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The term reduction of a Hamiltonian system is used in the literature in several
different ways. It may describe the induced dynamics on an invariant manifold or
the dynamics of the system projected to the space of orbits of the symmetry group.
It may include a study of the structure of the orbit space or a search for a structure
of the original system which is reproduced on the orbit space. Because of these
ambiguities, there are different approaches to reduction which give a rich variety of
descriptions of Hamiltonian dynamics.

1. Hamiltonian systems and symmetries

The phase space of a Hamiltonian system is a symplectic manifold (P, ω), that is
a smooth manifold endowed with a closed, non-degenerate form ω. Non-degeneracy
of ω means that, for each smooth function f on P , there exists a unique vector field
Xf on P such that

(1) Xf ω = df.

Here denotes the left interior product (contraction) of vector fields and forms.
The vector field Xf is called the Hamiltonian vector field of f . Thus, we have a
linear map f �→ Xf of the space C∞(P ) of smooth functions on P into the space
X (P ) of smooth vector fields on P . If P is connected, the kernel of this map
consists of constant functions on P. The symplectic form ω on P induces a bracket
on C∞(P ), called the Poisson bracket, which is defined by

(2) {f, h} = −Xfh,

where the right hand side denotes the derivative of h in the direction Xf . The
Poisson bracket defines the structure of a Lie algebra on C∞(P ) such that the map
h �→ Xh is a Lie algebra anti-homomorphism. In other words,

(3) X{f,h} = −[Xf , Xh]

for all f, h ∈ C∞(P ). Equation (2) implies that, for each f ∈ C∞(P ) the map
h �→ {f, h} is a derivation of C∞(P ). Thus, the space C∞(P ) of smooth functions
on a symplectic manifold (P, ω) has the structure of a Poisson algebra. In other
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words, C∞(P ) is an associative algebra and a Lie algebra such that the bracket
operation defines a derivation of the associative algebra.

Let G be a Lie group and Φ : G×P → P : (g, p) �→ Φg(p) = gp an action of G on
P preserving the symplectic form ω. The action Φ is proper if, for every convergent
sequence {pn} in P and every sequence {gn} in G such that the sequence {gnpn}
converges, the sequence {gn} converges and

(4) lim
n→∞(gnpn) = ( lim

n→∞ gn)( lim
n→∞ pn).

The action Φ is Hamiltonian if there exists an Ad∗-equivariant momentum map J
from P to the dual g∗ of the Lie algebra g of G such that, for every ξ ∈ g, the action
on P of the one-parameter subgroup exp tξ of G is given by translation by t along
integral curves of the Hamiltonian vector field XJξ

of Jξ, where Jξ(p) = 〈J(p) | ξ〉
is the evaluation of J(p) on ξ. In other words, for every f ∈ C∞(P ),

(5)
d

dt
(exp tξ)∗f|t=0 = {Jξ, f}.

From the point of view of the theory of reduction, properness and the existence of
an Ad∗-equivariant momentum map are key characteristics of the G-action.

For every G-invariant function h ∈ C∞(P ), the group G is a symmetry group
of the Hamiltonian system (P, ω, h). The first Noether theorem ensures that the
momentum map J is constant on integral curves of the Hamiltonian vector field
Xh.

2. Dirac’s reduction

The first systematic study of reduction is due to P.A.M. Dirac from the point of
view of quantization of field theories with constraints, for example electrodynamics
and gravity, [8]. Dirac considered a family of smooth functions on a symplectic
manifold (P, ω), which can be considered as components of a smooth map J from P
to some vector space V . They are primary constraint functions defining a constraint
set C = J−1(0). In Dirac’s terminology, constraints are smooth functions on P that
vanish on C. They form an associative ideal

(6) I = {h ∈ C∞(P ) | h|C = 0}
in C∞(P ). A function f ∈ C∞(P ) is first class if the Poisson bracket {f, h} ∈ I
for every h ∈ I. In other words, first class functions form a Lie algebra normalizer
N of I in the Poisson algebra C∞(P ). If all constraints are first class, that is
I ⊆ N , then the Jacobi identity for the Poisson bracket implies that N is a Poisson
subalgebra of C∞(P ) and the quotient N/I inherits from N the structure of a
Poisson algebra, called the reduced Poisson algebra.

