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The author writes in the preface: “Discrete Convex Analysis is aimed at estab-
lishing a novel theoretical framework for solvable discrete optimization problems by
means of a combination of the ideas in continuous optimization and combinatorial
optimization.” Thus the reader may conclude that the book presents a new theory
(the name “discrete convex analysis” was, apparently, coined by the author). The
reader may also notice the adjective “solvable” attached to “discrete optimization
problems” and hence ask whether “solvable” means solvable in principle, solvable
by the new theory, solvable by all other known approaches, or solvable by some of
the known approaches for which the theory provides a unified framework. I think
that the best fit is given by the last option. Thus, I would like to describe the
general area of discrete convexity and the contribution of the book.

A set A ⊂ Rn is called convex if, for any two points x, y ∈ A, the interval
[x, y] =

{
αx + (1 − α)y : 0 ≤ α ≤ 1

}
also lies in A. A function f : Rn −→ R

is called convex provided that for every λ ∈ R, the set
{
x : f(x) ≤ λ

}
is convex.

Equivalently, f is convex if and only if f
(
αx + (1 − α)y

)
≤ αf(x) + (1 − α)f(y)

for all x, y ∈ Rn and all 0 ≤ α ≤ 1. These remarkably simple definitions lead to
a remarkably rich and useful theory with a great many applications. Here we are
interested in optimization problems with convex objective functions.

Convex functions and convex sets have some nice properties as far as optimiza-
tion is concerned. A local minimum of a convex function f on a convex set A is
necessarily a global minimum. There is also a powerful duality theory, which we
sketch below, having optimization in mind.

Let 〈·, ·〉 be the standard scalar product in Rn. For a non-empty set A ⊂ Rn,
let A◦ =

{
c ∈ Rn : 〈c, x〉 ≤ 1 for all x ∈ A

}
be the polar of A. Then, A◦ is

a closed convex set containing the origin, and if A is itself a closed convex set
containing the origin, then (A◦)◦ = A (the Bipolar Theorem). For a set A ⊂ Rn,
let [A] : Rn −→ R be its indicator: [A](x) = 1 if x ∈ A and [A](x) = 0 if x /∈ A. The
polarity correspondence A 7−→ A◦ preserves linear dependencies among indicators
of closed convex sets: if

∑m
i=1 αi[Ai] = 0 for real numbers αi and non-empty closed

convex sets Ai, then
∑m
i=1 αi[A

◦
i ] = 0.

With every set A ⊂ Rn, we associate two problems. First, the Membership
Problem: given a point x ∈ Rn, decide whether x ∈ A. Second, the Optimization
Problem: given a vector c ∈ Rn, compute the minimum (maximum) value of the
linear function 〈c, x〉 for x ∈ A. The polarity correspondence A ←→ A◦ naturally
gives rise to the correspondence between the Optimization Problem for A and the
Membership Problem for A◦. The Bipolar Theorem implies a certain symmetry
between the Membership and Optimization problems.

Suppose now that a convex body (a convex compact set with a non-empty inte-
rior) A ⊂ Rn is defined by its Membership Oracle, that is, a black box which, given
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a point x ∈ Rn, tells us whether x ∈ A. Then one can solve the Optimization Prob-
lem on A using a reasonably small number of arithmetic operations and calls to the
Membership Oracle. To make the statement precise, one needs to introduce some
numerical guarantees, such as an upper bound R on the radius of a ball containing
A, a point a ∈ A and a lower bound r > 0 on the radius of a ball centered at a and
contained in A, and an error ε > 0 with which we perform computations. Then the
Optimization Problem on A can be solved in time polynomial in n, logR, log r−1,
and log ε−1. This relation between the Membership and Optimization Problems for
convex bodies is far from trivial: it is a corollary of the powerful Ellipsoid Method;
see [GLS93].

A similar theory can be built for convex functions f : Rn −→ R ∪ {+∞}. The
role of the polar is played by the convex conjugate, a.k.a the Legendre-Fenchel
transform f◦ : Rn −→ R ∪ {+∞} defined by f◦(c) = sup

x∈Rn

(
〈c, x〉 − f(x)

)
.

