfect, this part of the book was
already criticized in 1960 by Salem in his review [26]. The reason is that another
structure deserves attention, namely the structure of the class of functions with
an absolutely convergent Fourier series, called A by Wiener, as a normed ring or
Banach algebra. It is the point of view suggested by the works of Wiener, Beurling,
and Gelfand. The Wiener-Lévy theorem derives from the fact that the spectrum
of A (the set of maximal ideals) is the circle (a maximal ideal is the set of functions
vanishing at some point). The converse of the Wiener-Lévy theorem was given
by Y. Katznelson in 1958: only analytic functions operate on A. The solution of
the long-standing problem on “spectral synthesis” (a closed ideal is not necessarily
the set of functions vanishing on some closed subset of the circle) was obtained by
P. Malliavin in 1959. Both results could have been included in the text or at least
mentioned in the notes.

I do not agree completely with this criticism. The scope of the book was very
large already, and a continued enlargement was not desirable. Fortunately, Zyg-
mund left some room for books by other people (see [3] to [16] as examples). How-
ever, notes on this subject in Trigonometric Series would have been welcome.

Although the main emphasis was on real and complex analysis, functional anal-
ysis was already present in Trigonometrical Series. Banach spaces methods and
the interpolation of operators did appear in the first edition. In the second edi-
tion, interpolation of operators is the main subject of a new chapter, Chapter 12.
It contains two main interpolation theorems: Riesz—Thorin (with an extension by
E. Stein) and Marcinkiewicz. Both deal with operators from one measure space
to another and express that they map L® into L® when the point (1/a,1/3) be-
longs to some convex set. The Marcel Riesz interpolation theorem assumes that
the operator is linear and continuous from L®*° to L% and from L** to LA with
0<fBy<ap<land0<p <a; <1 and concludes that the same holds from L“
to L” whenever (1/a,1/3) belongs to the segment of line joining (1/cg,1/50) and
(1/a1,1/81). This has remarkable consequences when the operation is the Fourier
transformation, either from the circle T to Z, the set of all integers, or from T to
Z, namely the Hausdorff-Young inequalities. The Riesz—Thorin theorem assumes
only that the a’s and 3’s are between 0 and 1, and the main contribution of Thorin
was to introduce methods of vector-valued analytic functions in the proof. In the
theorem of Marcinkiewicz the linearity condition is relaxed and replaced by “quasi-
linearity”, and the behaviour at (ay, 8p) and (a1, 81) is expressed as a “weak type”
condition. An important consequence is the series of theorems by Paley involving
LP-norms with weights and rearrangements of function or sequences. In the course
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of the chapter, we also see interpolation of multilinear operators with applications
to HP spaces (starting from an inequality of Hardy-Littlewood on Taylor series
established in Chapter 7) and fractional integration and derivation. As I already
said, the end of Chapter 12 is devoted to Cantor-like sets and the algebraic theory
of numbers.

Every chapter has a different flavour. Instead of describing their content, I shall
pick a few flowers.

The strong version of the Lebesgue derivation theorem is given in Chapter 2, in
h

the form / |f(z+1t) — f(x)|dt = o(h) a.e. (I, p. 65). Given a perfect set P on

0
the line, its points of density are the Lebesgue points of its indicator function. A
theorem by Marcinkiewicz in Chapter 4 is more precise: it says that

/(dist(t,P))’\|t —z|M Mt <o (A>0)

almost everywhere on P (I, p. 129). Difficult and beautiful results are given
in Chapter 11 on generalized derivatives. Here is an example, established by
Marcinkiewicz and Zygmund: if f(z + h) + f(z — h) — 2f(z) = O(h?) (h — 0)
whenever x € E, then the second Peano derivative exists a.e. on E (meaning
f(x + h) = ao(z) + hai(z) + h2az(x) + o(h?) (h — 0) a.e. on E) (II, p. 78).
Actually, Chapters 2 and 11 are purely real analysis: derivations, integrations (not
only Lebesgue, but also Denjoy), and their relations.

In the theory of numerical series, the Abel summation theorem says that
o0

hmz apr” Z an whenever the series converges. If the left-hand member ex-

ists and an = 0(1/n) (n — o00), then the series on the right-hand side converge.
This is Tauber’s theorem, the ancestor of all “Tauberian” theorems. The Taube-
rian theorem of Littlewood says that a,, = O(1/n) suffices, and it is, by far, more
difficult than the theorem of Tauber. A further extension was given by Hardy and
Littlewood: the condition a,, = O(1/n) can be replaced by the one sided condition
an < A/n. According to Hardy and Littlewood, their theorem “constitutes a very
interesting extension of Littlewood’s generalization of Tauber’s theorem; but a spe-
cial proof is required,” and the proof is by no means simple ([2], VI, pp. 524-525).
Chapter 3 gives a very clear proof of Littlewood’s theorem on one page (I, p. 82),
and ten lines in the notes on Chapter 3 suffice for deriving the Hardy-Littlewood
theorem.

