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A Hankel matrix is a square complex matrix (finite or infinite) that is constant

on each diagonal orthogonal to the main diagonal—its (m, n)th entry is a function
of m+n. The name derives from H. Hankel’s 1861 dissertation. A Hankel operator,
in abstract terms, is a Hilbert space operator that is represented by a Hankel matrix
with respect to some orthonormal basis.

It sounds rather special. Is there really enough of interest here to fill a book of
over 700 pages (plus appendices, etc.)?

Of course, for the devout operator theorist it is interesting enough that Hankel
operators arise in a familiar setting (that of Hardy spaces—see below), that they are
amenable to analysis, and that the analysis involves nontrivial function theory. But
more is going on. In Peller’s book we encounter Hankel operators as a theme whose
variations reach into unitary dilations and related scattering theory, interpolation
problems of Nevanlinna—Pick type, approximation theory, prediction theory, and
linear systems theory.

In what follows I’ll try to fill out the preceding picture somewhat without getting
overly technical. The treatment will loosely follow the chronological development of
the subject. Everything to be mentioned is clearly treated with abundant detail in
the book. In particular, the book contains helpful introductions to prediction theory
and systems theory, plus two appendices with background on operator theory and
function spaces.

Early Sightings. Interest in Hankel operators increased noticeably around 1970.
Before then attention was sporadic.

Infinite Hankel matrices arose before the dawn of operator theory in an 1881
paper of L. Kronecker, where he answered the question: How does one recognize
from its coefficients whether a power series
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represents a rational function? His answer: It does if and only if the infinite Hankel
matrix with (m, n)th entry a,,4n has finite rank. Moreover, the rank of the matrix
is the degree of the denominator of the rational function in case the numerator
has a smaller degree, and it is one more than the degree of the numerator in the
contrary case (excluding the trivial case of the zero matrix). (This would be a good
exercise for an honors algebra class.)

After the birth of operator theory, infinite Hankel matrices turned up in the
solvability criterion for the Hamburger moment problem, introduced in a 1920 paper
of H. Hamburger. The problem is to determine when an infinite sequence (a,)22
of real numbers is the moment sequence of a positive measure on the real line.
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Thus, one wants a criterion for the existence of a positive measure y on R such that

an, :/Rx”du(x)

for all n. The solution: Such a p exists if and only if the infinite Hankel matrix
with (m, n)th entry @,y is positive semidefinite.

That the preceding condition is satisfied by moment sequences lies fairly near
the surface. The converse is deeper and can be established in several ways. The
operator-theoretic approach is of interest here. Assuming the Hankel matrix in
question is positive semidefinite, one uses it in a now familiar way to construct an
inner product space. The elements of that space can be interpreted as functions
on R, in fact polynomials, at least in the positive definite case. (In the indefinite
case, which is more elementary, one must pass to equivalence classes.) Completion
of the inner product space yields a Hilbert space. Multiplication by the coordinate
function induces a symmetric operator on that space whose deficiency indices are
either 0,0 or 1,1. If the deficiency indices are 0,0, the symmetric operator has a
unique self-adjoint extension. The spectral theorem for self-adjoint operators hands
you a unique solution to the corresponding moment problem. If the deficiency
indices are 1, 1, the symmetric operator has a family of self-adjoint extensions, each
of which (including those going beyond the original Hilbert space) corresponds via
the spectral theorem to a different solution of the moment problem.

The Hilbert Matrix. The most famous Hankel matrix is the Hilbert matrix,
whose (m, n)th entry is 1/(m+n+1) (m,n=20,1,...). It is thus the Hankel ma-
trix associated with the moment sequence of Lebesgue measure on [0, 1]. D. Hilbert
proved in his lectures that the Hilbert matrix induces a bounded operator on 2,
whose norm was shown to be m by I. Schur in a 1911 paper. One finds the pre-
ceding information and various generalizations of the Hilbert—Schur inequality in
the famous book Inequalities by G. H. Hardy, J. E. Littlewood and G. Pdlya [2],
originally published in 1934. The Hilbert matrix is an amusing topic in its own
right [1].

Nehari’s Paper. In 1957 Z. Nehari published the first paper on general Hankel
operators. His theorem: The Hankel matrix with (m,n)th entry amin—1 (M,n =
1,2,...) induces a bounded operator on £2 if and only if there is a bounded function
® on the unit circle whose Fourier coefficients with negative indices are given by the
sequence (a,)22; : ¢(—n) =a, (n =1,2,...). Moreover, the norm of the operator
is the minimum of the L*-norms of all such functions ¢.

