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Conway and Smith’s book is a wonderful introduction to the normed division
algebras: the real numbers (R), the complex numbers (C), the quaternions (H),
and the octonions (O). The first two are well-known to every mathematician. In
contrast, the quaternions and especially the octonions are sadly neglected, so the
authors rightly concentrate on these. They develop these number systems from
scratch, explore their connections to geometry, and even study number theory in
quaternionic and octonionic versions of the integers.

Conway and Smith warm up by studying two famous subrings of C: the Gaussian
integers and Eisenstein integers. The Gaussian integers are the complex numbers
x + iy for which x and y are integers. They form a square lattice:
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Any Gaussian integer can be uniquely factored into ‘prime’ Gaussian integers —
at least if we count differently ordered factorizations as the same and ignore the
ambiguity introduced by the invertible Gaussian integers, namely ±1 and ±i. To
show this, we can use a straightforward generalization of Euclid’s proof for ordinary
integers. The key step is to show that given nonzero Gaussian integers a and b, we
can always write

a = nb + r

for some Gaussian integers n and r, where the ‘remainder’ r has

|r| < |b|.
This is equivalent to showing that we can find a Gaussian integer n with

|a/b − n| < 1.

And this is true, because no point in the complex plane has distance ≥ 1 to the
nearest Gaussian integer.

Similarly, the Eisenstein integers are complex numbers of the form x+ωy where
x and y are integers and ω is a nontrivial cube root of 1. These form a lattice with
hexagonal symmetry:
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Again one can prove unique factorization up to reordering and units, using the
fact that no point in the complex plane has distance ≥ 1 to the nearest Eisenstein
integer.

To see the importance of this condition, consider the ‘Kummer integers’: num-
bers of the form x +

√−5y where x and y are integers. If we draw an open ball of
radius 1/2 about each Kummer integer, there is still room for more disjoint open
balls of this radius:
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Thus there exist points in the complex plane with distance ≥ 1 from the nearest
Kummer integer, so Euclid’s proof of unique prime factorization fails — and so
does unique prime factorization:

2 · 3 = 6 = (1 +
√−5)(1 −√−5).

In short, there is an interesting relation between number theory and a subject on
which Conway is an expert: densely packed lattices [5]. For a lattice in a normed
division algebra to be closed under multiplication, all its points must have distance
≥ 1 from each other: otherwise the smallest element of nonzero norm, say z, would
have |z| < 1 and thus |z2| < |z| — a contradiction! On the other hand, for the
Euclidean algorithm to work, at least in the simple form described here, there must
be no point in the plane with distance ≥ 1 from the nearest lattice point. So for
both of these to hold, our lattice must be ‘well packed’: if we place open balls of
radius 1/2 centered at all the lattice points, they must be disjoint, but they must
not leave room for any more disjoint open balls of this radius.

When it comes to subrings of the complex numbers, these ideas are well-known.
Back in the 1890’s, Minkowski used them to study unique prime factorization (or
more generally, ideal class groups) not only for algebraic integers in quadratic num-
ber fields, as we have secretly been doing here, but also in other number fields,
which require lattices in higher dimensions. He called this subject ‘the geometry
of numbers’ [4, 11, 16]. Conway and Smith explore a lesser-known aspect of the
geometry of numbers by applying it to subrings of the quaternions and octonions.
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But they cannot resist a little preliminary detour into the geometry of lattices in 2
dimensions — nor should we.