Summability comes back in Chapter 13, but now for trigonometric or Taylor
series, and it is considered almost everywhere on the circle. I shall select two topics
from this chapter: the “circular structure” for partial sums of Taylor series, and
the “strong summability” for Fourier series and their conjugates.

Marcinkiewicz and Zygmund were interested in partial sums of a trigonometric
series S and its conjugate S on a set E where S is summable (C,1) (the process
of Fejér), and they observed that the length of the smallest interval containing all
limit points of these partial sums was the same, a.e. on F, for S and S. This looked
mysterious, until they discovered the “circular structure” for Taylor series : the fact
is that the set of accumulation points of the partial sums of S+4S is invariant under
rotation around the (C,1)-limit of this series, a.e. on E. The proof is quite neat,
but the distribution of these partial sums is still an open question (II, p. 178).
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The “strong summability” (Hy), ¢ > 0, is defined by the condition
lso — 5T+ |s1 —s]T+ -+ |sp — s|2=0(n) n— oo.

Hardy and Littlewood, extending Fejér’s theorem, proved that (Hy) holds uniformly
for Fourier series of continuous functions (II, p. 182). Moreover, (H,) holds ev-
erywhere for S and S as soon as S is a Fourier-Lebesgue series (this is due to
Marcinkiewicz for ¢ = 2 and to Zygmund for any ¢) (II, p. 184).

The relation between S and S , a trigonometric series and its conjugate, is a
permanent subject of interaction between real and complex methods. Chapter 4
develops the real-variable approach, Hilbert transform, and a real method for Kol-
mogorov’s theorem (S — S is of weak type L', a basic result used in Chapter 12) (I,
pp. 131-135). The original proof by Kolmogorov used complex variables methods,
as indicated in the notes (I, p. 378). The complex methods for the properties of the
mapping S — S (Marcel Riesz, Kolmogorov, Zygmund) are described in Chapter 7.
This leads to the classes HP (Hardy) and N (Nevanlinna), and also to the Taylor
series whose sum has bounded variation on the unit circle (F. and M. Riesz: the sum
is absolutely continuous; Hardy and Littlewood: the series converges absolutely).
A pearl is the theorem of Helson: if the partial sums of a trigonometric series are
positive, the coefficients tend to zero (I, p. 286).

There is more about complex methods in Chapter 14. The starting point is the
Privalov theory of nontangential limits, leading to a uniqueness theorem (II, p. 203):
if two analytic functions in the open disk |z| < 1 have the same nontangential limit
in a set of positive measure on |z| = 1, then they are the same. “Nontangential”
refers to the behaviour inside all small triangles inside |z| < 1 with vertex at
a given z, |z| = 1. The key lemma for Privalov is now the main theorem (II,
p. 199): if a function harmonic in |z| < 1 satisfies a condition of local boundedness
(“condition B”) on a set F in |z| = 1, then it has a nontangential limit at almost
every point on FE. Here, “local boundedness” refers to the behaviour inside some
small triangle. Privalov’s proof uses conformal mapping, explained in a figure on
p. 200 (the figure of the book). Zygmund also gives a proof by Calderén, with
possible extensions to several dimensions. Next emerges the zoo of the “square-
functions”, with their standard names: s(), g(0), 1(#). The first, s(6), is the Lusin
function: s2(6) is the integral of |F’(z)|? over the “triangle” defined as the convex set
generated by the point €?’ and some circle around the origin, therefore also the area
of the image of this “triangle” by F'; it is called “the area function”. A remarkable
theorem, to which Marcinkiewicz, Zygmund, Spencer, and Calderén contributed,
says that the existence of a nontangential limit and the finiteness of the area function
are equivalent almost everywhere (II, p. 207). The function g¢(#), the function of
Littlewood—Paley, is defined as

1/2

s ([ - AF e Par)

and it is a close companion of the area function. It enjoys the property that the L?
norms of g(f) and F(e*?) are equivalent when p > 1. The Marcinkiewicz function
1/2

