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This book is largely about reaction-diffusion systems such as

∂ui
∂t

= di∇2ui + uifi(x, u), x ∈ Ω(1)

0 = αi(x)
∂ui
∂n

+ βi(x)ui, x ∈ ∂Ω

ui(x, 0) = u0
i (x), x ∈ Ω

and what the analysis of such equations can say about spatial ecology. Here, ui(t, x)
denotes the spatial density of some diffusing population at time t, u0

i denotes its
initial density, and fi denotes the specific growth rate of the i-th population, which
may depend on location and on the densities of the other n populations at that
location. For reasons discussed extensively in the book under review and mentioned
briefly below, equilibrium solutions of (1), namely solutions of

0 = di∇2ui + uifi(x, u), Ω(2)

0 = αi(x)
∂ui
∂n

+ βi(x)ui, x ∈ ∂Ω

play a major role in the theory and applications.
The authors identify the principal advances in mathematical knowledge that

have led to increased understanding of the dynamics of reaction-diffusion systems
in general and to their application to ecology in particular. These include advances
in bifurcation theory; the formulation of reaction-diffusion systems as dynamical
systems; and, more generally, the adoption of the dynamical systems viewpoint in
the study of evolution equations; the development of a theory of persistence, also
called permanence, for dynamical systems models in population biology; and finally
to the development of the theory of monotone systems.

Most readers will know that bifurcation theory has revolutionized the study
of dynamics, but its early development focused primarily on steady states and
how they change with model parameters. The equilibrium problem (2) takes the
mathematical form of determining the structure of the set of solutions of F (u, λ) = 0
where λ denotes a parameter such as the size of the domain, carrying capacity,
intrinsic growth rates, etc. The problem becomes particularly interesting near
solutions (u0, λ0) where the hypotheses of the Implicit Function Theorem break
down. From a biological perspective, this occurs when u0 represents some proper
subcommunity equilibrium of the full community and at a value of the parameter
where this state changes stability type from stable to unstable due to potential
invasion of the subcommunity by a “missing population”. It is this older theory,
due to Crandall and Rabinowitz [4], which is useful in the present context, and the
most striking results are the dependence of steady state solutions on the size of the
habitat patch Ω.
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The formulation of reaction-diffusion systems as dynamical systems generating
a semiflow on a suitable Banach space and the adoption of the dynamical systems
viewpoint in the study of evolutionary PDEs—more precisely, the focus on the
long-time behavior of solutions, and on stability, recurrence properties, and global
attractors—is now standard following the work of Henry [7], Hale [5], Ladyzhen-
skaya [16], and many others. The system (1) induces a semi-dynamical system
on the cone K of nonnegative functions in a Banach function space X (either
C0(Ω)n or C1(Ω)n depending on boundary conditions): a map π : K× [0,∞)→ K
where π(u0, t) gives the state of the system at time t which starts (t = 0) at
state u0. In (1), u(•, t) = π(t, u0). The map π is continuous and satisfies the
semigroup property π(t, π(s, u0)) = π(t + s, u0) for t, s ≥ 0 and u0 ∈ K. The
orbit of u0 ∈ K is O(u0) := {π(u0, t) : t ≥ 0}, and its omega limit set, given by
ω(u0) = {y ∈ K : π(u0, tn) → y, tn ↗ ∞}, captures the asymptotic behavior of
O(u0). If O(u0) has compact closure in K, then ω(u0) 6= ∅ is compact, connected,
invariant (π(ω(u0), t) = ω(u0)), and Dist(π(u0, t), ω(u0)) → 0 as t → ∞. An equi-
librium e is a point of K such that O(e) = {e}. For (1), these are just the solutions
of (2). The set of all equilibria for π is denoted by E. For scalar equations (n = 1)
of the form (1), describing a single population, there is (when certain conditions
are met) a Liapunov function V on K such that t → V (π(u0, t)) is nonincreasing
and therefore ω(u0) ⊂ E by the LaSalle Invariance Principle. This explains the
importance of (2) for the dynamics of single populations.

The theory of persistence or permanence is, in my view, one of the truly signifi-
cant ideas that mathematicians have recently contributed to theoretical population
biology and to dynamics itself. Although we may be unable to determine the
asymptotic behavior of high dimensional (more than two) models of multiple inter-
acting biological populations, might it still be possible to answer the fundamental
question of which populations survive in the long run without fully understanding
the asymptotic behavior of every solution? This is the key question.

