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1. INTRODUCTION

One can learn a lot about a mathematical object by studying how it behaves
under small perturbations. The study of perturbations often leads to linear ques-
tions, which accounts for the success of much analysis, most notably the Calculus
of Newton and Leibniz, the Calculus of Variations in differential geometry, and the
perturbative methods in partial differential equations.
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308 B. MAZUR

And the study of perturbations often does not lead to linear questions, which
accounts for some fascinating aspects of the theory of dynamical systems.

Parts of quantum mechanics may be formulated as a noncommutative deforma-
tion of classical mechanics, and this has inspired the growth of analogous “quantum”
deformations of some basic mathematical structures (quantum groups, quantum co-
homology, etc.). One may hope that this interaction between mathematics and
physics will lead to a thorough and clear understanding of the profound physical
intuition coming from the study of Feynman integrals and quantum field theories
that has recently been so effective in the treatment of a number of traditional
mathematical problems and of some novel ones.

Whatever it leads to, the perturbative strategy is everywhere in mathematics and
takes many forms.

Some questions become meaningful only when they are treated as specific in-
stances within a field of closely related questions. Often the landscape of this
larger field, its peculiar features, its ravines and gullies, holds the key to an ap-
propriate understanding of any of the individual questions. Often that landscape
becomes the focus of new questions.

This article is the amplified text of a one-hour talk I gave at the winter joint
meetings of the MAA-AMS in New Orleans in 2000. It was given in the format, and
spirit, of the weekly seminar held at Harvard University called the Basic Notions
Seminar. The aim of that seminar, initiated by David Kazhdan, is to survey each
week some central theme of mathematics — some idea that might have different
manifestations as it crops up in different fields of mathematics — an idea, in short,
that deserves to be contemplated by students not only in the context of its usefulness
for this or that particular result but also because of its service as a unifying thread.

I would like to dedicate this article to René Thom, whose enormous influence on
our subject has helped establish the bold unification that it presently enjoys and
who taught us to be reflective about the central role played by the “basic notions”
listed in the title.

Perturbation and deformation are terms that we will take as almost synonymous,
with the slight difference that in the case of the latter term, we will be more
acutely interested in the parameter space that tabulates the (allowed) deformations.
One often considers deformations of a given structure with the ultimate goal of
understanding the full repertoire of possible variations of the structure — of giving a
complete classification of kindred structures: one starts modestly, considering only
structures infinitesimally near the given one, as a prelude to the general problem of
giving a total classification. This has historically been true of some of the examples
to be discussed. When we manage to give a full classification — that is, when we have
exhibited a family of such mathematical structure parametrized by a space such that
every instance of that mathematical structure is accounted for by a unique point
in the parameter space, and where the geometry of the parameter space faithfully
reflects the possibilities of variation of this structure — only then can we truly say
that we have provided a universal accounting for the possibilities of variation of
the structure being studied. Such a parameter space is sometimes called the moduli
space associated to the mathematical structure in question. For a very elementary
example see 4.1 below, where we discuss the classification of ellipses in the plane up
to congruence. For a twenty-four page annotated bibliography of literature about
deformations, see [Dd].
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There are cases where the structure under study admits no variation, that is,
where the structure is stable in the sense that any nearby structure is isomorphic to
it. At times, though, it may be subtle to formulate the intended notion of “nearby”.
Differentiable manifolds, for example, are stable: two compact differentiable man-
ifolds that are “close” (with any reasonable smooth meaning of the word “close”)
are isomorphic. The term rigid is sometimes reserved to refer to mathematical
structures that are stable in some appropriately defined sense, such as the above,
but also admit no nontrivial automorphisms. Compact (positive-dimensional) dif-
ferentiable manifolds are stable but decidedly not rigid: they admit a rich group of
self-diffeomorphisms.

The notion of “near-miss”, which we shall treat towards the end of this article,
is meant to connote a modification of a problem which can be a good deal looser
than a deformation.

2. UNIVERSAL UNFOLDINGS

The theoretical biologist C.H. Waddington emphasized that the full study of any
developing biological system requires an understanding of its epigenetic landscape,
which is his term for the multi-dimensional phase space that contains both the
one “standard” developmental pathway for the system together with a picture of
the other nearby variant pathways. A thorough understanding of development
will include knowledge of how deep the grooves are which form each of the possible
pathways, i.e., how easy or difficult it would be for a disturbance to force a jumping
from one course of development to another.

Waddington’s approach to morphogenesis is close, in spirit, to René Thom’s view
that a topological singularity is best understood in the context of what he termed
its universal unfolding. How, for example, does your specific geometrical object
react to perturbation? Is it stable? Is it the generic member of its species? If not,
can its particular specialties be viewed as coming about from an explicit process of
“degeneration” from a more generic geometrical object? To illustrate what is meant
here, consider a “starter example” from the theory of singularities of curves in the
plane: the stability of nodal singularities (figure 1b) in contrast to the instability
of a cuspidal singularity (figure la).

a® =y° 2® =1y +1)
(cusp) (node)
Figure 1a Figure 1b
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To put it in (outrageously) nontechnical language, suppose that you are trying
to trace out the locus of zeroes about the origin of the equation z? = y* in the
Cartesian plane, but you are doing this with pencil on a pad in a jiggly subway train.
The equation itself has a cuspidal singularity at the origin, as in figure 1a, but very
likely you will have drawn something like the nodal singularity as in figure 1b. In a
word, the nodal singularity enjoys a type of stability that the cuspidal singularity
does not. Of course, once we try to pin down what we mean by the question “is the
nodal singularity stable?” we are faced with an intriguing array of candidates for
our definition of stability, and the answer may depend upon the context we work
in:

e Working in the space of parametrized smooth plane curves (e.g., the space
of C* immersions of the closed unit interval in R?, two such immersions being
deemed close if they are “close” in the C'-topology), a nodal singularity of such a
curve is stable in the sense that if one such parametrized curve C : t — (a(t),b(t))
(for t € R) possesses a nodal singularity s = (a(t,),b(t,)) € R?, any sufficiently
close parametrized curve C’ also must have a nodal singularity s’ = (a(t1),b(t1))
at some time t; close to tg.

Moreover, a parametrized curve with a cuspidal singularity can be perturbed to
one with a nodal singularity.

e Working in the space of C°°-functions f(z,y) on R?, then nodal singularities
are not stable. For a smooth function f(z,y) that cuts out a cuspidal singularity
(say, a polynomial y? = 3) or a nodal singularity (say, y> = 3 + 2?) can be
perturbed ever so slightly by adding terms to our equation consisting of the missing
small powers of x with very small coefficients to make the singularity disappear.

For either of the above notions of stability, the cuspidal singularity is unstable.
But there are arenas in which cuspidal singularities themselves achieve a stability,
as anyone can attest who observes the caustic curve of light in their coffee cup.
(If the projection of a smooth surface X in three-space to the horizontal plane has
discriminant locus possessing a cuspidal singularity as in figure 2, then any nearby
surface X’ will still have a cuspidal singularity; cf. [G], [A2].)

René Thom’s emphasis on this type of question-asking is motivated by two fur-
ther concerns. The first has to do with the experimental sciences and the fact that
they are most naturally set up to study phenomena that are stable, or at least rela-
tively stable. A “repeatable experiment” must, after all, be repeatable; its outcome
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would be difficult to interpret if ever-so-minute changes in the laboratory could
provoke qualitative fluctuations in its outcome. This attitude towards the notion
of stability, closely related to questions regarding the sensitivity of the evolution of
a trajectory in a dynamical system to initial data, is the subject of a vast and rich
literature (including the work of Laplace, Poincaré, Kolmogoroff, Arnold, Moser,
Sinai, Smale and many others)ﬁ

The second is the intuition that unless you ask and answer deformational ques-
tions and determine what structures are close to the one you happen to be studying
(with the word “close” taken in as many senses as is pertinent to the structure under
scrutiny), you will miss the full story, the most powerful theory.