1u(6) = </07T IF(0+1)+ F(6—1) - 2F(9)|2t3dt>

has a purely real definition, and it is attached to a 2m-periodic function f, whose F'
is the indefinite integral. Then again [ |u[P and [|f|P are equivalent when p > 1.
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The Littlewood—Paley theory begins in Chapter 14 and is developed in Chap-
ter 15. The most significant part is the study of the “Littlewood—Paley decomposi-
tion” of a trigonometric series, that is, the decomposition into dyadic blocks of the
form Y Ay, where

AL = Z (an, cosnt + b, sinnt) .
2k << okt

A striking result is that Y +Ay, is the Fourier series of an LP-function (1 < p < 00)
as soon as it is the case for Y Ag. This can be expressed in many ways (in particular
by considering the “square function” (3 Ai)l/ 2) and has many consequences. I
shall return to the Littlewood—Paley theory at the end of the promenade.

S and S , a trigonometric series and its conjugate, appear from the beginning to
the end of Trigonometric Series: Chapter 2 sets the definitions, Chapter 4 explains
the Kolmogorov weak L' theorem using real variables methods, and Chapter 7
gives a series of functional properties of the mapping S — S using complex meth-
ods. Chapters 11 and 13 establish the link between generalized derivatives and
summability of S and S and introduce strong summability for both series. The
final pearl is to be found in Chapter 14: whatever S may be, the sets on which S
and S converge differ only by a set of Lebesgue measure zero (II, p. 216; a weaker
version is given on p. 175).

Let me end this promenade with what was the most tantalizing problem for
Zygmund: the convergence problem. It has two faces: convergence and divergence.
Roughly speaking, the part of the book devoted to divergence has a permanent
value, and the part devoted to almost everywhere convergence is now obsolete.

The convergence problem began with Fourier: given a function, check that it
is the sum of its Fourier series. Fourier did it in a particular case and claimed
that it could be done for an arbitrary function. This is not true as a statement,
but has proved very valuable as a program. The main part of Zygmund’s book is
devoted to this program. First, one has to be more specific about the functions
under consideration, and this depends of the notion of an integral. This observation
was already made in 1829 by Dirichlet, and it leads to the introduction of classes
of functions, or generalized functions, like measures. Then, one has to be more
specific about convergence. The original question is about pointwise convergence
and leads to a series of sufficient conditions or “tests” (Dirichlet, Jordan, Dini, and
others). Since pointwise convergence can fail even for continuous functions (du Bois
Reymond, Fejér, Lebesgue), two variations deserve to be considered: convergence
almost everywhere and convergence in functional spaces, like L?. Moreover, simpler
statements appear when convergence is replaced by summability. For example, it
is possible to begin a course on Fourier series with Fejér’s theorem in functional
spaces, as does Katznelson [10].

For Zygmund, as explained in his preface, the main problem was about con-
vergence almost everywhere. It is the underlying theme of Chapters 13 to 15.
The question arises for L? first. In 1959, these were the available results: 1.
sp = o(y/logn) a.e. 2. If Y (a2 + b2)logn < oo, then s, converges to f a.e.
(Kolmogorov-Seliverstov). 3. If ngp1/ng > ¢ > 1 (k = 1,2,...), then s,, con-
verges to f a.e. This last result, on a lacunary sequence of partial sums, derives
easily from the corresponding result on Fejér’s sums, via a decomposition between
ng and ngy1. In order to extend the result to LP (1 < p < 2) instead of L2, the
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Littlewood—Paley decomposition was needed, and it was the original motivation of
this difficult theory. Chapter 15 was written from this point of view: “one of the
main results of this chapter is that the theorem holds for f € LP, p > 1.”

The Carleson—Hunt theorem changed the perspective completely. It was a shock
for Zygmund. How could it be that such a beautiful theory becomes of no use for
its original purpose? What should be dropped from the book and what added? In
1966 Zygmund was involved in other questions. His decision was wise: there should
not be a third edition of his book.

However, another change of perspective appeared at the same time: the Little-
wood—Paley theory became much more important than the convergence problem
for Fourier series. Its probabilistic version, established by Paley before Littlewood
wrote their joint work, is now basic in the theory of martingales. The Littlewood—
Paley decomposition appears in all parts of analysis: partial differential equations,
wavelets, diffusions. Chapter 14, on the “square-functions”, remains highly valu-
able even if the main applications are not those described in Chapter 15. A good
motivation for the present “third edition” is precisely to show how interesting the
exposition of the Littlewood—Paley theory by Zygmund still is.