The extinction subset of our state space K consists of those points on the bound-
ary of the cone ∂K where ui ≡ 0 for some i, i.e., states where one or more pop-
ulations are absent. The interior of K represents nonextinction states for which
every population is present (everywhere), even if some are present only at very low
densities. Points of ∂K not in the extinction set immediately enter the interior of K
due to the nice effects of diffusion. Therefore, from a mathematical point of view,
we want to decide if there is a compact invariant set A, situated a positive distance
from ∂K, which attracts all states u0 belonging to the interior of K: ω(u0) ⊂ A.
This would provide reasonable assurance that all populations persist indefinitely
provided they are initially present.

The authors (with V. Hutson) champion the stronger notion of ecological per-
manence for systems of PDEs such as (1) [3]. For Dirichlet boundary conditions
(other boundary conditions may be more easily handled), this means that there
exist smooth functions ei(x) > 0 in Ω, vanishing on ∂Ω but with negative exterior
normal derivative there, and positive numbers m,M such that for each initial data
u0 with u0

i > 0 in Ω for all i, there is a t0 > 0 such that

(3) mei(x) ≤ ui(x, t) ≤M, x ∈ Ω, t > t0

for all i. It should be stressed that m,M are independent of the initial data, but t0
may depend on it. Typically, ei is the positive, unit-norm principal eigenvector of
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∇2u = λu with Dirichlet boundary conditions on Ω. Ecological permanence follows
from the existence of a compact attractor and permanence.

However, it may be that we are primarily interested in the survival of only a sub-
community of the full community. In that case, it’s more appropriate to decompose
our state space K into a disjoint union X1 ∪X2 such that X1 represents extinction
of one or more populations of the subcommunity of interest and X2 represents the
survival of all populations of the subcommunity. It is clearly mathematically im-
portant that X2 be positively invariant (π(X2, t) ⊂ X2) so as to rule out extinction
in finite time, but this is usually biologically trivial. The mathematical problem is
the same: we want to show the existence of a compact attractor in X2, a positive
distance from X1, which attracts all states in X2. We then say that the subcom-
munity is permanent or persists. Biologically, permanence of a subcommunity has
the interpretation that if all member populations are initially present, then the
dynamics is such that the set of ultimate states of the system is bounded away
from extinction of the subcommunity. The fundamental idea of permanence has
had an impact in theoretical population dynamics: it’s now part of the language of
the field. It is easy to imagine the underlying mathematical problem arising in dy-
namical systems models in other fields. For example, in cancer modelling does the
cancer persist? In a model of HIV infection within a host, does the virus persist?

All this sounds nice, but we must be able to establish persistence in some way
without a complete understanding of system dynamics since we cannot hope to
have this knowledge for systems with an even moderate number of interacting
populations. That this might be possible is suggested by the obvious necessary
condition for permanence: namely that the stable manifold W s(I) = {u ∈ K :
π(u, t)→ I} of each invariant set I (e.g., equilibrium, periodic orbit, etc.) belonging
to the extinction set X1 must not contain a point of X2: W s(I) ∩ X2 = ∅, for
then there would exist some nonextinction state whose ultimate state would be
the extinction state I. If this condition were sufficient, it would mean that it
essentially suffices to understand the behavior of π|X1; we need only find the I in
X1. Presumably X1 is a lower dimensional space, so we may be able to answer this
question.

Unfortunately, this necessary condition for permanence is not sufficient. A
striking counterexample is given by the symmetric three species Lotka-Volterra
competition system of ODEs studied by May and Leonard [19], where species
one beats species two in head-to-head competition, species three beats species
one, and species two beats species three. Aside from an unstable coexistence
state involving all three populations and its one-dimensional stable manifold, all
other nonextinction states approach a heteroclinic cycle consisting of the three
single-population equilibria ((1, 0, 0), (0, 1, 0), (0, 0, 1)) and connecting orbits on the
boundary of K = R3

+. Permanence fails due to an attracting heteroclinic cycle
despite the fact that W s(I) ∩X2 = ∅ for each single-population equilibria I.