Various discrete versions of convexity have been of interest since long ago. Let
Zn ⊂ Rn be the standard integer lattice. For a convex set A ⊂ Rn, let AZ = A∩Zn
be the set of integer points in A. Wouldn’t it be nice to have as rich a theory of
“discrete convex sets” AZ as we have of “continuous” convex sets A ? Wouldn’t it
be nice to have a similar equivalence of the local and global optimality (for some
reasonably defined neighborhood structure) and a useful duality theory? Of course
it would be nice, and, in some sense, such a theory would be too good to exist.
One argument why a comprehensive theory of discrete convexity parallel to that of
continuous convexity is unlikely to exist comes from the computational complexity
side of things. Here is an example of a discrete convex set X or, rather, a family
of discrete convex sets Xn, where the Membership Problem (the problem of testing
whether a given point lies in X) is trivial, whereas the Optimization Problem (the
problem of optimizing a given linear function on X) is quite hard. Let us choose
an integer n ≥ 3. For a permutation σ of the set {1, . . . , n}, let aσ be the n × n
permutation matrix, so that aσij = 1 if σ(i) = j and aσij = 0 if σ(i) 6= j. Finally, let
Xn ⊂ Zn×n be the set of matrices aσ, where σ ranges over all (n−1)! permutations
consisting of a single cycle 1 7→ i1 7→ . . . 7→ in−1 7→ 1. Clearly, Xn is the set of
integer points in a convex set. The Membership Problem for Xn is trivial, while
the Optimization Problem, called the Traveling Salesman Problem, is a classical
example of an NP-hard problem (“NP-hard” just means “hard” in this context).

The convex hull of Xn is called the Traveling Salesman Polytope; it has a com-
plicated facial structure, which is not well understood, and unless something un-
expected happens in the computational complexity theory (unless NP=co-NP, for
example), cannot be understood too well; cf. Chapter 58 of [Sc03]. Thus, Papadim-
itriou [P78] showed that it is an NP-hard problem to determine whether two given
points in Xn are the endpoints of some edge of the Traveling Salesman Polytope,
which indicates that there is no simple natural neighborhood structure on Xn.

Although an all-powerful discrete convexity theory is unlikely to exist, some
general arguments geared towards a particular set of problems in discrete convexity
have been used. We start with some examples, which are not discussed in the book
under review.

Perhaps the first example of a discrete convexity argument goes back to Minkow-
ski (cf. Section V.8.2 of [C97]) and proceeds as follows. If A ⊂ Rn is a convex set,
then for every two points x, y ∈ A the midpoint (x+y)/2 also lies in A. If S ⊂ A∩Zn
is a set of at least 2n + 1 integer points in A, then some two points x, y ∈ S, x 6= y,
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lie in the same coset Zn/ (2Zn) and hence (x+y)/2 is an integer point from A. This
simple argument leads to interesting insights in the intersection theory of discrete
convex sets. The famous Helly’s Theorem states that if A1, . . . , Am, m ≥ n + 1,
is a finite family of convex sets in Rn such that every collection of n + 1 sets
Ai1 , . . . , Ain+1 has a point in common, then all the sets A1, . . . , Am have a point in
common. A discrete version of Helly’s Theorem, proved first by Doignon [Do73],
states that if m ≥ 2n and every collection of 2n sets Ai1 , . . . , Ai2n has an integer
point in common, then all the sets A1, . . . , Am have an integer point in common.
Similar arguments are used to bound the complexity of maximal lattice-free convex
bodies in connection with problems of integer programming; see [S97].

The fractional Helly Theorem of Katchalski and Liu asserts that for every 0 <
α ≤ 1 there exists a β = β(α, n) > 0 with the following property: if among all(
m
n+1

)
tuples Ai1 , . . . , Ain+1 at least α

(
m
n+1

)
tuples have a point in common, then

there is a point common to at least βm of the sets A1, . . . , Am. The best possible
value β(α, n) = 1 − (1 − α)1/(n+1) is due to Kalai; see [M02] for these and related
topics. In a quite surprising recent development [BM03], Bárány and Matoušek
proved the following discrete fractional Helly Theorem: for every 0 < α ≤ 1 there
exists a β = βZ(α, n) > 0 with the following property: if among all

(
m
n+1

)
tuples

Ai1 , . . . , Ain+1 at least α
(
m
n+1

)
tuples have an integer point in common, then there

is an integer point common to at least βm of the sets A1, . . . , Am. Unlike β(α, n),
the number βZ(α, n) does not approach 1 as α approaches 1 (note that the bound
2n in Doignon’s Theorem is the best possible).