And even in the simplest geometric instances the “full story” has its surprises.
Consider the stable surface in three-space dubbed by Thom the “swallowtail” (la
queue d’aronde); see [T]. This is the discriminant locus in real (u,v,w)-space
of the “general” quatric polynomial x* + uz? + vx + w (we clear out the cubic
term by appropriate translation of x). Think of this surface as being swept out
by a family of plane curves u = constant. For negative u one has a curve with
two cuspidal singularities and one ordinary singularity, all of these singularities
annihilating themselves at v = 0 and emerging as a family of perfectly benign
curves for positive u. Figure 3 shows the progression of plane curves:

w w LW
v v v
u = —a? u=0 u=a?
Figure 3

and figure 4 a picture of the surface these curves trace out in three-space. The
singularity of the surface at the origin is stable (in Thom’s sense):

LA

I

1A short, conversational book, rich in polemic, that deals masterfully with some of the material
we have just alluded to, and that covers much more besides, is V.I. Arnol’d’s Catastrophe Theory,
in its 3rd, expanded and revised, edition [Al].

Figure 4
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Or consider Oscar Zariski’s discovery that there are two “types” of plane sextic
curves with six cuspidal singularities. There are the ones where the six cuspidal
singularities lie on a (plane) conic, as is the case for those sextic curves that are
discriminant loci of general planar projections of generic cubic surfaces (figure 5):

Figure 5

and there are the ones where the six cuspidal singularities don’t lie on a plane conic

(figure 6):

Figure 6

I am thankful to Ivan Petrakiev for providing these two figures, the second of which
he calls the “laughing curve”. You might guess that if you take any instance of
the first type, a sextic whose six cusps lie on a conic, you could effect a minor
perturbation of its defining equation keeping the cusps as cusps but forcing those
six cusps to avoid a conic. Zariski’s discovery is that this is not the case: there are
two distinct components of the family of all plane sextic curves with six cusps. If
you start with a (general) plane sextic curve with six cusps lying on a conic and
perturd its defining equation to get a new plane sextic (retaining the fact that its
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singularities are cusps), then that new plane curve will again have its six cusps lying
on a conic: the general member of the first type of plane sextic is not a degeneration
of members of the second type. One clean topological “distinguisher” here is the
fact that if the six cusps of an irreducible sextic plane curve lie on a conic, the
first betti number of the d-fold cyclic cover of the plane branched at the curve is
nonzero when d > 0 is divisible by 6, whereas if the cusps do not lie on a conic,
that first betti number is zero; see Zariski’s article “On the irregularity of cyclic
multiple planes”, pp. 186-212 in [Z]. (For recent work on plane curves of minimal
degree with prescribed singularities, see [G-L-S].)

3. SPECIAL, GENERAL, VERY GENERAL, GENERIC...

The notion of general-ness crops up everywhere in mathematical writing.

e For example, some questions are easily answered only when the objects under
study are (or are perturbed so as to be) in “general position”. For this, we need
only think of the various kinds of “intersection theories” in algebraic topology and
algebraic geometry, where one strategy of associating a number that accounts for
the (algebraic) number of intersections between two cycles is to “move” one of the
cycles so that it is in general position with respect to the other, and then count.

e There are questions that are most easily answered when the objects under study
are (or are perturbed so as to be) in “special position”. Some celebrated algebraic
geometry depends upon a close examination of the most degenerate cases where the
answers obtained then extend, by deformation, to all cases. For an instance of this,
one might cite the famous assertion of Severi (in an appendix, “Anhang F”, of his
monograph Vorlesung tiber Algebraische Geometrie [S]) claiming the irreducibility
of the family of plane curves of a given degree n with at worst nodal singularities,
where the strategy of the argument is to specialize to a union of n lines with no
triple intersections. The claim is true, and the strategy (specialization to a “most
degenerate case”) is a good one, but the first correct proof of the claim is due to
J. Harris in 1985 (see [H]). Severi’s argument of it had an errorfi for a fine exposition
and discussion of the various solutions to this problem, see [La]; see this article as
well for a fairly complete bibliography regarding this. One thing hanging open in the
six decades between the publication of Severi’s “Anhang F” and the resolution of the
problem by Harris is a famous application, due to Zariski, of Severi’s claim; namely:
the fundamental group of the complement of an irreducible plane curve possessing
only nodes as singularities is cyclic. (In contrast, this fundamental group, for
irreducible curves with nonnodal singularities, can be quite complicated, or one
should rather say it can be quite interesting, as already happens in the case of
irreducible sextics with six cusps, the example described above.)

e Some questions themselves insist upon being perturbed, jiggled, before they
have a simple answer. The great number of results about that elusive mathematical
object the general hypersurface of degree n already attests to that. But there is
also a rich store of simple, although fundamental, geometric questions that require
perturbation of some of their elements before they can even be stated. As a random

2Severi argued, correctly, that every boundary component of the moduli space of plane curves
of degree n with nodal singularities has a member consisting in n concurrent lines, and then
(without sufficient argument) concluded that one could “generalize” this member to deduce that
each component contained members consisting of configurations of lines with no triple intersection.
A cautionary tale.
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example, consider this problem in the geometry of surfaces in three-dimensional
Euclidean space (discussed elaborately in [A1l]): a generic surface in three-space is
tangent to no straight line in more than 4 points. My brother and I have our favorite
example where this maximum number of tangencies is achieved: think of a flowerpot
packed with dirt, but not up to the rim, in which at least two bamboo stalks are
growing. The surface in question is the idealized outer skin of this configuration or
any mild deformation of it. Now take a thin metal rod (our straight line) and rest
it on the rim of the flowerpot. This already gives two points of tangency between
the surface and the line. Move the rod until it touches one of the bamboo stalks,
(giving three points of tangency); swivel the rod so that it touches another as well
(giving four).

Although there doesn’t seem to be universal consensus, in algebraic geometry,

e the adjective general tends to mean that one has a parametrized family of
objects in mind, the parameter space being irreducible, and the general member of
the family is simply any member that corresponds to a parameter that avoids a
specific proper closed subvariety in the parameter space (this “specific” avoidance
subvariety is often not made explicit);

e the adjectival phrase very general tends to mean that one must avoid a specific
countable union of proper closed subvarieties in the parameter space (also usually
not made explicit);

e the adjective generic in Grothendieck’s formulation is defined, in effect, to
allow us to avoid all proper closed subvarieties.

4. MoDULI: PARAMETERS DESCRIBING THE DEFORMATIONS OF A
MATHEMATICAL STRUCTURE

Let us begin with a mock deformation problem that we are all (perhaps too)
familiar with, and then pass, in earnest, to one of the most classical of deformation
problems.

(1). Classifying ellipses in the plane up to Euclidean congruence. Any
two ellipses in the plane are congruent if their minor axes have the same length
and their major axes have the same length as well. An ellipse E is classified up to
congruence, then, by two parameters: the two positive numbers (a,b) where a is
the length of its major axis, and b the length of its minor axis. We might refer to
(a,b) as the moduli of the ellipse E and form the manifold that collects all these
pairs of parameters, or moduli, classifying our ellipses by considering the shaded
octant in the (x,y)-plane in figure 7

Figure 7
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where each point (z,y) = (a,b) in the interior of this octant corresponds to a unique
congruence class of ellipses (with major and minor axes equal to a, b, respectively),
where every congruence class of ellipses is indeed represented, but where something
strange happens at the two boundary lines: the 45°-line corresponds to circles,
which have significantly more symmetries than the generic ellipse, and the positive
z-axis corresponds to degenerate ellipses, which have fewer. More germanely for
what will follow, we might notice that the geometry of the open octant (its topology,
its differential structure) reflects the various manners in which we can produce
continuous or differentiable families of ellipses, that is, the ways in which we can
deform ellipses (keeping, to be sure, the deformed structure ellipses). We might,
then, dub this octant the universal moduli space of true ellipses, viewing its two
boundary rays as the ways in which our ellipses may specialize, or degenerate, and
recognizing as well that the topological or differential features of this moduli space
are relevant to the manner in which ellipses may be deformed.

(2). Deforming Riemann surfaces. Take a closed Riemann surface S and con-
sider the problem of “deforming it”. The underlying topology (and differentiable
structure) of S is “stable”; i.e., as mentioned before, if you perturb S in any reason-
ably smooth way, you get the “same” differentiable manifold. The famous theorem
of Riemann that the “Riemann sphere” is stable, as a complex manifold — i.e., that
there is only one complex structure on the two-sphere — is the first fundamental
result about classification of compact Riemann surfaces. And it was already known
to Riemann (as exposed in his 1857 treatise Theorie der Abel’schen Functionen
[R]) that there are 6g — 6 real parameters of possible deformations of the complex
analytic structure on a Riemann surface S of genus g > 1.