Second class constraints are constraints that are not first class. In the presence
of second class constraints, the associative ideal I fails to be a Poisson ideal. Hence,
taking Poisson brackets of functions in C∞(P ) mod I does not lead to a well defined
Poisson bracket. For example, if C is a symplectic submanifold of (P, ω), then all
constraints are second class. In this case the pull-back ωC of ω to C is symplectic,
and C∞(C) is the Poisson algebra of (C, ωC). However, we cannot compute the
Poisson bracket of fC , hC ∈ C∞(C) by extending fC and hC to smooth functions
f and h on P, evaluating the Poisson bracket {f, h} in C∞(P ) and restricting the
result to C. Dirac’s recipe for quantizing of systems with second class constraints
was to impose the second class constraints on the classical level and to quantize the
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obtained system with only first class constraints. He also gave a prescription of how
to modify the Poisson bracket on C∞(P ) to obtain a new Poisson bracket {·, ·}D for
which all constraints are first class. The modified Poisson bracket {·, ·}D is called
the Dirac bracket. We denote by (C∞(P ), {·, ·}D) the Poisson algebra consisting of
smooth functions on P with the bracket operation given by the Dirac bracket. Let
ND denote the normalizer of the ideal I in the Poisson algebra (C∞(P ), {·, ·}D).
Since all constraints are first class, I ⊆ ND, and the Jacobi identity for the Dirac
bracket implies that ND is a Poisson subalgebra of (C∞(P ), {·, ·}D). Hence, the
quotient ND/I inherits from ND the structure of a Poisson algebra, called the
Dirac reduced Poisson algebra. This construction is supposed to be independent of
the choice of Dirac bracket.

3. Geometric reduction

Geometric reduction was developed as an attempt to understand Dirac’s reduc-
tion in geometric terms, [11], [12], [13] and [24].

If the constraint set C is a submanifold of P , then the symplectic form ω on P
pulls back to a form ωC on C. If

kerωC = {u ∈ TC | u ωC = 0}
has constant rank, then it is an involutive distribution on C. By Frobenius’ theorem,
kerωC is integrable. We denote the space of maximal integral manifolds of kerωC

by P̄ = C/ kerωC . Let ρ : C → P̄ be the projection associating to each p ∈ C the
maximal integral manifold of kerωC through p. If P̄ has a manifold structure such
that ρ : C → P̄ is a submersion, then there exists a unique symplectic form ω̄ on
P̄ such that ρ∗ω̄ = ωC . The symplectic manifold (P̄ , ω̄) is a geometrically reduced
phase space corresponding to the constraint submanifold C of (P, ω).

Dirac’s principle that one should implement all second class constraints on the
classical level can be interpreted as a requirement that functions on P should be
pulled back to a symplectic submanifold D of P that contains the constraint man-
ifold C as a co-isotropic submanifold. With this interpretation, the corresponding
Dirac bracket coincides with the usual Poisson bracket on (D, ωD), where ωD is
the pull-back of ω to D, [20]. Expressing D locally as the level set of second class
constraints explains the Bergmann-Goldberg formula for the Dirac bracket, [4]. In
this case, the Dirac reduced Poisson algebra is isomorphic to the Poisson algebra of
geometrically reduced phase space (P̄ , ω̄). This result is independent of the choice
of symplectic submanifold D of P that contains C as a co-isotropic manifold.

The inherent weakness of geometric reduction is the necessity of making a series
of assumptions: smoothness of C, constant rank of kerωC and quotient manifold
structure of P̄ .