In another direction of discrete convexity (not discussed in the book under re-
view), we seek to extend the analogy between the two quantities: the volume of a
convex body A and the number of integer points in A. We get an especially close
analogy if we restrict ourselves to the class of polyhedra. A polyhedron P is a subset
of Rn defined by a finite set of linear inequalities: P =

{
x ∈ Rn : 〈ci, x〉 ≤ αi, i =

1, . . . ,m
}

, where ci ∈ Rn and αi ∈ R. If we can choose ci ∈ Zn and αi ∈ Z, the
polyhedron P is called rational.

Let P (Rn) be the (complex) vector space spanned by the indicators [P ] of poly-
hedra in Rn and let P (Qn) be the subspace spanned by the indicators of ratio-
nal polyhedra. Let C(x) be the field of rational functions in n complex variables
x = (x1, . . . , xn), considered as a complex vector space.

Let P ⊂ Rn be a non-empty polyhedron without lines and hence, necessarily,

with a vertex. Then, the integral
∫
P

e〈x,y〉 dy converges absolutely for all x in some

non-empty open subset U ⊂ Cn to a rational function φP (x) on Cn. A remark-
able result obtained by Khovanskii and Pukhlikov [PK92], and, independently, by
Lawrence [L91], states that the correspondence P 7−→ φP extends to a linear trans-
formation Φ : P (Rn) −→ C(x) such that Φ([P ]) ≡ 0 if P contains a line. We note
that if P is a bounded polyhedron (polytope), then φP (0) is the volume of P .

Now let P ⊂ Rn be a rational polyhedron without lines. Then the sum (gen-
erating function)

∑
m∈P∩Zn

xm converges absolutely for all x in some non-empty

subset U ⊂ Cn to a rational function fP (x), where xm = xm1
1 · · ·xmnn for x =

(x1, . . . , xn) and m = (m1, . . . ,mn). Lawrence [L91] and, independently, Khovan-
skii and Pukhlikov [PK92] proved that the correspondence P 7−→ fP extends to a
linear transformation F : P (Qn) −→ C(x) such that F ([P ]) ≡ 0 if P contains a
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line. We note that if P is a bounded polyhedron (polytope), then fP (1, . . . , 1) is
the number of integer points in P . The usefulness of F is that it transforms various
identities in the quotient of P (Qn) modulo the subspace spanned by the indicators
of polyhedra with straight lines into identities for generating functions fP for inte-
ger points in polyhedra. Here is an example: let us define the tangent cone Kv of a
polyhedron P at a vertex v ∈ P in the most natural way (thus Kv is a polyhedral
cone with the vertex at v). Then one can prove that [P ] ≡

∑
v[Kv] modulo indica-

tors of polyhedra with straight lines, where the sum is taken over all vertices v of P .
The corresponding identity fP =

∑
v fKv was first obtained by Brion via algebraic

geometry methods [Br88]. These ideas lead to practically efficient algorithms for
solving discrete optimization and counting problems as demonstrated by the LattE
project; see http://www.math.ucdavis.edu/∼latte.

Yet another direction of discrete convexity explores the integrality phenomenon,
that is, explores various situations when a rational polyhedron P ⊂ Rn for some
reason has integer vertices only (and here we come closer to the topic of the book
under review). If this is the case, to find the minimum (maximum) of a linear
function on P ∩Zn is the same as to find the minimum (maximum) of the function
on P , so the discrete and continuous linear optimization problems are equivalent. A
typical example is provided by the family of transportation polytopes. Let us fix two
sets of non-negative integers a = (a1, . . . , am) and b = (b1, . . . , bn). Let us consider
the set P (a, b) of all m×n non-negative matrices x = (xij) such that

∑n
j=1 xij = ai

for i = 1, . . . ,m and
∑m

i=1 xij = bj for j = 1, . . . , n. If
∑m

i=1 ai =
∑n

j=1 bj, then
P (a, b) is a non-empty polytope and every vertex of P (a, b) is an integer matrix.
In particular, if m = n and all row sums ai and column sums bj are equal to 1,
the vertices of P (a, b) are the permutation matrices. Thus the convex hull of all
permutation matrices has a very simple description, in contrast with the convex
hull of all n-cycles; cf. the Traveling Salesman Polytope mentioned above.