Riemann surfaces are complex manifolds, and one can try to deform them by
“fixing” their underlying structure as differentiable manifold, and then perturbing
their complex structure. But there are as many ways of effecting these perturbations
as there are ways of presenting the Riemann surfaces. We shall present four different
ways below. And each of these ways gives us another mode of “comparing different
Riemann surfaces of the same genus,” e.g., judging how close one such surface is to
another. Let us keep, for the moment, to the case of g > 1.

e If you think of S as a quotient of the hyperbolic plane by the action of a
discrete group T, i.e., given by a homomorphism ¢ : I' — PGL2(R), you would
naturally try to deform S by perturbing this homomorphism ¢ in such a way as
to, on the one hand, keep the action discrete and, on the other, “truly vary” the
quotient Riemann surface.

e If you think of S as given by first stipulating a Riemannian metric on a (smooth)
surface of genus ¢g and then passing to its underlying conformal structure, you might
think of deforming the Riemann surface by deforming the Riemannian metric. For
example, take g = 2. Build a Riemann surface of genus two as follows. First form
Y = the Riemann surface (bounded by three circles) built by removing three small
open discs with centers 0,1, and co from the Riemann sphere. Following Thurston
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we can call this a pair of pants (see figure 8).

Figure 8

Then take two copies of Y and connect the boundary components of one of these
copies with the corresponding boundary components of the other by gluing three
complex annuli (as drawn in figure 9, they are cylinders). Note that there are two
real parameters to describe each cylinder and its manner of attachment (i.e., the
parameters are given by the length of the cylinder and the relative angle of twist of
the two attaching maps to the bounding circles). All in all, we have six (= 6-2—6)
real parameters

0
0
0

Figure 9

e Or you might perturb the conformal structure of the Riemann surface “di-
rectly” and compare two Riemann surfaces by measuring the distortion effected by
quasi-conformal mappings between them.

e If you think of S as an algebraic curve defined over C in projective space, you
might try to deform S by perturbing the coefficients in its defining equations.

Each of these approaches yields different (yet intertwining) structures on the
moduli space Mg of “all” Riemann surfaces of genus g. Each manner of thinking
of Riemann surfaces leaves its “imprint” on M,. For example, using the structure
that M, inherits from the last of the bullets above, we may view M, as a complex
algebraic variety of (complex) dimension 3g — 3. Or, using the structure it inherits
from the first, M, can be thought of as the quotient of the complex analytic
Teichmiiller space 7, by the properly discontinuous action of the (discrete) mapping
class group.

3More generally, for a surface S of genus g > 1 we can find a system of 3g—3 closed geodesics on
S partitioning it into 2g—2 “pairs of pants”; given such a “pants-decomposition” of S, the lengths of
the 3g—3 geodesics give half the parameters of deformation, while the other 3g—3 parameters come
from considering how the 3g — 3 hems and waists are sewn together. Appropriately normalized,
these 6g — 6 real numbers are called the Fenchel-Nielson parameters of the (pants-decomposed)
surface S.
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5. MODULI AND LATTICES

It is usually a good thing when we manage to reduce a problem to a “linear”
question: we stand a chance of dealing successfully with issues in linear algebra.
First-order deformational problems are, in effect, linear to begin with, but we are
often pleasantly surprised to find that certain more general variational questions
relate (even if they don’t entirely reduce) to questions about linear groups and
variations of lattices in these linear groups. A general format in which this happens
is given by the theory of Griffiths spaces, which are particular quotient spaces
of homogeneous spaces attached to Lie groups, the quotients being made via the
discrete lattices acting on these homogeneous spaces. This rich structure comes
about from the Hodge theory of algebraic varieties.

A classical example of this is given by the Hodge theory of Riemann surfaces.
Attached to any Riemann surface S of genus g the complex vector space (of dimen-
sion g) of its holomorphic differential 1-forms is, as it turns out, a nondegenerate
Hermitian space when endowed with the Hermitian form

S

where w,n are holomorphic differential 1-forms. Its dual complex vector space is
endowed with a rank 2g lattice formed by the linear functionals

wn—>/w,
¥

where v runs through the integral 1-dimensional homology in the group H'(S,Z)
(which is free of rank 2g). This structure — the Hermitian structure on the com-
plex g-dimensional vector space and the rank 2g lattice in its dual — is enough to
determine the Riemann surface S up to isomorphism. That’s the good news. The
(let us say) more interesting news is that it is quite subtle to determine which such
structures actually represent Riemann surfaces. This latter question can be said to
be still outstanding, even though there is much beautiful work, answering the ques-
tion (how to pick out from among these structures those that come from Riemann
surfaces) in different ways.

6. LATTICES IN REAL VECTOR SPACES

The previous discussion puts the spotlight on the question of classifying lattices
in complex vector spaces. Here we will change our viewpoint a bit and consider
classification of lattices in real vector spaces. Suppose that we are interested in
lattices L € RY in N-space such that the volume of their fundamental domain is
1, and we wish to consider them up to “rotational-equivalence”. That is, two such
L’s are viewed as the same if you can pass from one to another by an element in
the group of rotations of N-space, i.e., SOn(R).

One way of organizing them is to start with the standard lattice ZV¥ c RN
and consider our lattice to be the image of the standard lattice under a special
linear transformation. i.e., an element of SLy(R). Of course two are considered
equivalent if they are rotationally equivalent; i.e., we are really only dealing with
the homogeneous space Xy := SLy(R)/SOn(R), a point of which corresponds
to a lattice of volume equal to one, with chosen basis, all taken up to rotational-
equivalence. The action of 'y := SLy(Z) on Xy by left-multiplication removes the
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choice of basis, so the quotient space of X under the action of I" ;v has the property
that its points “classify” our equivalence classes of lattices. This quotient space has
dimension %, and therefore there are generally these many “directions” to
deform our lattices. For example, if N = 3 we have five possible parameters of

deformation of a lattice (see figure 10).

m 7

—

V ~
Figure 10

I once wanted to frame a series of (simple) mental exercises in geometric imagi-
nation as training for students of geometry. Prominent in this list of exercises was
the one of making vivid (i.e., thinking through a “video”, to be played in one’s
mind’s eye, which exhibited) the five parameters of variation of a parallelepiped of
volume one. But visualizing the quotient space of Xy under the action of I'y is
quite a bit harder (it would not have been on my list of simple exercises) and brings
to the picture some extra surprises.

(1). Lattices in the plane. For example, if N = 2 such an L can be thought of
as a tiling of the plane with parallelograms of area 1 (see figure 11).

Figure 11

The famous answer to the question of classifying such lattices (up to rotation) is
given by the elliptic modular function j, central to such diverse issues of mathemat-
ics ranging from the theory of elliptic functions and elliptic curves to the theory of
the Monster group. To each lattice L C R? one associates a complex number j(L),
and one has a one:one correspondence.

Lattices up to rotation and rescaling «— complex numbers.
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Here is the definition of the correspondence L «— j(L). View the Euclidean
plane as the complex plane C, and let L C C be a lattice. For k£ an even integer
> 4 denote by Gi(L) € C the sum of the reciprocals of the k-th powers of nonzero
elements in L C C (this infinite sum does converge when k& > 4). The function
{L C C} — Gi(L) is the classical Fisenstein series of weight k. The phrase
“weight k7 refers to how this function behaves under rescaling the lattice: for z any
nonzero complex number, G (z- L) = 27 *Gy(L). A standard way of renormalizing
these Eisenstein series is to divide by the factor 2¢(k), where ((s) is the Riemann
zeta-function, Ey(L) := Gr(L)/2{(k) (the Fourier series in the variable z of Ej(L)
for the lattice L generated by 1 and z in the upper half plane then has constant
term equal to 1 and all other of its coefficients are rational numbers). Moreover,
with this normalization the standard equations have fairly manageable coefficients.
For example, the (normalized) discriminant of the lattice L is given by:

1728A(L) = E4(L)? — Eg(L)?,
and the classical j-invariant of L is defined to be:
j(L) := Ba(L)*/A(L);

the j-invariant is indeed an “invariant” in that it is insensitive to change of scale
of the lattice L.