Another necessary condition for permanence, more or less built into the defini-
tion given above (but not in the usual definition of persistence), is that the system
be dissipative in the sense that there exists a compact global attractor A for π.
More precisely, A is compact, invariant and attracts bounded subsets of K. The
necessity of some kind of dissipativity condition is clear from the well-known con-
servative Lotka-Volterra predator-prey model with a single positive neutrally stable
steady state (a center) surrounded by periodic orbits of arbitrarily large size which
approach arbitrarily close to the extinction set.
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Despite the May-Leonard counterexample, the basic idea that one need only un-
derstand lower dimensional dynamics on the extinction sets to predict permanence
prevailed. One approach to establishing permanence, after verifying the necessary
conditionW s(I)∩X2 = ∅ holds for each invariant set I in the extinction set and that
the system is dissipative, is to simply rule out potential cycles among the various
invariant sets on the boundary since these are potential omega limit sets starting
from nonextinction states. This is called the acyclicity approach to permanence.
Clearly, it is a crude approach; far better would be to rule out only those cycles
consisting of boundary states that attract nonextinction states, but determining
easily checkable sufficient conditions for the latter is highly nontrivial (see [12]). It
is simpler merely to rule out all cycles on the boundary. The acyclicity approach to
permanence has been very successful in applications because boundary cycles are
relatively rare. See Butler and Waltman [1], Butler, Freedman and Waltman [2],
Hale and Waltman [6], Hutson and Schmitt [15], Thieme [26].

A second approach to permanence is to use a Lyapunov function. If one could
find a function V that vanishes on the extinction set X1, is positive on X2, or
perhaps only on a neighborhood of X1 in X2, and that increases along orbits, then
one should be able to establish that X1 is a repeller and hence permanence. This
works but is far too restrictive. If the dynamical system is dissipative, so that there
is a compact global attractor, then it suffices to assume that K is compact. One
really only need require that V be defined and positive on X2 and that, roughly,
V (π(u, t))/V (u) > 1 as u ∈ X2 approaches a boundary invariant set I, uniformly in
t > 0. This approach to permanence has also had its successes in applications. See
Schuster, Sigmund, and Wolff [21], Hutson [14], Hutson and Schmitt [15]. However,
it calls for intuition to select an appropriate Lyapunov function.

A good idea like permanence should be robust to perturbations in the dynamical
system or equivalently to small changes in the reaction term f , boundary conditions,
or any other parameters in the model. The basic formulation of permanence in
terms of attractors suggests that it is robust. Schreiber [20] first established this
for ODE models, and the general case was worked out in [11], [29].

From a practical point of view, the theory of permanence has allowed bio-
mathematicians to make rigorous statements of importance to biologists about
population models that include more populations than one would have thought
possible to handle before. However, the required knowledge of the dynamics on the
extinction set still sets bounds on our ability to handle large systems.

The theory of monotone dynamical systems, initiated by Hirsch [9] and Matano
[18], has had a substantial impact in mathematical biology. Roughly, its focus
is on semi-dynamical systems that preserve a partial order relation on the state
space and the consequences of this order preservation on the asymptotic behavior
of its solutions. The state space K is an order space: u ≤ v means u(x) ≤ v(x)
for all x ∈ Ω. The semiflow π is order preserving, or monotone, if u ≤ v implies
π(u, t) ≤ π(v, t), t ≥ 0. Monotonicity alone is insufficient for there to be strong
restrictions on asymptotic behavior of solutions. A stronger requirement, the so-
called strong order preserving property (SOP), requires that monotonicity holds
and if u < v (i.e., u ≤ v and u 6= v), then there are neighorhoods U of u and V
of v such that π(u, t) ≤ π(v, t) for all large t, and all u ∈ U and v ∈ V . A state
u is said to be quasiconvergent if ω(u) ⊂ E and to be convergent if ω(u) = {e}
for some e ∈ E. Q denotes the set of all quasiconvergent points; C the set of all
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convergent points. Assuming that every forward orbit has compact closure in K, an
SOP semiflow has the following important property: Q is residual in K. With a bit
more compactness (e.g., existence of a compact attractor) or if the order relation
is particularly nice (e.g., compact invariant sets have supremum and infimum in
K), one can show that Q contains an open and dense set. If the semiflow satisfies
additional smoothness (say, C1 in u with strongly positive and compact derivative),
then C contains an open and dense set (Smith and Thieme [24], Smith [22], Hirsch
and Smith [10]).