4. Regular reduction

The term regular reduction is used to describe reduction when the constraint
set is a level set of an Ad∗-equivariant momentum map J : P → g∗ for a free and
proper action of a Lie group G on (P, ω). In other words, C = J−1(µ) for some
µ ∈ g∗.

Since the action of G on P is free and proper, the space P̄ = P/G of orbits of G
has the structure of a smooth manifold such that the orbit map ρ : P → P̄ : p �→ Gp
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is a submersion. Moreover, for each µ ∈ g∗, the level set J−1(µ) is a submanifold
of P . Let

Gµ = {g ∈ G | Ad∗gµ = µ}
be the isotropy group of µ. It is a closed subgroup of G which acts on J−1(µ).
Since the action of G on P is free and proper, it follows that the action of Gµ

on J−1(µ) is free and proper. Hence, the space P̄µ = J−1(µ)/Gµ of Gµ-orbits
in J−1(µ) is a manifold and the orbit map ρµ : J−1(µ) → P̄µ : p �→ Gµp is a
submersion. Moreover, the kernel of the pull-back ωJ−1(µ) of ω to J−1(µ) has
constant rank, and it is spanned by Hamiltonian vector fields XJξ

, for ξ in the
Lie algebra gµ of Gµ. Thus, P̄µ = J−1(µ)/Gµ has an induced symplectic form ω̄µ

such that ρ∗µω̄µ = ωJ−1(µ). The symplectic manifold (P̄µ, ω̄µ) is often called the
Marsden-Weinstein reduced space, [14].

The power of this approach is that all the necessary assumptions of geometric
reduction are consequences of the assumption that the action of G on (P, ω) is free
and proper. Since (P̄µ, ω̄µ) can also be obtained from the constraint set J−1(µ) by
geometric reduction, it follows that its Poisson algebra can be obtained by Dirac
reduction as described in the preceding section.

Unlike the case of geometric reduction, where we have a single constraint man-
ifold, here we have a partition of P by a family {J−1(µ) | µ ∈ g∗} of constraint
manifolds. One can ask the question: how do the reduced symplectic manifolds
(P̄µ, ω̄µ) fit together?

Since the action of G on P is free and proper, the space P̄ = P/G of orbits of G
has the structure of a smooth manifold such that the orbit map ρ : P → P̄ : p �→ Gp
is a submersion. The orbit space P̄µ = J−1(µ)/Gµ is naturally diffeomorphic to the
projection ρ(J−1(µ)) of J−1(µ) to the orbit space P̄ = P/G. Hence, each ρ(J−1(µ))
carries a natural symplectic structure. For the sake of simplicity of notation, we may
identify P̄µ with ρ(J−1(µ)). Since ρ and J are continuous, each Pµ = ρ(J−1(µ))
is an embedded submanifold of P̄ . The family {P̄µ = ρ(J−1(µ)) | µ ∈ g∗} gives a
singular foliation of P̄ in the sense of Stefan, [23].

The G-invariance of the symplectic form ω on P implies that the Poisson bracket
on C∞(P ) is G-invariant. Hence, C∞(P )G is a Poisson subalgebra of C∞(P ), and
we can use the isomorphism ρ∗ : C∞(P̄ ) → C∞(P )G to pull back the Poisson
algebra structure on C∞(P )G to C∞(P̄ ). Thus, passing to the orbit space preserves
the Poisson algebra structure. Let {f̄ , h̄} denote the Poisson bracket of f̄ , and h̄ in
C∞(P̄ ); that is, for every f̄ , h̄ ∈ C∞(P̄ ),

(7) ρ∗{f̄ , h̄} = {ρ∗f̄ , ρ∗h̄}.
It should be noted that the Poisson algebra structure on C∞(P ), induced by the

symplectic form ω, may be somewhat more special than that on C∞(P̄ ) because P̄
need not be symplectic. Manifolds, for which the ring of smooth functions have a
Poisson algebra structure are called Poisson manifolds.