Nehari’s theorem can be rephrased in terms of a trigonometric moment problem,
known now as the Nehari interpolation problem. The question: Given a complex
sequence (a,)22 , is there a bounded function ¢ on the unit circle, with ||¢]lc < 1,
such that ¢(—n) = ay, for all n > 07 Nehari’s theorem tells us that such a ¢ exists
if and only if the associated Hankel matrix has norm at most 1 as an operator on
£2. The analogy with the solvability criterion for the Hamburger moment problem
jumps out. As would be appreciated later, it is more than superficial.

The key step in Nehari’s proof of his theorem is to handle the case where the
given sequence (ay)5 ; has only finitely many nonzero terms. Nehari showed that
this case can be reduced to the Carathéodory—Fejér interpolation problem, dating
from 1911, which asks: Given complex numbers cg,c1,...,cy, what is the least
supremum norm for holomorphic functions in the unit disk having these numbers
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as their first V 4+ 1 power series coefficients at the origin? That Hankel matrices
arise in interpolation problems of this kind was recognized in the second decade of
the 1900’s, when such problems were first intensively studied, but the central role
Hankel matrices can play seems not to have been appreciated at the time.

Classical Hankel Operators. Nehari’s theorem presaged the role Hankel opera-
tors were eventually to play in function theory in the unit disk and the unit circle.
By now the theory has spilled over into many other settings. In his book, Peller
limits his attention to what he calls classical Hankel operators, those that act on
the Hardy space H? of the unit disk D.

The space H? consists of the holomorphic functions in I whose power series
coefficients at the origin are square summable. It has a Hilbert space structure in-
duced by its natural bijection with ¢2. A function in H? has an associated boundary
function on dD, defined almost everywhere by means of nontangential limits. The
boundary functions comprise the subspace of L2, also called H?, of functions whose
Fourier coefficients with negative indices vanish. The orthogonal complement of
H? in L?, denoted by H?2, consists of the functions whose Fourier coefficients with
nonnegative indices vanish.

Two kinds of Hankel operators on H? arise. Operators of one kind map H? to
H?; those of the other kind map H? to itself. To define them, let ¢ be a function in
L?. The operator H, : H> — H? is defined to be the operator of multiplication by
¢ followed by orthogonal projection onto H2. Of course, if ¢ is unbounded, there is
no guarantee H, is bounded, but at least its domain contains all bounded functions
in H2, in particular, all polynomials. With respect to the standard orthonormal
bases for H? and H?, the matrix for H, is the Hankel matrix whose (m,n)th
entry is 9(—m —n) (m=1,2,..., n=0,1,...). Thus, H, does not determine ¢
uniquely; it only determines the Fourier coeflicients of ¢ with negative indices. The
function ¢ is called a symbol of H,. Nehari’s theorem says that H, is bounded if
and only if it has a bounded symbol. The unique symbol of H, in H2, called the
conjugate-analytic symbol of H,, need not be bounded even if H, is bounded, for
the orthogonal projection into H2 of a bounded function need not be bounded.

With ¢ as above, the operator I'y, : H? — H? is by definition the operator whose
matrix with respect to the standard orthonormal basis is the Hankel matrix whose
(m, n)th
f in H? to the orthogonal projection onto H? of the function ¢ f, where f is given
by f(ew) = f(e7").) The terminology used here is the analogue of that used with
the other kind of Hankel operator: the function ¢ is called a symbol of I, and the
unique symbol in H? is called the analytic symbol. Again, Nehari’s theorem says
that I'y, is bounded if and only if it has a bounded symbol.

The preceding notions can be generalized to the context of vector-valued H?
spaces, giving rise to so-called block Hankel operators, something important for
certain applications. For simplicity, that aspect of the subject will not be discussed
in this review.

entry is ¢(m +n) (m,n=0,1,...). (Equivalently, I',, sends the function

Toeplitz Operators. Since around 1970 Hankel operators have been a prominent
part of operator theory. Interest in them was partly inspired by earlier progress in
analyzing their first cousins, Toeplitz operators. For ¢ a function in L>° of D, the
Toeplitz operator T, : H 2 — H? is the operator of multiplication by ¢ followed
by orthogonal projection onto H2. The matrix for T}, with respect to the standard



404 BOOK REVIEWS

orthonormal basis is a Toeplitz matrix; i.e., it is constant on each diagonal parallel
to the main diagonal: the (m,n)th entry of the matrix equals ¢(m — n). While
Hankel operators and Toeplitz operators behave very differently, they are closely
related, a relationship typified by the identity Ty — T Ty = HzHy.