The Carleson—Hunt theorem was extended to functions f such that

/ F(®)log™ | £(1) log™ log* log™ |£(1)]dt < oo

(Antonov, 1966 [I7]). It cannot be extended to f € L', since there exists an
integrable function whose Fourier series diverges everywhere (Kolmogorov, 1926;
see Chapter 8 in Trigonometric Series). The situation is not yet clarified for the
partial sums s,, of functions in L. Tt is known (Hardy, 1913; see Chapter II) that
sn = o(logn) a.e., and Hardy conjectured that it was a best possible result: “I
have not proved rigorously that it is so, but it seems to me very probable” ([2],
III, p. 124). Zygmund asked the question again (I, p. 308): “We know (Chapter
I1, (I1.9)) that for any f € L we have S, (x; f) = o(logn) for almost all z. It is
conceivable that this result is best possible, that is, for any sequence of positive
numbers A, = o(logn) there is an f € L such that at almost every point = we
have S, (x; f) > A, for infinitely many n.” For a long time the best answer in that
direction was \,, = o(loglogn). The best answer now is \,, = o(y/logn/+/loglogn)
(Konyagin, 2000 [24]). For Walsh series \,, = o(v/logn) suffices [20]. The challenge
is between /logn and logn.

The estimate s,(t) = o(logn) appears in another context, namely at a given
point ¢ for a continuous function f. Here it was already known by Lebesgue that
it is a best possible estimate ([25], p. 117, I, p. 298). There is no way to solve
Hardy’s problem using Lebesgue’s method. This warning is suggested by a wrong
comment on Hardy’s conjecture in ([2], IIT, p. 125).

Chapter 10, on trigonometric interpolation, also contains many interesting re-
sults on divergence of interpolating trigonometric polynomials of degree n with
equidistant nodes, I,,(t, f), when f is continuous. It may happen that I, (¢, f) di-
verges almost everywhere even when S, (¢, f) converges uniformly (Griinwald) (11,
p. 40). It may even happen that I, (¢, f) diverges everywhere (Marcinkiewicz) (11,
p. 44). The estimate I, (¢, f) = o(logn) holds for every ¢, and given \,, = o(logn)
there exists a continuous function f such that at almost every ¢ we have I, (¢, f) >
An for infinitely many n (II, p. 42). Here the divergence problem seems to be a
closed subject.
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Although I already announced the end of the promenade, let me go back to the
last chapters of the book, those on Fourier integrals (Chapter 16) and multiple
Fourier series (Chapter 17).

There were already excellent books on Fourier integrals. The originality of Zyg-
mund’s approach is to start from Fourier series and extend their theory. The first
formulas written in Chapter 16 are

s.@) = 2 [ g+

sin wt

dt,

. 1 0 1— t
(@) = ;/ Fla+ )"y

expressing the partial sums and conjugate partial sums when f is periodic. The
aim is explained on p. 246: to investigate the representability of functions by their
Fourier integrals, single or repeated, and to prove that, locally at least, the problem
is reduced to that of the representability of periodic functions by their Fourier series.
Among all extensions of notions or results on Fourier series to Fourier integrals,
let me give one example: the interpretation of the notion of U-set using Fourier
integrals is the only way to prove that linear functions transform U-sets into U-sets.

The very last chapter has a different character. It is the introduction to a
new topic. For multiple Fourier series the notion of partial sums disappears, since
there is no natural order on the terms. “Spherical” or “rectangular” partial sums
correspond to different methods of summation. Strong differentiability of multiple
integrals, power series in several variables, and harmonic functions in a polydisk
introduce a series of new questions. The references in II, p. 355, show that a series of
works by Calderén and Zygmund are related to these questions. Their paper “On
singular integrals” was published in 1952. While Zygmund prepared the second
edition of his book, he was already involved in the theory of Calderén—Zygmund
operators.

And now let me go back to the beginning of this review. It was an excellent
decision not to change a single word of Trigonometric Series as it was published
in 1977 for this “third edition”. This book has to be considered as a piece of art
as well as a source of information. It has a global structure, but its beauty has to
be discovered in every chapter, page, or sentence. Everything is clear, condensed,
and complete. Zygmund had very broad views, and they have a strong historical
interest. Now, however, we may and should have other interests and perspectives,
as shown in particular by all the books of Elias Stein and collaborators. Antoni
Zygmund had also a personality as a human being: open to all problems of the
world, warm with his friends, pleasant with his colleagues, and good to his students,
and at the same time absolutely rigorous in all aspects of life. The style of his book,
pure and simple, mirrors this personality. I am sure that it will remain as a model
forever.
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