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Foliation theory is multifaceted. We will discuss briefly three of these facets
which make up the main subject matter of the book under review.

1. THE CLASSICAL THEORY

There are many ways in which to describe a (smooth) foliated n-manifold (M, F).
By the Frobenius theorem, it is simply an involutive subbundle E of the tangent
bundle T'(M). If the fibers of E are p-dimensional, the maximal integral manifolds
to F are one-to-one immersed submanifolds of M of dimension p, called the leaves.
The collection F of leaves partitions M and, locally, these leaves fit together like a
family of parallel p-planes in R™. The number ¢ = n — p is called the codimension
of F and is somewhat more important than the leaf dimension p. Without explicit
reference to the Frobenius theorem, one can define a foliation to be such a partition,
provided that the tangent spaces to the leaves define a smooth subbundle £ C
T(M).

Given such a structure, one constructs a foliated atlas {Uy,Zo, Yo taco. Here,
the coordinate maps z, : Uy — RP and y, : U, — R? are smooth submersions
with images that are open balls in the respective spaces and the level sets of y,
are open p-balls, called plaques, in leaves of F. Each plaque P is coordinatized by
Zo|P, while y, can be interpreted as a system of coordinates on a fixed choice of
open g-ball S, C U,, transverse to the plaques and meeting each plaque once. The
atlas can be chosen so that the local coordinate changes on U, NUg are of the form

To = Ta(T8,Yp)

Yo = Yo (Ys),

and so a plaque in U, overlaps at most one plaque in Ug and vice-versa. The
equation yo = Ya(yg) can be viewed as defining a diffeomorphism g, from an
open subset of Sg onto an open subset of S,. These diffeomorphisms generate
a pseudogroup I', called the holonomy pseudogroup of F, on the open g-manifold
S C M which is the disjoint union of the transverse balls S,, o € 2.

Notice that an atlas with coordinate changes as stipulated makes sense without
reference to a foliation, but we still call it a “foliated atlas”. Ome usually adds
some additional regularity conditions on the atlas and proves that every regular
foliated atlas arises from a unique foliation. From this point of view, the foliation
is defined by giving a regular foliated atlas. The leaf of F through a plaque P
is recovered as the union of plaques @ that can be reached by a chain of plaques,
P=PF),P,...,P, =Q, where P; overlaps P; 11,0 <14 < k. One can similarly define
foliations of class C", 0 < r < oo, or real analytic foliations (r = w) by requiring
that the foliated atlas be of class C". Finally, one can adapt the definition to
manifolds M with boundary, each component of M being either a union of leaves
of F (a single leaf if ¢ = 1) or transverse to JF.
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FIGURE 1. The Reeb-foliated solid torus.

Locally a foliation is quite trivial, but globally the structure of the leaves and
their asymptotic properties can be quite complicated. This caught the interest of
topologists when G. Reeb [15] produced his famous foliation of the 3-sphere. He
used the well known decomposition

5% =S' x D*uD?x S,
in which two solid tori are glued together along their common boundary torus by
a diffeomorphism that interchanges meridians and longitudes. Each solid torus is
foliated as in Figure [, where the boundary torus T is a leaf and the interior is
filled with cup-shaped planes, each winding asymptotically out toward T (snakes
repeatedly swallowing their tails). With a little care, this construction can be
carried out so that the resulting foliation of S® is of class C°°. Whenever such a
foliated solid torus is part of a foliation of a 3-manifold, it is called a Reeb component.

A fundamental tool for studying foliations is the holonomy group of a leaf. If
L € F, choose x € LNS and consider those elements g of the holonomy pseudogroup
I" that are defined on neighborhoods of z in .S and that fix . The set of germs
at x of such g € I clearly forms a group under composition. This is the holonomy
group G, (L) of L (at z) and, up to isomorphism, it is independent of the choice of
x, of S, and even of the foliated atlas. It can equally well be defined by considering
loops on L based at x and defining local diffeomorphisms about « in S by lifting
the loops to paths on nearby leaves and taking the first return map. The germs of
such maps constitute G, (L) and, from this point of view, there is a natural group
surjection h : m (L, z) — G, (L). Thus, for example, each planar leaf in the Reeb
foliation, being simply connected, has trivial holonomy group. One also sees that
the toral leaf has G, (T') = Z @ Z. Notice that each of the two generators of G, (T)
is (the germ of) a contraction on one side of = and the identity on the other side.
This holonomy cannot be real analytic, and so the Reeb foliation cannot be of class
cv.