The classical theory gives us that any complex number is the j-invariant of some
lattice, and two lattices L (with fundamental parallelogram of area equal to one)
have the same j-invariant if and only if they are rotations of one another. Weier-
strass’s theory produces for us the famous doubly periodic meromorphic functions
x = x7, and y = y;, with poles of order two and three, respectively, at lattice points
in L which satisfy the formula

s _ Ba(l)  Ee(L)

2
—4
(x) yo=do 12 24

(2). From lattices in the plane to elliptic curves over C. Every Riemann
surface of genus 1 is isomorphic to the quotient E = Ej := C/L by a suitable
lattice L. The doubly periodic meromorphic functions x = x;, and y = y;, become
meromorphic functions on Fy, and the equation (x) serves to exhibit the Riemann
surface E}, as a plane cubic curve (%) with a flex point at infinity, i.e., as an elliptic
curve over C.

We have one:one correspondences between:

e Isomorphism classes of elliptic curves over C

e Isomorphism classes of Riemann surfaces of genus 1

e lattices L C C up to (complex, nonzero) scalar multiplication

e complex numbers j(L)
In one sense we might say that there is a single parameter j € C which answers
the question of what isomorphism classes of elliptic curves there are and how ellip-
tic curves deform. This is indeed roughly true, but with a proviso! The complex
plane parametrized by j represents what people call the coarse moduli space for
elliptic curves; the adjective coarse is put there to remind us that this moduli space
doesn’t quite have all the features required of a bona fide moduli space, as described
in the introduction. The problem here is that elliptic curves are not rigid: they
have nontrivial automorphisms, and more importantly, some elliptic curves have
more automorphisms than others: the square lattice L C C (j-invariant = 1728)
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has an automorphism of order 4 given by multiplication by i, the hexagonal lattice
(j-invariant = 0) has an automorphism of order 6 given by multiplication by a sixth
root of unity, while all other lattices only have automorphisms given by multipli-
cation by +1. A consequence of this is that we cannot exactly provide a universal
family of elliptic curves holomorphically parametrized by their j-invariant in C.
Here is a sketch of why: by “universality” there would have to be an automorphism
7, say, of order 6 of the universal family which restricts to the automorphism of
order six of the hexagonal lattice, and since none of the nearby members has such
an automorphism, 7 must act nontrivially on the parameter space (of values of
j), which contradicts the one:one correspondence between isomorphism classes of
elliptic curves and their j-values. To take care of such limitations, the theory of
stacks was invented, a theory that goes beyond the scope of our article[]

Just as we can parametrize elliptic curves by a single parameter (with the proviso
of the previous paragraph!) forming a coarse moduli space, so too can we parame-
trize elliptic curves with various types of (discrete!) auxiliary structures by a single
complex parameter (a single “modulus”). Here is an easy example of such an “aux-
iliary structure” (studied in depth, first by Legendre): consider elliptic curves FE
together with a specification of an ordering {e1,ez2,es} of the three points of order
two in E. The parameter space classifying this problem may be identified with
the complement of 0 and 1 in the complex plane. If we denote its parameter by
A € C—{0,1} (the symbol X standing for Legendre), the parametrization is given
by

Ex: vy =z(x—1)(z-N),
and the points of order two are given by e; =0, e2 =1, and ez = .

In the same spirit, given any positive integer NN, isomorphism classes of ellip-
tic curves E given along with a chosen cyclic subgroup C C E of order N are
parametrized by the points on a complex curve; this curve is denoted Yy(N), and
its completion (obtained by adding a finite set of cusps) is denoted Xo(N), which
has a nice “canonical” model as a smooth algebraic curve over Q.

7. THE MODULAR CURVES X((/N) PLAY A CENTRAL ROLE
IN THREE DIFFERENT CLASSIFICATION PROBLEMS

As we have just mentioned, the (noncuspidal) points of Xo(N) classify isomor-
phism classes of elliptic curves with chosen cyclic subgroup of order N. But the
results of Wiles, Taylor, Diamond, Conrad, Breuil [B-C-D-T] tell us that the curves
Xo(N) play yet another, quite different, role in the classification of elliptic curves,
or at least in the classification of elliptic curves defined by equations with coeffi-
cients in Q, the field of rational numbers. (For a series of expository articles on this,
see [M-F].) Namely, for every elliptic curve E definable over Q there is a positive

4The concept of moduli space is adequate for the classification of mathematical objects that
are rigid, i.e., have no nontrivial symmetries, or else all have the “same” symmetries. When
there are abrupt changes in the structure of the group of symmetries as one passes continuously
from object to object — when there is breaking, or generating, of symmetries — one needs a finer
language. The mission of the theory of stacks is to provide such a language. These issues present
themselves even in the most elementary circumstances: think of the boundary components of the
octant classifying ellipses in the plane up to congruence, discussed in the beginning of section 4.

5The canonical model has the property that any noncuspidal rational point over a field K
containing Q can be represented by an elliptic curve E and cyclic subgroup Cny C E defined over
K.
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integer N and a nonconstant mapping Xo(N) — E. Moreover the minimal positive
integer N for which this is true (the conductor of E) can be given by a (relatively)
simple recipe if you are given the equations of E.

Let us refer to this fundamental result as the modularity theorem for ellip-
tic curves over Q, and take a moment to absorb the fact that this modularity
theorem implies that these basic algebraic curves, Xo(NN), are crucially involved in
the classification of elliptic curves in two rather incommensurate ways. To repeat:

e the points of Yy(N) C Xo(IV) classify elliptic curves over C with chosen cyclic
subgroup of order IV, while the complex analytic structure of the modular curves
Xo(N) give parameters for “all” deformations of elliptic curves over C with this
auxiliary data, and also

e all elliptic curves over Q appear as quotient curves of the modular curves
Xo(N).

But these very modular curves seem to be the key to a third type of universal
problem, namely universal deformations of Galois representations.

8. DEFORMATIONS OF GROUP REPRESENTATIONS

Most mathematicians have encountered variations of group representations in
some form or other. The classical subject of Fourier transforms is already implicitly
such a theory: the exponential function is all the equipment one needs to produce
an elegant, canonical, parametrization of the “universal family” of one-dimensional
continuous complex unitary representations of the real line, viewed as a Lie group.
For each real number a, putting x.(z) := exp(2miaz) we have that the universal
family of representations of the above type is given parametrically by

ar— xq: R — C*"=GL;(C)

for a € R. The miracle that this parameter space itself is again, canonically, the
Lie group R has repercussions throughout mathematics.

The “universal parametrization” of one-dimensional continuous complex unitary
representations of any locally compact (commutative) topological group is treated
by the theory of Pontrjagin. If G is a locally compact topological group, let

G = Homont(G, C*)

be the “Pontrjagin dual” of G; that is, G is the group parametrizing all degree 1
continuous unitary C-valued representations of G. The fact that this parameter
space of representations, é, is again a (commutative) locally compact topological
group is key to the further elaboration of Pontrjagin’s theory.

The more general question of appropriate parametrizations of finite, or infinite,
dimensional linear representations of a given type, for a given group, is, of course,
one of the great ongoing chapters of our subject. And the natural structure(s) that
these parameter spaces come equipped with is, again, key to any further detailed
study.

The moduli spaces of Riemann surfaces, which were the subject of section 3,
admitted an interpretation as parameter spaces of actions of fundamental groups
on the upper half plane; e.g., we might call these parameter spaces of nonlinear
representations. In the remainder of this section, however, we will concentrate on
deformations, and universal parametrizations, of certain types of continuous linear
representations of Galois groups of number fields. (A reference for this material is
my article “An introduction to the deformation theory of Galois representations”,
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pp. 243-312 in |[M-F]; for a study of moduli spaces of linear representations of
fundamental groups of manifolds, see, for example, [K-M].)

Now, to talk of “the” Galois group G of a number field K is probably already
slightly misleading. For to construct such a thing, we must first choose, somehow,
an algebraic closure K of K (one sane manner of doing this is to embed K in the
field of complex numbers and then take K to be the union of all algebraic numbers
in C). Then, letting L/K run through finite Galois extensions contained in K, we
form the projective limit of the finite groups Gal(L/K),

Gk = Gal(K/K) = proj. lim. Gal(L/K),

giving G i the topology that derives from this (usually called the “Krull topology”);
namely, a base of open subgroups for the Krull topology on Gg consists of the
kernels of the natural surjections Gal(K/K) — Gal(L/K) as L/K runs through,
as above, all finite intermediate Galois extensions.

“The” Galois group Gk = Gal(K/K) of K depends upon a choice of algebraic
closure K. If we make a different choice of algebraic closure, K’, we will not change
the isomorphy type of the topological group Gk, and indeed any isomorphism
K = K’ which is the identity on K will induce an isomorphism of topological
groups Gal(K/K) = Gal(K'/K). Following this line of reasoning, we see that, in
fact, our Galois group G is well-defined, but only up to inner automorphisms.