Given the success people had had by 1970 in understanding Toeplitz operators,
it is no wonder that Hankel operators would be an inviting target. A prominent
contributor in the 1970’s was S. C. Power, who was able to use some of the tech-
niques developed in connection with Toeplitz operators to make progress in the
spectral analysis of the operators I',. His survey article [8] and book [4] brought
home the many roles played by Hankel operators and helped spark further interest.

AAK. Beginning in 1968, V. M. Adamyan, D. Z. Arov and M. G. Krein (aka
AAK) published a series of influential papers that brought new prominence to
Hankel operators. Interestingly, these authors were not aware of Nehari’s paper
when they began their work; a reference to Nehari was added to their first paper
during the correction of proofs.

One of AAK’s accomplishments was to find an approach to the Nehari interpola-
tion problem that parallels, but is technically rather more subtle than, the operator-
theoretic treatment of the Hamburger moment problem. Suppose A : H2 — H? is
the Hankel operator corresponding to a given Nehari interpolation problem. The
main step in the proof of Nehari’s theorem is to show that, if ||A|| < 1, then there
is a function ¢ in L* such that ||¢]|cc <1 and A = H,. To do this, AAK use the
Hankel operator A to create a certain inner product space, which they complete to
obtain a Hilbert space. In that Hilbert space they define a certain isometry, whose
deficiency indices are either 0,0 or 1,1. As with the Hamburger moment problem,
the case of deficiency indices 0, 0 corresponds to a determinate problem and the case
of indices 1,1 to an indeterminate one. In the indeterminate case, each unitary ex-
tension of the isometry, perhaps going beyond the original Hilbert space, produces
a different solution of the interpolation problem. In fact, by using the theory of
unitary extensions of isometries, AAK were able to describe the general solution in
the indeterminate case, generalizing results of G. Pick and R. Nevanlinna for the
interpolation problem that bears their name.

The AAK treatment of the Nehari problem can be expressed in the language of
scattering theory; presumably it was inspired by earlier work on scattering theory
of Adamyan and Arov. From this perspective, the solutions of an indeterminate
Nehari problem can be interpreted as scattering operators.

The theory of operator models and unitary dilations, created by B. Sz.-Nagy and
C. Foiag, enters the picture here, because that theory is mathematically equivalent
to the version of scattering theory associated with the Nehari problem. Nehari’s
theorem is in fact a special case of one of the centerpieces of the Sz.-Nagy—Foiag
theory, their commutant lifting theorem. In the other direction, R. Arocena showed
in 1989 that the AAK method can be adapted to give a proof of the commutant
lifting theorem.

AAK also studied the singular values of Hankel operators. The nth singular
value of a Hilbert space operator is by definition the distance of the operator from
the set of operators whose ranks are at most n. AAK proved that the nth singular
value of a Hankel operator equals its distance from the set of Hankel operators
whose ranks are at most n. In conjunction with Kronecker’s theorem, this gives
information about uniform approximation of functions in L* by functions that are
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holomorphic in D except for finitely many poles (more accurately, by their boundary
functions).

Enter Peller. Thanks to C. Fefferman’s famous theorem on BMO (the space of
functions of bounded mean oscillation), Nehari’s theorem, at least its qualitative
version, can be reexpressed as follows: a Hankel operator from H? to itself is
bounded if and only if its analytic symbol belongs to BMO.

In 1958 P. Hartman provided a companion to Nehari’s theorem, proving that
a Hankel operator on H? is compact if and only if it has a continuous symbol.
The analogous reexpression of this is: a Hankel operator on H? is compact if and
only if its analytic symbol is in VMO (the space of functions of vanishing mean
oscillation).

Can one similarly characterize Hankel operators of trace class? The question had
been around at least since 1960 when Peller settled it in 1979. His theorem states
that a Hankel operator on H? belongs to the trace class if and only if its analytic
symbol belongs to a certain Besov space. He quickly extended this, obtaining a
similar characterization of the Hankel operators in the Schatten classes S,, p > 1.
A few years later he and, independently, S. Semmes handled the cases 0 < p < 1.
An interesting application of these results involves characterizing the Besov spaces
that arise in terms of rational approximation in the BMO norm.