The Gaussian and Eisenstein integers are the most symmetrical lattices in the
plane, since they have 4-fold and 6-fold rotational symmetry, respectively. As such,
they naturally turn up in the classification of 2-dimensional space groups. A ‘space
group’ is a subgroup of the Euclidean group (the group of transformations of Rn

generated by rotations, reflections and translations) that acts transitively on a
lattice. Up to isomorphism, there are 230 space groups in 3 dimensions. These
act as symmetries of various kinds of crystals, so they form a useful classification
scheme in crystallography — perhaps the most easily understood application of
group theory to physics. In 2 dimensions, there are just 17 isomorphism classes of
space groups. These are also called ‘wallpaper groups’, since they act as symmetries
of different wallpaper patterns. Conway and Smith describe all these groups. Two
of them act on a lattice with the least amount of symmetry:
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Seven act on a lattice with rectangular symmetry:
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or alternatively, on one with rhombic symmetry. Three act on a lattice with square
symmetry, and five act on a lattice with hexagonal symmetry.

After this low-dimensional warmup, Conway and Smith’s book turns to the
quaternions and their applications to geometry. The quaternions were discovered
by Sir William Rowan Hamilton in 1843. Fascinated by the applications of complex
numbers to 2d geometry, he had been struggling unsuccessfully for many years to
invent a bigger algebra that would do something similar for 3d geometry. In mod-
ern language, it seems he was looking for a 3-dimensional normed division algebra.
Unfortunately, no such thing exists! Finally, on October 16th, while walking with
his wife along the Royal Canal to a meeting of the Royal Irish Academy in Dublin,
he discovered a 4-dimensional normed division algebra. In his own words, “I then
and there felt the galvanic circuit of thought close; and the sparks which fell from
it were the fundamental equations between i, j, k; exactly such as I have used them
ever since.” He was so excited that he carved these equations on the soft stone wall
of Brougham Bridge.

Hamilton’s original inscription has long since been covered by other graffiti,
though a plaque remains to commemorate the event. The quaternions, which in
the late 1800’s were a mandatory examination topic in Dublin and the only ad-
vanced mathematics taught in some American universities, have now sunk into
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obscurity. The reason is that the geometry and physics which Hamilton and his
followers did with quaternions is now mostly done using the dot product and cross
product of vectors, invented by Gibbs in the 1880’s [7]. Scott Kim’s charming sepia-
toned cover art for this book nicely captures the ‘old-fashioned’ flavor of some work
on quaternions. But the quaternions are also crucial to some distinctly modern
mathematics and physics.

As a vector space, the quaternions are

H = {a + bi + cj + dk : a, b, c, d ∈ R}.
They become an associative algebra with 1 as the multiplicative unit via:

i2 = j2 = k2 = −1,

ij = k = −ji and cyclic permutations.

Copying what works for complex numbers, we define the ‘conjugate’ of a quaternion
q = a + bi + cj + dk to be q = a − bi − cj − dk, and define its ‘real part’ to be
Re(q) = a. It is then easy to check that

qq = qq = a2 + b2 + c2 + d2.

This suggests defining a norm by |q|2 = qq, and it then turns out that the quater-
nions are a normed division algebra:

|qq′| = |q||q′|.
In particular, any nonzero quaternion has a two-sided multiplicative inverse given
by

q−1 = q/|q|2.
It follows that the quaternions of norm 1 form a group under multiplication.

This group is usually called SU(2), because people think of its elements as 2 × 2
unitary matrices with determinant 1. However, the quaternionic viewpoint is better
adapted to seeing how this group describes rotations in 3 and 4 dimensions. The
unit quaternions act via conjugation as rotations of the 3d space of ‘pure imaginary’
quaternions, namely those with Re(q) = 0. This gives a homomorphism from SU(2)
onto the 3d rotation group SO(3). The kernel of this homomorphism is {±1}, so
we see SU(2) is a double cover of SO(3). The unit quaternions also act via left and
right multiplication as rotations of the 4d space of all quaternions. This gives a
homomorphism from SU(2)× SU(2) onto the 4d rotation group SO(4). The kernel
of this homomorphism is {±(1, 1)}, so we see SU(2) × SU(2) is a double cover of
SO(4).