How can one study a profinite group G that is well-defined only up to inner
automorphisms?

One simple, but partial, answer is to retreat and just study the maximal abelian
topological quotient of G, sometimes referred to as G2, the abelianization of G.
For, if G is determined up to inner automorphism, G" is pinned down up to unique
isomorphism; i.e., G2 is as definitively pinned down as any mathematical object
can be. Essentially equivalently, we may work with the continuous one-dimensional
representations of G.

Of course it would be even better to classify all finite dimensional representations
of G. This is a sensible thing to try to do, since a representation is given by a
homomorphism up to inner automorphism, and therefore even though we may not
be entitled to give particular elements of G actual names (only conjugacy classes),
we can indeed refer, in a well-defined way, to specific representations of G despite
the indeterminacy inherent in the fact that our G is itself well-defined only up to
inner automorphism.

For K a number field, to study the abelianization G3° (or equivalently, the
collection of continuous one-dimensional representations of G ), Class Field Theory
provides us with a fairly concrete and sometimes manageable answer. For example,
one of the initiating results of Class Field Theory, the Kronecker-Weber theorem,
now over a century old, tells us that any finite abelian extension of Q is contained
in some cyclotomic extension, i.e., in an extension of the form Q(e?™*") for some
rational number r. Kronecker thought of this result in the following illuminating
way: the abelian field extensions of Q are systematically generated by the values
of a single analytic function, the exponential function exp(2riz), where z runs
through the elements r € Q; a more modern paraphrase of this is that the abelian
field extensions of Q are generated by the coordinates of the points of finite order
in the algebraic group C*. Kronecker subsequently found large caches of abelian
extensions of quadratic imaginary fields K generated by the values of the elliptic
modular function j(z) where z runs through elements a € K (a more modern



PERTURBATIONS, DEFORMATIONS 323

paraphrase being that these abelian extensions are generated by the coordinates of
torsion points in certain elliptic curves — those admitting complex multiplication
by K). Kronecker expressed the desire to extend this strategy to find all abelian
extensions of more general number fields as the “dream of his youth.”

What about the more ambitious project of representations of G to GL,, for
n>17?

Since Gk is a projective limit of finite groups, any continuous representation
to GL,,(C) will necessarily factor through a finite quotient group of Gg. To get
more interesting, and more perspicacious, representations, we are led to replace
the ring C — the standard scalar ring of classical representation theory — by a
wider, more receptive array of possible scalar rings, given the profinite nature of the
group we wish to study. We find ourselves interested, therefore, in the continuous
representations of G in GL, (R) where R ranges through a wide class of topological
rings, which include, for example, all finite commutative rings.

Once one agrees to allow such a large collection of rings as scalar rings, however,
a fascinating deformational issue presents itself. To prepare to explain this, let
C|t] denote the polynomial ring in the variable ¢ over the field of complex num-
bers. Now, it is natural to view a representation of a group into GL,(C[t]) as
a parametrized (algebraically varying) family of representations of the group into
GL,,(C), the parameter variable being ¢: specialize ¢ to any complex number and
the representation to GL,,(CJt]) specializes to a representation to GL,,(C). Follow-
ing this line of thought, if C[[¢]] denotes the ring of power series in the variable ¢
with coefficients in C, we may think of a continuous representation of our group
into GL,,(C[[t]]) as a formal deformation of the complex representation we get by
setting the variable ¢ to 0. Indeed, just as it is natural to do that, it is reasonable
to consider a continuous representation of a group, the group Gi for instance, into
GL,(Z/pZ][[t]]) as a formal deformation of representation into GL,,(Z/pZ) that we
get by setting the variable ¢ to 0. Here Z/pZ][[t]] is the ring of power series in the
variable ¢ with coefficients in the finite field Z/pZ.

To give ourselves more flexibility in this notion of deformation, let us make the
following definition. For a finite field k (say, k = Z/pZ) and a complete local
noetherian ring R with residue field &, if

p: Gxg — GL, (k)
is a continuous homomorphism, by a deformation of p to R let us mean a lifting
p:Gg — GL,(R)

of the homomorphism p, where p is taken only up to conjugation by an element of
GL,(R) trivial when reduced to k. The initial representation p we shall call the
residual representation (its ring of scalars being the residue field), and the type of
question we are led to ask is: describe all deformations — or perhaps all deformations
with a list of specific features — of the given residual representation.

For simplicity let us assume that our residual representation p is absolutely
irreducible (that means even after extending scalars from k to its algebraic closure,
p is irreducible). To put some control on the collection of deformations of p to
be studied, one fixes a specific finite set S of primes of the number field K which
include all the primes dividing the characteristic of the finite field k£ and all the
primes at which the residual representation is ramified; let us then consider only
deformations of p which are unramified at all primes not in S.
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It is a theorem that a universal deformation of p with the requested ramification
conditions exists. This means that there is a (unique) complete noetherian local
ring R with residue field & (R is dependent, of course, on p and S) with a continuous
homomorphism p : Gg — GL,,(R) which is a deformation of p unramified at primes
outside S with the property that any other deformation p, of p (unramified outside
S) to some complete noetherian local ring R, with residue field & is obtained from p
by a unique ring homomorphism R — R, (inducing the identity on residue fields).

The kinds of rings encountered as universal deformation rings can be quite in-
teresting. Happily, often they are relatively benign.

Consider the following particular case, which is the focus of much arithmetic
work in the classical theory of modular forms. Let K = Q. Let 5 : Gq — GL2(F))
be an absolutely irreducible residual representation in which complex conjugation
does not act as a scalar, and S precisely the set of ramified primes of p (with the
prime p thrown in). In this situation one frequently — but certainly not always
— has that R is isomorphic to a power series ring in three variables over Z,. By
specializing the three variables, one then gets from such an R a three-parameter
family of representations to GL2(Z,) which comprises, in fact, all deformations to
GL3(Z,) having the properties stipulated.

As a concrete example of this, consider the famous modular form (of weight
12) studied by Ramanujan (which already made an appearance in section 6 above)
whose Fourier series expressed in the variable ¢ = €>™# is given by

A=q[[a-g = > r(n)g"

For every prime number p there is a continuous representation pp A : Gq —
GL3(F,) unramified at all primes ¢ # p and having the further property that
the trace of the action of a Frobenius element for the prime ¢ in Gq is given by the
reduction mod p of the coefficient 7(¢) € Z. For all prime numbers p > 29, different
from 691 and such that 7(p) is not divisible by p, one has that the corresponding
universal deformation ring R = R, A classifying deformations of p, A unramified
outside p is isomorphic to a power series ring in three variables (see the proposition
in section 11 of [M]); this gives quite a number of instances, for the only prime
between 691 and 3 million with the property that 7(p) = 0 mod p is p = 2411.

In the spirit of Kronecker (the “dream of his youth”) we might ask whether
we can explicitly generate such universal deformation rings R for the p’s described
two paragraphs above and specific quotient rings of R universal for more stringent
deformation problems associated to them (e.g., problems formulated by imposing
a condition on the determinant, and local conditions at the finitely many primes
in S). A celebrated conjecture of Serre tells us that we should at least find the
residual representations described above in the natural action of the Galois group
of Q on p-torsion points in the jacobians of modular curves. Can we reconstruct the
rings R, the finer quotients of R alluded to above, and their associated universal
Gq-representations, by suitably completing the correspondence rings of modular
curves and suitably compiling representations of Gq on p-power torsion points in
the jacobians of modular curves?