We can describe the singular foliation of P̄ by symplectic manifolds (P̄µ, ω̄µ)
directly in terms of the Poisson bracket on C∞(P̄ ). To each h̄ ∈ C∞(P̄ ), we
associate a vector field X̄h̄ on P̄ , called the Poisson vector field of h̄, such that, for
every f̄ ∈ C∞(P̄ ),

(8) X̄h̄f̄ = −{h̄, f̄}.
The left hand side of (8) denotes the derivative of f̄ in the direction X̄h̄. Let exp tX̄h̄

denote the local one-parameter group of local diffeomorphisms of P̄ generated by
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X̄h̄. For each p̄ ∈ P̄ , the orbit Op̄ through p̄ of the family H(P̄ ) = {X̄h̄ | h̄ ∈
C∞(P̄ )} of Poisson vector fields on P̄ is the set of points in P̄ that can be reached
from p̄ by piecewise smooth curves in P̄ with tangent vectors in H(P̄ ). In other
words,

(9) Op̄ =
{

(exp t1X̄h̄1
◦ ... ◦ exp tnX̄h̄n

)(p̄) | n ∈ N, t1, ..., tn ∈ R ,
h̄1, ..., h̄n ∈ C∞(P̄ )

}
.

Each orbit Op̄ has the natural structure of a symplectic manifold. It is the sym-
plectic leaf through p̄ of the Poisson manifold P̄ . In general, the inclusion of Op̄ in
P̄ may be an immersion. However, in the case of a free and proper Hamiltonian
action discussed here, symplectic leaves coincide with the symplectic submanifolds
(P̄µ, ω̄µ) of P̄ .

If the action of G on (P, ω) is free and proper but does not admit a momentum
map, then the constraint set C is not defined and we cannot use either Dirac’s
reduction or the geometric form of regular reduction described above. Nevertheless,
we can use Poisson reduction to get a singular foliation of the orbit space P̄ by
symplectic orbits of the family H(P̄ ) of Poisson vector fields on P̄ . In this case,
symplectic leaves are immersed in P̄ .

5. Singular reduction

The term singular reduction is used in the case of a proper action of a Lie
group G on (P, ω) which is not free. For each p ∈ G, the isotropy group of p is
Gp = {g ∈ G | gp = p}. The assumed properness of the action implies that all
isotropy groups are compact. For each compact subgroup H of G, the set

(10) P(H) = {p ∈ P | Gp is conjugate to H in G}
of points of orbit type (H) is a local submanifold of P . This means that connected
components of P(H) are submanifolds of P . Similarly, connected components of
the projection P̄(H) = ρ(P(H)) of P(H) under the G-orbit map ρ are manifolds.
For each µ ∈ g∗, the connected components of the intersection J−1(µ) ∩ P(H) are
submanifolds of P . Moreover, each connected component of the projection P̄µ,(H) =
ρ(J−1(µ) ∩ P(H)) of J−1(µ) ∩ P(H) to P̄ is a manifold endowed with a symplectic
form ωµ,(H). Thus, singular reduction leads from a G-invariant Hamiltonian system
(P, ω, h) to a collection of Hamiltonian systems (P̄µ,(H), ω̄µ,(H), h̄µ,(H)), where H is
a compact subgroup of G, h̄µ,(H) is the restriction of h̄ = ρ∗h to P̄µ,(H) and µ ∈ g∗,
[16].

To complete the description of the structure of the orbit space P̄ we need to
discuss how the manifolds P̄(H) fit together. Consider a slice neighbourhood Sp×Gp
of a point p ∈ P with isotropy group Gp = H . It follows from the slice theorem, [17],
that ρ(Sp) is a neighbourhood of p̄ = ρ(p) in P̄ , which is homeomorphic to an open
subset of the space of orbits of a linear action of H on TpSp. Since H is compact,
we can use the invariant theory to describe the H-orbits in this neighbourhood.