These facts are incredibly important throughout mathematics and physics. With
their help, Conway and Smith classify the finite subgroups of the 3d rotation group
SO(3), its double cover SU(2), the 3d rotation/reflection group O(3), and the 4d
rotation group SO(4). These classifications are all in principle ‘well known’. How-
ever, they seem hard to find in one place, so Conway and Smith’s elegant treatment
is very helpful.

Next, Conway and Smith turn to quaternionic number theory. The obvious
analogue of the Gaussian integers are the ‘Lipschitz integers’, namely quaternions
of the form a+bi+cj+dk where a, b, c, d are all integers. The Lipschitz integers are
a subring of the quaternions, and this has a nice application to ordinary number
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theory. Applying the formula |zz′| = |z||z′| to the product of two Gaussian integers
gives the famous ‘two squares formula’:

(x2 + y2)(x′2 + y′2) = (xx′ − yy′)2 + (xy′ + yx′)2

which shows that the set of integers expressible as the sum of two squares is closed
under multiplication. Similarly, taking the norm of the product of two Lipschitz
integers gives a ‘four squares formula’. This shows the set of integers expressible as
the sum of four squares is closed under multiplication. This fact is less impressive
than it might at first sound, since one can prove that all integers can be written as
the sum of four squares — but the four-square formula reduces the task of proving
this to the case of prime numbers.

Alas, the Lipschitz integers are not well packed, so their factorization into Lip-
schitz primes is far from unique. This was noted already by Lipschitz himself [8].
For example:

(1 + i)(1 − i) = 2 = (1 + j)(1 − j).

However, it is easy to correct this problem. Consider the cubical lattice of all points
with integer coordinates in Rn. To make the distance to the nearest lattice point
as big as possible, we can go to any point with all half-integer coordinates. The
distance to the nearest lattice point is then√(

1
2

)2 + · · · + (
1
2

)2 =
√

n/4.

This gets arbitrarily large as n increases — so in high dimensions we could pack
space with a cubical lattice of steel balls with half-inch radius snugly touching each
other, but still leave places light-years away from metal.

More to the point, the distance
√

n/4 reaches 1 precisely in dimension 4 — the
case we are interested in. So, if we place open balls of radius 1/2 centered at the
Lipschitz integers, there is still room to slip in a translated copy of this lattice of
balls centered at quaternions a + bi + cj + dk where a, b, c, d are half-integers. This
gives the ‘Hurwitz integers’: quaternions of the form a+ bi+ cj + dk where a, b, c, d
are either all integers or all integers plus 1/2.

The Hurwitz integers are a well-packed lattice and also a subring of the quater-
nions. This lets Conway and Smith prove a version of unique prime factorization
for Hurwitz integers. To state this result, they restrict attention to ‘primitive’ Hur-
witz integers, namely those that are not divisible by any natural number. They
show that for any primitive Hurwitz integer Q and any factorization of |Q|2 into a
product p0p1 · · · pk of ordinary prime numbers, there is a factorization

Q = P0P1 · · ·Pk

of Q into a product of Hurwitz primes with |Pi|2 = pi. Moreover, given any
factorization with this property, all the other factorizations with this property are
of the form

Q = (P0U1)(U−1
1 P1U2) · · · (U−1

k Pk)

where the Ui are Hurwitz integers of norm 1 — of which there are precisely 24, as
we shall soon see. Conway and Smith call this ‘uniqueness up to unit-migration’.
For example, these two factorizations are not the same up to unit-migration if we
work in the Lipschitz integers:

(1 + i)(1 − i) = 2 = (1 + j)(1 − j)
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but they become so in the Hurwitz integers, since we have

(1 + i)U = (1 + j), U−1(1 − i) = (1 − j)

where U is a Hurwitz integer of norm 1, namely 1
2 (1 − i + j − k).