Thanks to the magnificent modularity theorem due to Wiles, Taylor, Diamond,
Conrad, and Breuil, we are significantly further along in our understanding of this
question.
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9. MIRROR SYMMETRY — AND BACK TO DEFORMING LATTICES IN THE PLANE

Mathematicians are quite adept at making good use of any symmetry satisfied

by their objects of study. But some symmetries are more hidden than others.
“Mirror symmetry” is a major (relatively new) development in mathematics, which
mixes, and in a certain sense switches, complexr analytic geometry and symplectic
geometry (and deformational issues regarding these geometries). The key seems to
be a quantum field theory underlying both kinds of geometry. A simple instance
of this is given by elliptic curves (equivalently, lattices in the plane), and we will
say a few words about that. There is an advantage and a disadvantage in choosing
elliptic curves to illustrate mirror symmetry. The advantage is that it is a nice,
relatively elementary, example, and most, perhaps, of what is expected to be true
is actually proved. The disadvantage is that this case hardly begins to reveal the
magic of mirror symmetry and its concurrent developments, which has transformed
much of our thinking about even the most classical of topics: enumerative algebraic
geometry. For example, who would have thought twenty years ago that the well
known fact that a general cubic surface has 27 straight lines, any one of which
meets 10 others, is equivalent to the associativity of the quantum cohomology ring
on certain rational surfaces? (Cf. [Cr=M].) Or who would have expected that
the fact that there are precisely 229305888887625 rational curves of degree 5 on a
general quintic threefold can be understood from the vantage point of symplectic
geometry?
A piece of “enumerative topology”: For almost everything that I will be say-
ing in this section, the reference is Robbert Dijkgraaf’s fine article [Di]. Consider
the function Z(q, A) of the variables ¢ and A which encodes the number of essen-
tially distinct ways that a compact two-manifold of genus g can cover a torus by
a mapping of degree d with ramification indices no greater than two. Here is its
precise definition.

We let Ny 4 denote the following “weighted number” of all not necessarily con-
nected covers of an elliptic curve E with Euler characteristic 2 — 2¢g, of degree d,
possessing only ramification points of ramification degree 2; namely,

N, d = #Hom'(H{29*2}73d)
’ d!-(2g —2)! ’

where the group Sy is the symmetric group on d letters, the group IT{29-2} is the
fundamental group of our (or any) elliptic curve with 2g — 2 points removed, and
the superscript / is meant to signify that we consider only homomorphisms that
have the property that the 2¢g — 2 holonomies about the 2g — 2 removed points map
to cycles of length two in Sy.

Define

L oo
(1) Z(gA):==q 21 Y Nya-q* 72
g,d=1

Visibly Z (g, \) is defined by means of the topological structure of the two-manifold
E. And this topological structure is stable, so our function Z(q, A\) might, at first
glance, seem the least likely candidate to have anything to do with deformations
of complex or symplectic structures. Even if we gave E a complex structure or a
symplectic structure, Z(gq, \), in its definition above, would not see it. But there
are surprises in store.
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Giving F both a complex structure and a symplectic structure:

e Suppose that F is given a complex structure, which amounts to taking F
to be equal to the elliptic curve E}, attached to a lattice L C C, and here we will
no longer require that the area of a fundamental parallelogram of L be 1. After
multiplication by a suitable complex number, we can assume that L is generated
by 1 and a complex number 7 = 71 + i75 where 75 > 0.

e Suppose also that we specify, on F, a (1,1)-form w = constant - dz A dzZ where
ift:= 2%” fE w = t1 +ita, we have that o > 0 is the area of the surface. Clearly w
is a closed two-form, which is nondegenerate in the usual sense and therefore may
be thought of as a (complexified) symplectic structure on E.

Thus E, endowed with both structures, is dependent upon the two parameters, 7
and t:
E= ET,t7

where, of course, the dependence on 7 is really only on the lattice generated by 1
and 7. Therefore:
ET,t = ET—i-l,t = Efl/‘r,t-

The relevance of this combined complex/symplectic structure on E to the study of
the power series Z(q, A) is this: thanks to a beautiful idea of Kontsevich using the
structure ', ;, we may represent the coefficients of the power series in A Z (€27 \)
as the volumes of suitable “moduli spaces” (the Hurwitz spaces M4(E,d) of cov-
erings of E of genus g and degree d) where the volume form on the Hurwitz space
is normalized by the symplectic form w. In a word, we have an “interpretation”
of Z(q,\) as an integral, involving the symplectic structure of E;, where the
somewhat formal variable ¢ has become e2™* for ¢ the parameter describing the
symplectic structure of F.

But now it turns out that the phenomenon of mirror symmetry (in this context)
gives us a “functional equation”, if one may call it that, enjoyed by Z(q, ) under
the transposition

ET,t — Et,T-

Here, one is willfully interchanging the parameter 7, which describes the variation
of complex structure, with the parameter ¢ of variation of symplectic structure, an
exchange which crosses species of geometries. An underlying reason for this is
that Z(g,\) has an interpretation in terms of the underlying quantum field theory
for E;;, and this quantum field theory itself has an involution that makes the
above interchange. The corollary of this functional equation is that since E; is
unperturbed under the transformation 7 — —1/7, we get that Z(e?>"% \) also
satisfies a functional equation under the interchange ¢ — —1/¢. This allows one to
deduce that the counting function Z(g, \) is, appropriately understood, (almost) a
modular function of ¢. In fact, one has

1
(2) Z(q7)\) = qfﬂ % 27d'r2':z H (1 +que)\w2/2)(1 + Z—lqwe)\w2/2),

1
weZZO+§

which presents our counting function Z(gq,\) as some kind of generalized theta
function; and, more specifically, writing logZ (g, A) as a power series in A,

(3) logZ(q,\) = Z N972F (q),
g=1



PERTURBATIONS, DEFORMATIONS 327

one gets that the coefficients F,(¢) for g > 1 are “quasimodular” forms of level 1 and
weight 6g — 6 with rational coefficients. That is, they are in the ring Q[F2, E4, Eg]
where FEj, is the normalized Eisenstein series of weight k)i e.g.,

Fy(q) = W}M)QES — 3E2E, — 2Eg).

For a different derivation of this formula, see [Ka] (noting that the two formulas
differ by a factor of 2 because of differences in normalization). For a direct proof of
the formula of Dijkgraaf for F,;(g) (general g), see [K=7Z]. For genus g = 3 one gets

F3(q) = egmmog (153 By — 6ES — 12E3E; + TE] + AESEg — 12E,E4 Eg + AEY).

(For more examples and discussion of F,(g) see [Ru] and [M-R-Y] E)

10. QUANTIZATION IN PHYSICS, AND NONCOMMUTATIVE GEOMETRY

Classical mechanics is often given the following concise mathematical formal-
ization. Denoting by X the manifold of “positions”, one forms the manifold M
whose points encode “position and momentum”; that is M = T*(X) is the total
space of the cotangent bundle of X. Since the underlying differential equations in
classical mechanics are of the second order, the geometrization of this theory will
quite naturallyﬁ take place on M.

We may think of the functions in C*°(M) as the algebra of observables in our
dynamics. On M we have a natural symplectic form which has local expressions
w = Zj dg; N dp; where qi,...,qq are local coordinates for a chart on X, and
P1,- - -,Pq are the corresponding local momentum variables. The symplectic form w
gives rise to a Lie algebra structure on C°°(M). Expressed in terms of coordinates,
for f,g € C*(M) we have

d

af dg  Of Og
{f.g}= Z(yy ~ 9090
i1 94 0P Pi 0G;
and note that this operation is a special case of a Poisson bracket operation: a
Poisson bracket operation on a commutative C-algebra A, is, by definition, a
C-bilinear operation (f, g) — {f, g} which is a derivation in each variable separately,
which satisfies { f, f} = 0 for all f and which satisfies the Jacobi identity. A general
Poisson bracket operation on C*°(M) where M is a manifold of dimension d is
given, locally, as

d
{f,9}@) =Y a™I(@)ai()0;(9),

ij=1

6The reason why this is called “quasi-modular” is that its formula involves the Eisenstein series
E» of weight two which is not quite a modular form.

"The displayed formula corrects a minor typo in the formula given in [Di]; cf. [M-R-Y].

8“Quite naturally” at least ever since Lagrange’s Mécanique Analytique [Lal, in which Lagrange
emphasized the role of the momentum (which he called “la quantité de mouvement du corps”.
See section 1 of part II of Mécanique Analytique for Lagrange’s discussion of one of Descartes’
mistaken views concerning this and his attribution of the idea to Wallis). Focussing not on the
geometric points in physical space but rather on viewing position and momentum on an equal
footing and working geometrically in this phase space may be considered “natural” only after
someone has had the genius to have done so.
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where a = (a*/) is a skew-symmetric bivector field on M obeying the Jacobi
identity
d
Z a9 4+ ol 9okt + ok 9pa’i = 0.
=1

Call a manifold M with Poisson brackets structure on C*°(M) a Poisson man-
ifold, noting that symplectic manifolds are special cases of Poisson manifolds. A
Poisson manifold does not yet have a specified dynamics until we supply one further
ingredient, namely a function H € C°° (M) which plays the role of energy. Given H,
one can then express the equations of time evolution of the corresponding dynamics
quite simply as (Hamilton’s equation)

f:{va}'

We then have that H = {H, H} = 0; i.e., conservation of energy holds.