Let R[TpSp]H denote the algebra of H-invariant polynomials on P . Hilbert’s
theorem ensures that R[TpSp]H is finitely generated, ([25], p. 274). Let σ1, ..., σk

be a Hilbert basis for R[TpSp]
H . The corresponding Hilbert map

(11) σ = (σ1, ..., σk) : TpSp → R
k : v �→ (σ1(v), ..., σk(v))

induces a map σ̃ : TpSp/H → R
k : Hv �→ σ(v). By the Tarski-Seidenberg theorem,

the range of σ̃ is a semi-algebraic set in R
k, ([9], p. 218). Thus, the orbit space
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TpSp/H is homeomorphic to a semi-algebraic set σ̃(TpSp/H) in R
k. Hence, the orbit

space P̄ = P/G is locally homeomorphic to an open subset of a semi-algebraic set.
In the context of reduction of symmetries of Hamiltonian systems, this construction
was first used in [6].

Every semi-algebraic set admits a canonical Whitney stratification into a finite
number of semi-algebraic subsets. By a theorem of Bierstone, [5], this stratification
coincides with the stratification of TpSp/H by orbit type and gives rise to a local
stratification of the orbit space P̄ = P/G. Gluing these local strata with non-empty
intersections together gives rise to a global stratification of P̄ with strata given by
connected components of P̄(H) as H runs over compact subgroups of G.

Since the action of G on P is proper, the space C∞(P )G of G-invariant smooth
functions on P separates G-orbits. Hence,

(12) C∞(P̄ ) = {f̄ : P̄ → R | ρ∗f ∈ C∞(P )}
defines on P̄ the structure of a differential space in the sense of Sikorski, [19]. A
theorem of Schwarz, [18], and results of [7] imply that, in the category of differential
spaces, P̄ is locally diffeomorphic to an open subset of a semi-algebraic set in R

k.
Hence, P̄ with the differential structure C∞(P̄ ) is a subcartesian space in the sense
of Aronszajn, [1]. The category of subcartesian spaces contains the category of
smoothly stratified spaces, [21], and it is easier to work with.

The space C∞(P̄ ) of smooth functions on the orbit space inherits from C∞(P )G

the structure of a Poisson algebra as in the case of regular reduction. The strati-
fication of the reduced space P̄ and its singular foliation, as described above, can
be determined from the structure of C∞(P̄ ) as follows. A derivation of C∞(P̄ ) is
a linear map X̄ : C∞(P̄ ) → C∞(P̄ ) that satisfies Leibniz’ rule:

X̄(h̄1h̄2) = (X̄h̄1)h̄2 + h̄1(X̄h̄2)

for every h̄1, h̄2 ∈ C∞(P̄ ). Since P̄ is a subcartesian space, for every derivation X̄ of
C∞(P̄ ) and every point p̄ ∈ P̄ there exists a unique maximal smooth integral curve
t �→ c(t) in P̄ through p̄. A derivation X̄ is a vector field on P̄ if translations along
maximal integral curves of X̄ give rise to a local one-parameter group exp tX̄ of
local diffeomorphisms of P̄ . Let X (P̄ ) be the family of all vector fields on P̄ . Orbits
of this family, defined as in equation (9) are smooth manifolds which coincide with
strata of the stratification of P̄ discussed above. Similarly, orbits of the family of
Poisson vector fields on P̄ , defined by equation (8), are symplectic leaves of the
singular foliation of P̄ by connected components of manifolds P̄µ,(H), [21].

As in the case of regular reduction, the stratification of the orbit space P̄ by orbits
of the family of all vector fields is independent of the existence of a momentum map.
If the action of G on (P, ω) does not admit a momentum map, then we still get a
singular foliation of strata by symplectic orbits of the family of Poisson vector fields
on P̄ . In this case, symplectic leaves are immersed submanifolds of strata of P̄ .

6. Algebraic reduction

In the case of improper actions, invariant functions need not separate orbits.
Hence, the space of invariant functions does not carry full information about or-
bit space. For improper actions, one has to find the right questions to ask from
reduction.