The Hurwitz integers are so beautiful that we should pause and admire them
before following Conway and Smith to higher dimensions. Though it is far from
obvious, they give the densest possible lattice packing of balls in 4 dimensions [5].
In this setup, each ball touches 24 others. For example, the ball centered at the
origin touches the balls centered at Hurwitz integers of norm 1. There are 8 of
these with integer coordinates:

±1, ±i, ±j, ±k,

and 16 with half-integer coordinates:
1
2
(±1 ± i ± j ± k).

The 8 with integer coordinates form the vertices of a cross-polytope (the 4d analogue
of an octahedron):
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while the 16 with half-integer coordinates form the vertices of a hypercube (the 4d
analogue of a cube):
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Taken together, they form the vertices of a regular polytope called the ‘24-cell’:
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All but one of the regular polytopes in 4 dimensions are analogues of Platonic solids
in 3 dimensions; the exception is the 24-cell. The picture above is a bit too cluttered
to reveal all the charms of this entity. It is helpful to look at 3-dimensional slices:

qRe(  ) = 1

qRe(  ) = 1/2

qRe(  ) = 0

qRe(  ) = −1/2

qRe(  ) = −1

The thin dashed lines show one of the faces of the 24-cell: though distorted in
this picture, it is really a regular octahedron. Since the hypercube is dual to the
cross-polytope, the 24-cell is self-dual — so it has 24 of these octahedral faces, and
if we draw a dot in the middle of each one, we get the vertices of another 24-cell.

There is much more to say in favor of the 24-cell. It is not only a regular polytope;
it is also a group! More precisely, its vertices form a 24-element subgroup of SU(2).
This is usually called the ‘binary tetrahedral group’, since it is a double cover of the
rotational symmetry group of the tetrahedron. This group also goes by the name of
SL(2, Z/3): 2×2 matrices with determinant 1 having entries in the integers modulo
3. In this guise it explains some of the mystical importance of the number 24 in
bosonic string theory [18].

It would be enjoyable to spend more time delving into these matters, but alas,
this review is not the proper place. Instead, we should move on to the octonions.
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These were first discovered by Hamilton’s college friend, John Graves. It had been
Graves’ interest in algebra that got Hamilton thinking about complex numbers and
their generalizations in the first place. The day after discovering the quaternions,
Hamilton sent a letter describing them to Graves. The day after Christmas in that
same year, Graves wrote to Hamilton describing an 8-dimensional algebra which
he called the ‘octaves’. He showed that they were a normed division algebra and
used this to express the product of two sums of eight squares as another sum of
eight squares: the ‘eight squares theorem’. Hamilton offered to publicize Graves’
discovery, but kept putting it off, absorbed in work on the quaternions. Eventually
Arthur Cayley rediscovered them and published an article announcing their exis-
tence in 1845. For this reason they are sometimes called ‘Cayley numbers’ — but
these days, all right-thinking people call them the ‘octonions’.

As a vector space, the octonions are

O = {a0 +
7∑

i=1

aiei : a0, . . . , a7 ∈ R}.

We make them into a nonassociative algebra with 1 as multiplicative unit using a
gadget called the ‘Fano plane’:

i

e4

e3 e

e7

e1

e52

e6

There are 7 points and 7 lines in this picture, if we count the circle containing
e1, e2, e4 as an honorary ‘line’. Each line contains 3 points, and each of these triples
is equipped with a cyclic order as indicated by the arrows. The rule is that if
ei, ej, ek are cyclically ordered in this way, they satisfy:

e2
i = e2

j = e2
k = −1,

eiej = ek = −ejei and cyclic permutations.

Thus, they give a copy of the quaternions inside the octonions.
Copying what worked for the quaternions, we define the ‘conjugate’ of an octo-

nion a = a0 +
∑7

i=1 aiei to be a = a0 −
∑7

i=1 aiei, and define its ‘real part’ to be
Re(a) = a0. It is then easy to check that

aa = aa =
7∑

i=0

a2
i ,

so we can define a norm by |a|2 = aa. This makes the octonions into a normed
division algebra:

|aa′| = |a||a′|,
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and any nonzero octonion has a two-sided inverse given by

a−1 = a/|a|2.
A brute-force verification of these last facts is unpleasant, in part because the
octonions are nonassociative. It is also not very enlightening. Conway and Smith
wisely use the ‘Cayley–Dickson construction’ instead. This is a dimension-doubling
procedure that produces C from R, H from C, and O from H, and explains why
they are normed division algebras — while also explaining why there are no more.