Let us now pass from this formalization of “the algebra of observables” in classi-
cal mechanics to the corresponding formalization of “the algebra of observables” in
quantum mechanics (and from Hamilton’s equation to Schrédinger’s equation). The
underlying complex vector space of observables in the quantum mechanical model
can be identified with the vector space of observables in the previously discussed
classical model. But the algebra structure is now noncommutative, its “noncommu-
tativity” being dependent upon the fact that Planck’s constant, which will appear
as the letter ¢ below, is nonzerof]

The problem of “quantizing” a classical algebra of observables can be generalized
and formalized as the problem of associating to a commutative Poisson algebra A,
over C a deformation of A,: that is, an associative (noncommutative) C[[g]]-algebra
A which is flat over C[[g]], such that ¢ is in the center of A, which is given with an
isomorphism of algebras A/qA = A,, and such that if {—, —} denotes the Poisson
brackets in A,, and then if a,b € A with images a,, b, € A,,

1
—(ab — ba) = {a,,b,} mod gq.
q

Which Poisson algebras can be quantized in the above sense, and how unique is the
quantization? In 1983 De Wilde and Lecomte, and also Deligne and Fedosov sepa-
rately, showed that any symplectic manifold (M,w) can be so quantized, the local
problem for the standard symplectic structure on R?" having been settled earlier
by Moyal, by an explicit formula (cf. [D-L], [E], [De]). Recently, guided very closely
by intuition derived from Quantum Field Theory, Kontsevich [Ko 2] extended this
result to provide such a quantum deformation of any Poisson manifold, i.e., any
manifold M with a Poisson bracket on its algebra A, := C°(M) of C*° functions
(see also [Ko1I).

L. Fadeev, referring to material, for example, in [B-F-F-I.-S|, writes in his introductory lecture
on Quantum Field Theory in [Q-F], “Beautiful results, which I learned from A. Lichnerowicz,
M. Flatro, and D. Sternheimer allow one to say that Classical Mechanics is unstable and that
Quantum Mechanics is essentially a unique deformation of it into a nonequivalent stable structure.
The degeneracy of Classical Mechanics (exactness of pure states) is intimately connected with its
instability. So it is only natural that the passage from Classical Mechanics to Quantum Mechanics
was prompted by the experimental activity of physicists. The stability of Quantum Mechanics,
on the contrary, shows that an analogous modification of it is less feasible. In this case one has
first to modify also all the general framework....”
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The structural constants of Kontsevich’s deformation to noncommutative ge-
ometry which are given as concrete volumes reminiscent of integrals occurring in
hyperbolic geometry and number theory, and which are organized according to a
schema of delicate combinatorics coming from considerations in physics, suggest the
emergence of some new chapter of mathematics. To be sure, a feature of the work
that makes it enchanting is that its subtlety (including the issue of how unique the
deformation is, given the Poisson manifold M) is governed by a “physical” (in some
sense) model. More explicitly, Catanneo and Felder [Ca-F] suggested the follow-
ing interpretation of Kontsevich’s deformation[l] Consider a topological quantum
field theory on a disc D with fields « : D — M (differentiable maps of the disc to
the Poisson manifold M) and differential 1-forms 7 on the disc with coefficients in
x*T*M and which vanish on the boundary. Since dx is a differential 1-form on the
disc with values in z*T M, we view dx An as a real-valued differential 2-form on the
disc; similarly, if « is the bivector field on M that gives its Poisson structure, we
form a(z)n as a differential 1-form on the disc with values in 2*T'M and consider
the real-valued differential 2-form a(z)n A 7.

Define the action

Slx, n] ::/D(dx/\n—i—%oz(a:)n/\n).

Catanneo and Felder offer the following path integral interpretation of the multi-
plication law in the Kontsevich deformation of the Poisson algebra. If m € M, and
fyg arein A, = C°°(M), then:

promy= [ pao)er™ iy

where 0, 1, co are (any) three fixed points on the boundary of D in counter-clockwise
order. The integral is over all fields « with the constraint 2(co) = m and over all n’s
which vanish on the boundary. This star-multiplication law then extends naturally
to a multiplication law on all of A := A,[[¢]] (the element ¢ being in the center). As
with all “interesting” path integrals, the challenge is to stipulate (if possible) the
measure with respect to which the integration is being made, and/or failing in that,
to divine the coefficients of the power series in ¢ that this integral points to. The
article of Catanneo and Felder has an enlightening discussion of this, comparing
f * g to the formulas of Konstevich; they also have quite a nice explanation for why
this formula leads to an associative multiplication law.

11. NEAR-MISSES IN ALGEBRA AND NUMBER THEORY (APPROXIMATION
OF IRRATIONALITIES)

It may seem entirely natural to ask for perturbational questions in analysis and
geometry. What about algebra? Algebra tends to deal in equalities, in exact equa-
tions. Number theory often does. For example, in the Fermat problem, one asks
for triples of perfect n-th powers a™,b™,c" where the last perfect n-th power is
exactly the sum of the first two, not just approximately so. You are not interested
in “near-misses”.

Or are you? It may come as a surprise how many number-theoretic problems
there are which ask for the solution to some “exact equation”— but which, when
you jiggle these problems and ask for the structure of their “near-misses”, produce

10This hasn’t yet been turned into a rigorous alternative proof of Kontsevich’s result.
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yet more profound problems with broader implications. One does not have to go
far to see examples of this:

(1). How close can you get to V/d by rationals whose denominators have
restricted size? Consider the ancient theorem, ascribed in Plato’s dialogue
Theaetetus, to the mathematician (and later, Athenian general) Theaetetus, which
asserts that if d is a natural number which is not a perfect square of an integer, then
V/d is irrational. That is, X2 —dY? is never zero. If you ask “near-miss versions” of
this — e.g., how close to zero can X2 —dY? get for nonzero integral values of X and
Y, and how often? — you find yourself with the famous problems first considered by
Brahmagupta in the 7-th century or Bhéskara in the 12-th (and, of course, the 17-th
century European mathematicians). The smallest nonzero value you can possibly
hope for is +1. The resulting equation

X2 —dy? =41,

which goes under the title Pell’s Equation, has an infinite number of solutions (the
group of units in the ring Z[v/d]). The full elucidation of this near-miss problem,
which brings in the theory of continued fractions and of quadratic number fields and
connects with the theory of “best rational approximants to irrational numbers”, is
still not entirely understood. For example, let d > 1 be a squarefree number and
let (x,y) be the smallest pair of positive numbers solving the above displayed “Pell
equation”. Now an upper bound for x and y is known:

x+Vdy < (2 -d)2‘/3,

and Fermat knew instances of d’s which made that upper bound respectable (if
d = 109, then x = 158070671986249 and y = 15140424455100), but we still do
not know whether there is a positive number € and an infinity of squarefree d’s for
which

x+\/ay>dd€.

(The answer to this question would be yes if, for example, there were an infinity of
real quadratic fields of class number one.)

Nevertheless, the “partial elucidation” of this near-miss problem that is currently
available to us has found immense applications.

(2). More generally, given a curve in the plane cut out by a polynomial,
how near to it can a lattice point get and still miss? Consider the following
problem that is superficially similar to (1). The polynomial X3 —Y? can, of course,
achieve the value zero when X is a perfect square. Suppose, however, that X is not a
perfect square. How close to zero can X3 —Y? get, for appropriate choice of integers
Y? In effect, how close to a whole number can the irrational number vV X3 get?
This near-miss question, which a priori has only to do (again) with approximating
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quadratic irrationalities, is intimately related to the arithmetic theory of elliptic
curves over the rational numbers[J

This link alone might make us want to understand the structure of the near-miss
solutions to

X3 —Y? = zero.

How do these solutions behave? A celebrated conjecture of Hall says that for any
exponent « < 1/2 there is a constant C,, > 0 such that |X? — Y?| is greater than
Cy - X for all XY such that X — Y2 is not zero. Hall’s conjecture is now but
a special case of some grand conjectures of Vojta (who made his conjectures by
“unifying” the language of Nevanlinna’s work in complex variables, with diophan-
tine geometry). It is also directly related to the ABC-conjecture due to Masser
and Oesterlé, which provides a “quantitative” version of the following qualitative
assertion: there is a strong inhibition for two (relatively prime) natural numbers
which are highly divisible by perfect powers to have the property that their sum is
also highly divisible by a perfect power.