The problem of commutativity of quantization and reduction was formulated in
the setting of representation theory by V. Guillemin and S. Sternberg, [10]. They
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studied a free action of a compact group G on a compact symplectic manifold
(P, ω), with an Ad∗-equivariant momentum map J , such that geometric quantiza-
tion of (P, ω) gives rise to a unitary representation of G on the space of holomorphic
sections of a complex line bundle over P . Since P is compact, the representation
space is finite dimensional and it can be decomposed into the direct sum of ir-
reducible unitary representations of G. Under technical assumptions, they could
express multiplicities of irreducible representations appearing in the decomposition
in terms of geometric data provided by reduction. This problem has been ex-
tensively studied by several authors under the assumption of compactness, which
allows the techniques of algebraic geometry to be utilized; see [15] and the references
quoted therein.

Algebraic reduction was introduced as an attempt to address the problem of
commutativity of quantization and reduction when the group and the symplectic
manifold are not compact. It has been successful in a few examples when the action
of the group is not proper. Algebraic reduction at µ ∈ g∗ gives rise to a Poisson
algebra (C∞(P )/Jµ)Gµ of Gµ-invariant elements of the quotient of C∞(P ) by the
ideal Jµ generated by components of (J − µ), and Gµ is the isotropy group of
µ, [2], [22]. If the action of G on P is free and proper, then the Poisson algebra
(C∞(P )/Jµ)Gµ is canonically isomorphic to the Poisson algebra C∞(P̄µ) of the
symplectic manifold (P̄µ, ω̄µ). If the action of G on P is proper but not free, the
Poisson algebra (C∞(P )/Jµ)Gµ need not be isomorphic to the Poisson algebra
obtained by singular reduction, [3].

7. The book

The book Momentum Maps and Hamiltonian Reduction by Juan-Pablo Ortega
and Tudor S. Ratiu concentrates on regular and singular reduction.

The presentation of the subject matter starts in a way suitable for a graduate text
in mathematics, with introductory chapters on manifolds and smooth structures,
Lie group actions and pseudogroups and groupoids. The next two chapters deal
with various momentum maps: from the equivariant momentum map, described
above, to the optimal momentum map which assigns to each point p ∈ P the orbit
Op̄ through p̄ = ρ(p) of the family H(P̄ ) = {X̄h̄ | h̄ ∈ C∞(P̄ )} of Poisson vector
fields on P̄ .

The second half of the book deals with various forms of reduction. Here the pace
accelerates and reading becomes more difficult. Statements of theorems reach over
a page in length. At this stage the book becomes too difficult for beginners.

The authors missed several opportunities they had created by providing a good
review of the background material. For example:

• A proof of the stratification theorem in chapter 2 would give the beginner
a chance to see how the tools introduced in chapter 1 are used.

• Chapter 2 would benefit from a more detailed description of how the the-
orems of Weyl, Tarski-Seidenberg and Schwarz are used to show that the
space of orbits of a linear action of a compact Lie group is a semi-algebraic
set and why semi-algebraic sets are stratified. The authors’ comment that
this is “a well known result” is somewhat unsatisfactory.

• It would have been valuable from a pedagogical point of view to give a
complete proof in section 2.5.4 of the smooth structure of the orbit space.
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• Singular Poisson reduction leads naturally from manifolds to differential
spaces. A stratified space is a special case of a differential space, but the
stratification structure is much more complicated than the structure of
a subcartesian differential space. The authors decided not to discuss re-
duced Poisson algebras of globally defined functions on the orbit space and
restricted their attention to presheafs of Poisson algebras. Therefore, they
were unable to describe the geometric structure of singularly reduced Pois-
son space directly in terms of its Poisson algebra.

In spite of the shortcomings listed above, Momentum Maps and Hamiltonian
Reduction is a very valuable reference book. It covers a wealth of material, has a
good index and a quite comprehensive bibliography.
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