For reaction-diffusion systems, the well-known (strong) maximum principle im-
plies the SOP property for scalar equations satisfying the usual boundary condi-
tions. However, there is a strong restriction on the “reaction” vector field f for a
system of reaction-diffusion equations to be SOP relative to the usual component-
wise ordering. Namely, its JacobianDfu should be “cooperative”, ∂fi∂uj

≥ 0 for i 6= j,
and irreducible. Since cooperation is relatively rare in natural populations, this re-
striction would seem to limit the application of the theory of monotone systems.
This, however, is only due to an unimaginative choice of partial orders. Consider,
for example, two competing species A and B. One can increase the growth rate of
species A by either decreasing the population of its competitor B or by increasing
the number of its own kind. The same reasoning applies to the growth rate of
B. Thus, if u and v denote the density of A and B respectively, then the natural
partial order for two-species competition is (u, v) ≤ (u′, v′) if and only if u ≤ u′ and
v ≥ v′. What about three species competition between competing species A,B,C?
Decreasing the population of C now has a mixed effect on species A. Besides having
the same beneficial effect noted above, it has a deleterious effect on A due to its
positive effect on A’s competitor, B! A friend of an enemy is an enemy. Conse-
quently, there is no natural order relation for three-species competition or, for that
matter, for competition involving more than two competitors.

So we see that for two-species competition, there is a natural partial order re-
lation, and sufficient conditions for the semiflow π defined by (1) to be SOP with
respect to this order relation is that ∂fi

∂uj
< 0 for i 6= j. This is precisely the mathe-

matical expression of competition. Consequently, we need only study the equilibria
determined by (2) and their stability properties to understand the dynamics for
two-species competition.

The reader may be familiar with the Lotka-Volterra ODE competition model
whose phase plane is now a standard figure in nearly all elementary ecology texts.
There are four possible outcomes: (1) competitive exclusion whereby species A goes
extinct regardless of the initial data; (2) species B goes extinct regardless of the
initial data; (3) a coexistence equilibrium attracts all initial data for which both
populations are present; and (4) bistability: a (saddle-type) coexistence equilibrium
exists but is unstable, its stable manifold separating the basins of attraction of
the two attracting, single-population equilibria. That this simple Lotka-Volterra
paradigm of two-species competition holds for many two-species competition models
regardless of whether they arise from ODEs, PDEs, delay differential, or difference
equations is biologically plausible but quite remarkable. Lazer and Hess [8] were
the first to take an abstract approach to competition by supposing it to be governed
by a semiflow π on a product space K+

1 ×K+
2 , where K+

i is the positive cone in the
ordered Banach space Xi, which is monotone relative to the natural competition
ordering on X1 × X2. The goal is to show that the only dynamical outcomes are
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the Lotka-Volterra alternatives. This has been partially successful (simple examples
show it cannot always be true) and has been refined by a number of authors [13],
[23], [25], [27], [17].

Most of the ideas described above are contained in this book, which is built
around the results of the authors’ remarkable research collaboration on spatial
models in ecology over nearly twenty years. This work is both mathematically
rigorous and biologically insightful. There is a very nice review of the gamut of
spatial models from meta-populations to interacting particle systems in addition
to reaction-diffusion systems. Starting with this overview of spatial models and
a well-motivated exposition of the mathematical background for reaction-diffusion
systems, single-population models are taken up, first in linear models and later in
nonlinear ones, including the logistic equation and consideration of Allee effects. It
is remarkable what one can learn from linear models but even more important is
that all stability considerations boil down to the principle eigenvalue of an elliptic
eigenvalue problem which inevitably depends on a myriad of biologically important
parameters. Discovering monotonicity properties of this eigenvalue with respect to
variation of these parameters is crucial for biological insight; much of the analysis
in this book revolves around these calculations. Later chapters treat multiple pop-
ulations, Lotka-Volterra competition between two competitors occupying a good
portion of this. Permanence theory is extensively treated and applied to spatial
models. The reader will learn about critical patch size for maintenance of a sin-
gle population, how spatial segregation may facilitate coexistence of populations,
how habitat shape effects the outcome of competition, and the effects of bound-
ary conditions and “edge effects” on populations. A strength of this book is its
mathematical depth and the fact that the treatment is relatively self-contained.

No books are completely free of glitches, yet this one has remarkably few. There
is an oversight in Theorem 4.3 (Acyclicity Test for Persistence) in the sense that the
set ω(S) is incorrectly identified in the text leading up to the statement of the result.
It should be the union of the omega limit sets of all points of S rather than the
omega limit set of S as a set, as defined in Chapter 1. The former is usually a finite
set, while the latter is typically infinite. For the May-Leonard example, the omega
limit set of S, as defined in Chapter 1, consists of the intersection of the unstable
manifold of the trivial equilibrium and the boundary of the positive orthant, a union
of three two-dimensional triangular sets, while the correct interpretation of ω(S),
as noted in the author’s discussion below Theorem 4.3, consists of the 4 boundary
equilibria.

In summary, this book will be useful to graduate students and researchers who
wish to learn the mathematical techniques required in the study of reaction-diffusion
systems and their applications to spatial models of population biology.
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