If L is a compact leaf, G, (L) characterizes the germ of the foliation at L up to
diffeomorphism. This leads to the local Reeb stability theorem [I5], which asserts
that a compact leaf L with finite holonomy group has a neighborhood made up of
compact leaves that cover L. Combined with a theorem of A. Haefliger on the set
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of compact leaves [6], this gives a global stability theorem for the case in which M
is closed and connected and F has codimension 1 and is transversely orientable (the
normal bundle is orientable). If such a foliation has a compact leaf L with 71 (L)
finite, then all leaves are diffeomorphic to L and are the fibers of a fibration p :
M — S*. A striking generalization of this result, due to W. Thurston [1§], replaces
the assumption on the fundamental group by the assumption that H!(L;R) = 0.
It is noteworthy that Thurston’s result holds only if the foliation is smooth of class
at least C', while the original Reeb stability result holds for C° foliations.

Reeb’s foliation of S inspired two other classical results of immense importance.
As we noted above, this foliation has 1-sided germinal contracting holonomy, hence
cannot be real analytic. Haefliger showed that, for foliations F of codimension one
on a closed manifold with finite fundamental group, 1-sided contracting holonomy is
always present and so such foliations cannot be real analytic. His idea was to use a
closed, nullhomotopic transversal to &, to place the nullhomotopy in “general” po-
sition with respect to & and apply the Poincaré-Bendixson theorem to the induced
singular foliation on D?. Subsequently, S. P. Novikov [12] used similar techniques
to show that, in closed 3-manifolds with finite fundamental group, codimension one
foliations must contain a Reeb component. The proofs of these theorems used a
general position lemma proven by Haefliger assuming C? smoothness, but Novikov’s
theorem has been extended to C? foliations by V. V. Solodov [17].

2. TRANSVERSE GEOMETRIC STRUCTURES

Throughout this section, the manifold M is assumed to be closed and connected.
Part of the discussion extends to open manifolds, but one needs to introduce an
extra transverse completeness hypothesis in that case.

As remarked earlier, general foliations can be bewilderingly complex and strong
structure theorems are hard to come by. Accordingly, many authors have imposed
significant symmetry conditions on foliations and have developed detailed struc-
ture theory for such foliations. Of particular importance are foliations carrying
a transverse geometric structure. If F = T(F) denotes the subbundle of T(M)
tangent to the foliation &F, then @ = T(M)/E can be thought of as the normal
bundle to F. Thus, just as an infinitesimal geometric structure on M is given by
a reduction of the structure group Gi(n,R) of T (M) to a suitable Lie subgroup
G C Gl(n,R), so one can define a transverse geometric structure as a G-reduction
of @ (G C Gl(q,R)) that, in a suitable sense, is parallel along the leaves of F.
The (locally absolute) parallelism can be defined via a certain connection, the Bott
basic connection, but rather than go into this, we will reformulate the definition of
a transverse structure using the holonomy pseudogroup introduced above. In this
language, one gives a geometric structure on the transverse g-manifold S, requiring
that the foliated atlas can be chosen so that this structure is invariant under the
holonomy pseudogroup I'.

Of particular note are (transversely) parallelizable foliations and (transversely)
Riemannian ones. In the first case there is given a smooth ¢-frame field £ on S that
is invariant under I'. Equivalently, there is a normal g-frame field ¢ to F which
is parallel relative to the Bott connection. The local submersions y, : Uy — Sa
project ¢|U, exactly to £|S,. These foliations are homogeneous in the sense that,
given points x,y € M, there is a foliation-preserving diffeomorphism of M carrying
T to y.
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In the Riemannian case, one is given a Riemannian metric on S and a holonomy
pseudogroup I' consisting of local isometries. In this case, there is a Riemannian
metric on (), invariant under the parallelism along leaves, and this metric extends
to a metric on T'(M) such that each y, : U, — S, is a Riemannian submersion.
Such metrics were introduced by B. Reinhart [16], who called them “bundle-like”.