(3). More generally, given a smooth curve in the plane, how near to
it can a point with rational coordinates get and still miss? “Ordinary
geometry” seems to be inadequate for the purposes of physics-at-small-distances.
For if you wish to measure, adequately, a phenomenon confined to a very small bit
of space, you need very high energy to do it. So, geometric points would require
infinite energy to be dealt with and therefore are inaccessible to the surveillance of
the physicist. This type of “infinity” that crops up in physics is usually dealt with
by a technique known as renormalization. Quantum mechanics, the quantum field
theories, and the emerging noncommutative deformations of geometry are, perhaps,
further manifestations of the ultimate unsuitability of using a geometry dependent
upon a substrate of points to model the physical world.

Number theory has also felt, at times, the inadequacy of “ordinary space”; it is
sometimes better to work in an adelic space, where the notion of “closeness” between
two points is determined by a combination of shared congruences modulo ideals as
well as distance in a more naively geometric sense. And sometimes the issue of
“infinite energy” complicating the physics of small distance has a (remote) parallel
in number theory: when you try to compute rational points on or “near” (say
within distance § of) a given hypersurface H in “ordinary” space, it is reasonable to
search only for points whose coefficients have bounded numerator and denominator
(say, < N); otherwise you will be faced with a process that takes infinite time.
The algorithms used in searching for points are “lattice reduction algorithms”.
Therefore, to bring their running-time estimates to the forefront you are naturally
led, as we shall see, from the given hypersurface H in “ordinary space” to consider a

HThe link being that any elliptic curve E over Q is determined by the classical (integral)
invariants ¢4 and cg for the model of E over Z with smallest (absolute value of) discriminant A
where ¢4 and cg are equal to the values of the normalized Eisenstein series introduced in section 6,
E4(L) and Eg(L), respectively, for an appropriate lattice L; these invariants are yoked by the
equation

e —c2 =17284,
and “conversely” any integral solution to the equation
X3 -vy?2=17282,

with X and Y satisfying some mild congruence conditions, comes from an elliptic curve E over
Q, withitscy = X, ce =Y, and A = Z.
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certain family of mappings of H to the moduli space of three-dimensional lattices.
Since all this is a fine mixture of practical numerical computation and theory, I
think it is a good topic with which to end my talk. My reference here is Elkies’
article [E].

That the procedure we will be alluding to below has practical applications is
shown by its ability (more precisely, Elkies’ ability) to work with rather large num-
bers — for example, to discover the following “near-miss” to Hall’s problem:

5853886516781223% — 447884928428402042307918% = 1641843.

Hall’s problem, which we discussed earlier, involves the inhomogeneous polynomial
2% — 9%, and Elkies has an ingenious modification of his general algorithm to deal
with that case. But, to describe the garden-variety version of the algorithm, con-
sider the question of finding rational points of small height which are close to the
image of a smooth mapping ¢ : [0,1] — R?, a parametrization of a piece C of the
real locus of a plane curve. More specifically, fix a large number N and a small
number §; the game is to find rational points (a/b,c/b) in the Euclidean plane R?
which are J-close to the image of ¢ and such that the absolute values of a, b, ¢ are
< N. The two denominators are required to coincide because we are really working
with the homogeneous coordinates (a,b,c). How might we go about computing
these near-missesT The method to be described is just as useful, as Elkies points
out, in cases where ¢ is not algebraic but just twice differentiable (e.g., Elkies will
test his method out on fairly whimsical problems, getting, for example, near-misses
of the form

[2063]7, n [8093]
8128 8128

7 =1.0000000000003607083—).

Figure 12

We begin by finding a piece-wise linear approximation to the arc C with small
chord-length § > 0, as in figure 12, and where this § is to be negotiated. Since
C is smooth, it is entirely contained in the union of rectangles, as drawn, where
the rectangles have length § and width O(§2) where the constant in the “big O”
is determined by the size of the derivatives of ¢ and fixed. We search for rational
points in each of these rectangles whose numerators and denominators are bounded
as described above by IV, and we do so “independently”, i.e., rectangle by rectangle.
Choose one of these rectangles which correspond to a chord and call it A of length
0. Pass from projective two-space to the corresponding affine three-space and note
that one can reconfigure this problem as the problem of finding integer lattice
points in a parallelepiped of height, length, and width roughly proportional to

12This problem is more flexible than the somewhat analogous, but much more demanding, near-
miss problem in “one lower dimension” answered by the classical theory of continued fractions;
there the data is just a point v € RP!, and the object is to find rational points of small height
which are closest to v — closest in a certain technical sense, given their height.
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N, N§, N6?, which suggests that we keep § > 1/N to make sure that the volume
of these parallelepipeds are > 1, guaranteeing that they do indeed capture some
points. Taking then

0 = fized constant - 1/N,

where the fixed constant is > 1, we get a moving frame of parallelepipeds as in
figure 13:

left right
Figure 13

By multiplying by an appropriate element of GL3(R) which sends our parallelepiped
to a fixed box of given dimensions in R? and sends the integer lattice Z> C R? to
some lattice L, we can invert our “reconfigured problem” to the problem of finding
lattice points of L which lie in the standard box. One has excellent lattice reduction
methods to deal with this, but if you wish to estimate in an a priori fashion the
amount of computer time this will require, you must know something about the
nature of the lattices L that arise; in particular you should have an estimate of the
number and size of the shortest vectors that they possess.

Which L’s arise? These lattices depend upon the size N of the solution you wish
to catch, the fixed constants (in the “big O” and the determination of §), and an
endpoint ¢ of the chord A. Fixing the fixed constants and choosing the N to limit
the rational points you are searching for, you get for ¢ € C a lattice Ay(c) C R?.
Some “a priori” knowledge of the structure of the mapping

Ay : C — the five-dimensional moduli space
of all lattices in R?
taken up to rotation equivalence

influences our a priori estimate for the efficiency of near-miss computations. Rele-
vant, for example, is the question of how close to a cusp does this image of C' get?
Does it fall into a restricted subspace? Regarding the latter of the two questions,
a modification of this algorithm geared toward finding solutions of Hall’s equation
has the unexpected property that the corresponding Ax’s map to lattices which
are symmetric squares of two-dimensional lattices, allowing for an extraordinary
efficiency in lattice reduction.

For the general problem, controlling the structure of short vectors in the lattices
of these ribbons, Elkies [E] tells us that:
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Let C be a smooth arc in RP2. Then for each N > 1 and § > N~2 one can find
O(6§N?3) rational points and O(N) rational line segments each of length O(1/N)
in RP? which together include all rational points of height < N and distance
< ¢ from C. The (line segments and) rational points can be computed in time
< 5N310go(1)N. Ignoring the space used to record the line segments and rational
points, the computation requires space <K logo(l)N . All implied constants depend
effectively on C.

In the opening pages of his book, Structural stability and morphogenesis, René
Thom writes:

“The use of the term ‘qualitative’ in science, and above all in physics, has a
pejorative ring. It was a physicist who reminded me, not without vehemence, of
Rutherford’s dictum “qualitative is nothing but poor quantitative.”

If Henri Poincaré had been present in that conversation, surely he would have
helped Thom out, reiterating his stance regarding the qualitative study of dif-
ferential equations: questions about the general shape of curves are, “for certain
applications, just as important as numerical calculations.” (Cf. Poincaré’s Résumé
Analytique, written in 1901 at the request of Mittag-Leffler, a ninety-nine page
extract of which is reprinted in [P]; see, in particular, loc. cit., p. 263.)

But I suspect that if the three (Poincaré, Rutherford’s friend, and Thom) were
to have a chat today, the qualitative and the quantitative would be viewed a bit less
as competitors and more as different facets of a fuller understanding of the mathe-
matics in question. Moreover, as is evident in Elkies’ result and its formulation, we
are in the era of high algorithmic awareness, on both a practical front (how long
will it be until T get the results of my computation?) and a theoretical one (what
are the asymptotics of time-cost in running this algorithm?). This nudges us to
add to our (qualitative and/or quantitative) geometric analyses a study (qualita-
tive and/or quantitative) of the behavior of the relevant algorithms. And, to be
sure, of their perturbations.
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