For an excellent exposition of this integrality phenomenon (and a related phe-
nomenon of the dual integrality), see [Sc03]. Here we note that integrality is rather
fragile: consider, for example, the polytope Pn of all n × n × n tensors x = (xijk)
with xijk ≥ 0 and the sums over each of the 3n “layers” (one index is fixed, the
other two vary) equal to 1. Then, as n grows, the arithmetic of the vertices of Pn
can get arbitrarily complicated [G74].

The book under review builds on a particular source of integrality. Let I be a
finite set and let f : 2I −→ R ∪ {+∞} be a function. The function f is called
submodular provided f(X)+f(Y ) ≥ f(X ∪Y )+f(X ∩Y ) for all subsets X,Y ⊂ I.
Here are some examples of submodular functions. Let ai : i ∈ I be a finite set of
vectors in a vector space and let f(X) be the dimension of the span of {ai : i ∈ X}.
Then f is submodular. Let Ai : i ∈ I be a family of subsets of a finite set U .
Suppose that to every element u ∈ U a real weight w(u) is assigned. Let the weight
of a subset of U be the sum of the weights of the elements of the subset. Finally,
for X ⊂ I, let f(X) be the weight of

⋃
x∈X Ax. Then f is submodular.

Let I = {1, . . . , n}. With a submodular function f : 2I −→ R we associate
a polyhedron Pf ⊂ Rn, called the (extended) polymatroid of f and defined by
Pf =

{
x ∈ Rn :

∑
i∈A xi ≤ f(A) for all subsets A ⊂ I

}
. An important theorem of

Edmonds (see Chapter 46 of [Sc03]) states that if f, g : 2I −→ Z are submodular,
then the polyhedron Pf ∩ Pg has integer vertices only, and, moreover, the inter-
section of Pf ∩ Pg with every integer box ai ≤ xi ≤ bi, ai, bi ∈ Z for i = 1, . . . , n
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has integer vertices only. This result can be considered as a generalization of the
integrality result for transportation polytopes. It does not extend to intersections
of three polymatroids, and, moreover, one can show that polymatroids form a max-
imal class of polyhedra with integer vertices such that the intersection of every two
polyhedra from the class is a polyhedron with integer vertices, although there exist
other classes of polyhedra with similar properties; see [DK03].

Geometrically, we can think of submodular functions as follows. Let n = |I| and
let {0, 1}n be the Boolean cube in Rn, that is, the set of all 0-1 vectors in Rn. For
two vectors x and y from Rn, let x ∨ y ∈ Rn be the coordinate-wise maximum of
x and y and let x ∧ y ∈ Rn be the coordinate-wise minimum of x and y. Then, a
function f : {0, 1}n −→ R is submodular if f(x) + f(y) ≥ f(x∨ y) + f(x∧ y) for all
x and y. Using this as a motivation, the author defines certain classes (“L-convex”,
“M-convex”) of functions Zn −→ R ∪ {+∞} which combine useful properties of
convex and submodular functions. For example, a function f : Zn −→ R ∪ {+∞}
is called L-convex if f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) and f(x + e) − f(x) is a
constant, where e = (1, . . . , 1).

The book under review presents a duality theory for these classes of functions
and relates their global and local properties. The functions are nice and easy to
optimize, and the author shows that the objective functions in some problems of
mathematical economics belong to one of the classes.

While building a sufficiently general discrete convexity theory, we would like to
avoid falling into one of the two extremes. One extreme is that in trying not to
leave any interesting problem behind, we develop methods that are too general and
hence too weak. The other extreme is that in trying to impose some nice structure
in the discrete chaos, we severely restrict the class of sets and functions we agree
to deal with and hence develop methods that are too special to be useful. This
caution applies to any general theory, but since the field of discrete convexity is so
precariously close to the P ?=NP issue, the two extremes make the field for such a
theory particularly narrow. Thus the main question is how many interesting new
problems, previously intractable, can be solved within the new framework suggested
in the book.

I think the book represents an interesting development. Let me add that in view
of [DK03], it appears that the theories of L-convexity and M-convexity developed
in the book are tied up somehow to the root system An−1 and that there may be
similar theories for other root systems.
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