Also of note are Lie foliations. These are most easily described by an imbedding
S — G relative to which the elements of I' are locally left translations by elements
of the Lie group G. Lie foliations are equivalently given by a nonsingular Maurer-
Cartan form. This is a g-valued 1-form w on M, where g is the Lie algebra of
G, wy : T,(M) — g is surjective, for each x € M, and dw + %[w,w] = 0. The
distribution ker(w) is involutive and the foliation it defines is Lie. Lie foliations
were studied by E. Fedida [5].

In what follows we will drop the qualifier “transverse” as no confusion should
arise.

Lie foliations are parallelizable and parallelizable foliations are Riemannian, but
there are deeper relationships between these notions. If F is parallelizable, then
the closure L of each leaf L is a closed submanifold and these submanifolds are the
fibers of a smooth fibration 7 : M — W. Furthermore, F restricts to a foliation of
L, and this is a Lie foliation. By the homogeneity of F, the foliation of M by the
fibers of 7 is also homogeneous and the Lie foliations of the fibers are isomorphic.
Thus, the Lie algebra g associated to each fiber is an invariant of &F.

The structure theorem of the previous paragraph is due to P. Molino [§]. Also,
see [9], where his strong structure theorem for Riemannian foliations is also proven.
For this theorem, assume that F is Riemannian. Let O(M,%F) be the principle
O(q)-bundle of orthonormal frames of @ associated to the transverse metric. The
locally absolute parallelism of frames along leaves induces a foliation F of O(M,3),
and Molino proves that F is parallelizable. The associated fibration

7:OM,F) - W

is O(q)-equivariant relative to an O(q)-action on W and the principle O(g)-action
on O(M,F). The Lie algebra g and Maurer-Cartan form w associated to each fiber
are thus invariants of J.

3. LIE GROUPOIDS AND ALGEBROIDS

The holonomy groupoid of a foliation F, also known as the graph of &, appears in
the work of C. Ehresmann [4], was extensively studied by H. E. Winkelnkemper [21]
and used by him to prove a remarkable result about the topology of the leaves of
a Riemannian foliation [22]: if M is closed and simply connected, and if F is a
Riemannian foliation, then the leaves have a common universal cover which has 0,
1 or 2 ends. Much deeper applications of this groupoid are due to A. Connes (see,
for instance, [2] and [3]), who uses it to construct the C*-algebra of a foliation (the
noncommutative geometry of foliations) and generalizes the Atiyah-Singer index
theorem to this context.

A groupoid G is a (small) category with inverses. It consists of two sets, the set
Gy of objects and the set Gy of morphisms or arrows between objects. The source
and target of each arrow define a pair of maps

S,tlal —>G’07
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and a pair (g,h) € G1 x Gy is composable if t(h) = s(g). The set of composable
pairs is denoted by G1 x¢, G1, and composition defines a map

G xg, Gi — Gy,

written u(g, h) = gh. For each x € Gy, there is an identity morphism 1, : x — =z,
and this defines the unit map

1: Gy — Gy

Each arrow is invertible, and this defines the inverse map
L: G — Gy

If Gy and G carry topologies relative to which these structure maps are continuous,
G is called a topological groupoid. If Gg and Gy carry smooth manifold structures
such that these structure maps are smooth, G is called a Lie groupoid. Because of
important examples, one does not demand that the manifold G; be Hausdorff.

We turn to the holonomy groupoid. If ¥ is a foliation of the manifold M, let
Go = M. If x,y € M, the set of arrows x — y is empty unless x and y lie on a
common leaf L of F. If they do lie on L, a path o on L from z to y defines a holonomy
transformation from a small g-transversal through = to one through y. Two such
paths are defined to be equivalent if their associated holonomy transformations have
the same germ at x. Such an equivalence class is an arrow from « to y. The set G
of such arrows is clearly the space of morphisms of a groupoid. With some work,
G is given a topology and smooth manifold structure of dimension 2p + ¢ (where,
as usual, p is the leaf dimension of F and ¢ is the codimension). The five structure
maps are smooth. A related groupoid, the monodromy groupoid, is defined by using
the relation of homotopy (with fixed endpoints) between paths on a leaf. This too
is a Lie groupoid. The holonomy groupoid of a Riemannian foliation is Hausdorff,
but for arbitrary foliations this fails. The Reeb foliation of S® is an example for
which G is not Hausdorff.