Best Approximation. If ¢ is in BMO, then Nehari’s theorem tells us that the
Hankel operator H, is bounded and that there is a function ¢ in L* such that
H, = Hy and |||l = ||[Hy||. The difference ¢ — 1) is then in the space BMOA =
BMO NH? and differs from ¢ in L>-norm by ||H,|. No function in BMOA can be
closer to ¢ in L*-norm, so ¢ — 1 is a best BMOA-approximation to ¢ with respect
to the L*>-norm. If ¢ is bounded, such a best approximation is of course bounded;
i.e., it belongs to H>°, the space of (boundary functions of) bounded holomorphic
functions in D.

A function ¢ in BMO can have more than one best approximation in the sense
above, but one can show that if ¢ is in VMO, then its best approximation is unique.
One can thus define on VMO an operator A of best approximation, which assigns
to each function in VMO the unique function in BMOA that differs from it the
least in L°°-norm.

Various questions about the operator A now arise. For example, although A
does not preserve continuity, does it preserve smoothness of one kind or another?
To answer such questions, an elaborate theory has been constructed by Peller and
S. V. Khruschév. Sample result: If ¢ belongs to one of the Holder classes A, or
Ay, 0 < a < 1, then Ay belongs to the same class.

Prediction Theory. A stationary Gaussian process with discrete time has an
associated spectral measure, a positive measure on 0. An interesting chapter
in prediction theory involves relating properties of the process to properties of its
spectral measure. There is a vast theory here occupying two chapters of Peller’s
book. Only one outgrowth will be touched upon in this review.

If the process satisfies a condition called regularity, its spectral measure is abso-
lutely continuous with respect to Lebesgue measure on 0D, with a density of the
form |h|? where h is a so-called outer function in the space H?. The Hankel operator
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Hjp, ), carries information about the relation between the past and the future of the
process. Namely, if P_ and P, are the orthogonal projections onto the subspaces
representing the past and the future in the complexification of the process, then
the restriction of Py P_ Py to the future is unitarily equivalent to Hj /hH;L /n- The
question of which pairs of subspaces of a Gaussian Hilbert space can serve as the
past and future of a Gaussian process suggests the problem of characterizing those
positive Hilbert space operators that are unitarily equivalent to |H,| = (H, ;Hw)l/ 2
for some ¢. The preceding problem, the so-called inverse problem for the moduli of
Hankel operators, was posed by Peller and Khruschév in 1982. S. G. Treil obtained
substantial partial results in 1985, and again in 1989 in collaboration with V. L
Vasyunin.

Systems Theory. The symbiosis between operator theory and linear systems
theory is well established. Large parts of both theories are identical except for
motivation and language, and both have benefited from the other’s viewpoint. The
story of the Peller-Khruschév problem is a case in point. In papers published
in 1987 and 1990, R. Ober proposed a systems-theoretic approach, featuring the
notion of a balanced realization, to the problem. With this approach he succeeded
in recapturing a large part of what Treil and Vasyunin had obtained. Ober’s insight
proved fruitful, for in 1990 Treil, by building on his ideas, arrived at a complete
solution.

It is easily proved that a Hankel operator is noninvertible and that its kernel is
either trivial or infinite dimensional. The modulus of a Hankel operator therefore
has the same properties. Treil’s beautiful theorem says that the converse holds: any
positive operator on a separable infinite-dimensional Hilbert space that is noninvert-
ible and whose kernel is either trivial or infinite dimensional is unitarily equivalent
to the modulus of a Hankel operator.

There is more to the story. The inverse problem for the moduli of Hankel opera-
tors suggests the analogous problem for self-adjoint operators: when is a self-adjoint
operator unitarily equivalent to a self-adjoint Hankel operator? The problem was
solved in a remarkable 1995 paper of Peller, Treil and A. V. Megretskii, and again
the notion from systems theory of a balanced realization played a key role. The
theorem of Megretskii—Peller—Treil states that a self-adjoint operator is unitarily
equivalent to a Hankel operator if and only if it is noninvertible, its kernel is either
trivial or infinite dimensional, and, very roughly speaking, its spectral multiplicity
function can be unsymmetric only in a very restricted way (a condition I won’t
try to make precise here). A sample consequence: any noninvertible cyclic self-
adjoint operator with a trivial kernel is unitarily equivalent to a Hankel operator.
Treil’s earlier theorem on the moduli of Hankel operators is an easy corollary of the
Megretskii—Peller—Treil theorem.

The reader will find in Peller’s book much beyond what is touched on above.
The book is the work of a master, a treasure trove of operator theory in its myriad
aspects.
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