An étale groupoid is a Lie groupoid in which dim Gy = dim G;. An example of
such a groupoid is given by setting Gy = R? and setting G; = I'Y, the space of germs
of locally defined diffeomorphisms in R? with the sheaf topology. It was the idea
of Haefliger [7] to use this groupoid and a theorem of M. Gromov and A. Phillips
(cf. [13]) to classify foliations of open manifolds up to integrable homotopy. By quite
different methods, Thurston [19], [20] has obtained analogous results for foliations
of arbitrary manifolds.

We have tried to give some motivation for the study of Lie groupoids by sketching
their applications to foliation theory. Of course, many other geometric applications
exist. And many authors study Lie groupoids for their intrinsic interest as general-
izations of Lie groups. In particular, in an effort to establish a close analogy with
classical Lie theory, J. Pradines [14] has introduced the notion of a Lie algebroid
to play the role here of the Lie algebra in the classical theory. Without going into
detail, we note that, just as a Lie algebra arises from a Lie group as its infinitesi-
mal approximation, so does each Lie groupoid give rise to a unique associated Lie
algebroid. Also, each Lie group is a Lie groupoid (take Gy to be a singleton), and
its associated Lie algebroid is its usual Lie algebra. However, Pradines’ expectation
that every Lie algebroid would be integrable (associated to a Lie groupoid) proved
to be false. A transversely parallelizable foliation of a closed, connected manifold
gives rise to a certain Lie algebroid, called the basic algebroid, and it was shown
by P. Molino and R. Almeida [I] that this algebroid is integrable if and only if the
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foliation lifted to the universal cover is the foliation by the level sets of a suitable
submersion. Examples exist in which this condition fails.

4. THE BOOK

The book under review [10] falls into three parts corresponding roughly to the
three topics outlined above. The first three chapters cover the classical theory:
basic concepts and facts, the stability theorems, Haefliger’s theorem and Novikov’s
theorem. Complete proofs are given of these results. In the case of Thurston’s
stability theorem, a local version in arbitrary codimension is given from which the
global, codimension one version, stated above, follows easily. The proof of this
theorem has novel elements, following partly the original proof of Thurston [18§]
and partly the proof given by the second author in [I1].

An important topic in this first part of the book, not alluded to in the above, is
that of orbifolds. By the local Reeb stability theorem, these arise in foliation theory
as the space of leaves of foliations having all leaves compact with finite holonomy.

While Riemannian foliations are introduced in Chapter 2, the detailed treatment
of transverse geometric structures is carried out in Chapter 4. This is divided
into three sections, the first being devoted to parallelizable foliations. The second
section treats principal bundles, connections and transverse principal bundles to
a foliation. In the third section, Lie foliations are introduced, and the geometric
machinery that has been developed is applied to prove the structure theorems of
Molino for parallelizable and Riemannian foliations. It should be remarked that
the treatment here is a bit different from what we outlined above. The projectable
or basic vector fields defined by the authors are equivalent to our parallel fields,
the Bott basic connection being implicit but not mentioned. The pseudogroup
approach to transverse structures is not developed.

Chapters 5 and 6 are the most abstract part of the book. In Chapter 5, Lie
groupoids are discussed, the principal examples being the holonomy and mon-
odromy groupoids of a foliation. Also discussed are étale groupoids and proper
groupoids and the role of proper groupoids in the theory of orbifolds. An introduc-
tory study of Lie algebroids is offered in Chapter 6. Here is discussed the extent to
which their relationship to Lie groupoids does and does not parallel that of Lie alge-
bras to Lie groups. The chapter concludes with a proof of the theorem of Almeida
and Molino mentioned above.

This book, though relatively short, is packed with interesting information. The
student who would like a brief but substantial introduction to foliation theory
will find it rewarding, but should be prepared for some hard work. There are
many exercises, often challenging, and these illuminate the ideas and sometimes
incorporate significant steps of proofs.
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