Conway and Smith then develop the fascinating relationship between octonions
and Spin(8), the double cover of the rotation group in 8 dimensions. In physics
lingo, the octonions can be described not only as the vector representation of Spin(8)
but also the left-handed spinor representation and the right-handed spinor repre-
sentation. This fact is called ‘triality’. It has many amazing spinoffs, including
structures like the exceptional Lie groups and the exceptional Jordan algebra and
the fact that supersymmetric string theory works best in 10-dimensional spacetime
— fundamentally because the 2-dimensional worldsheet of the string wants 8 extra
dimensions to wiggle around in, and 8 + 2 = 10. To develop the theory of triality,
Conway and Smith make use of Moufang loops and their isotopies — two concepts
which never made much sense to me until I saw their lucid treatment. Anyone
interested in triality must read this section.

Next, Conway and Smith tackle octonionic number theory. Various lattices in
O present themselves as possible octonionic analogues of the integers, but the best
candidate is the least obvious. Starting with the most obvious, the ‘Gravesian
integers’ are octonions of the form

a = a0 +
7∑

i=1

aiei

where all the coefficients ai are integers. The ‘Kleinian integers’ are octonions where
the ai are either all integers or all half-integers. Both these are lattices closed under
multiplication — but alas, neither is well-packed. To get a denser lattice, first pick
a line in the Fano plane. Then, take all integral linear combinations of Gravesian
integers, octonions of the form

1
2
(±1 ± ei ± ej ± ek)

where ei, ej and ek lie on this line, and those of the form
1
2
(±ep ± eq ± er ± es)

where ep, eq, er, es all lie off this line. The resulting lattice is called the ‘double Hur-
witzian integers’. Actually we obtain 7 isomorphic copies of the double Hurwitzian
integers this way, one for each line in the Fano plane.

The double Hurwitzian integers are closed under multiplication, and it is easy
to see that as a lattice, they are the product of two copies of the Hurwitz integers
— hence their name. In fact, they can be obtained from the Hurwitz integers using
the Cayley–Dickson doubling construction. But unlike the Hurwitz integers, they
are not well-packed. To see this, note that the point

1
2
(1 + ei + ep + eq)

has distance 1 from all the double Hurwitzian integers.
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To fix this, we need an even denser lattice closed under multiplication. One
natural guess is to take the union of all 7 copies of the double Hurwitzian integers.
This gives a well-packed lattice — and in fact, the densest possible lattice packing
of balls in 8 dimensions. In this setup, each ball touches 240 others. To see this,
just count the lattice vectors of norm 1. First, we have ±ei for i = 0, . . . 7. Second,
we have 1

2 (±1 ± ei ± ej ± ek) where ei, ej and ek all lie on some line in the Fano
plane. And third, we have 1

2 (±ep ± eq ± er ± es) where ep, eq, er, es all lie off some
line. There are 2×8 = 16 vectors of the first form, 24×7 = 112 of the second form,
and 24 × 7 = 112 of the third form, for a total of 240.

Curiously, I had just been thinking about this lattice when Conway and Smith’s
book arrived in my mail. After checking a couple of cases, I had jumped to the
conclusion that it is closed under multiplication. I was shocked to read that it is
not. But I was comforted to hear that this is a common mistake. Following Coxeter
[6], Conway and Smith call it ‘Kirmse’s mistake’, after the first person to make it
in public. To rub salt in the wound, they mockingly call this lattice the ‘Kirmse
integers’.

To fix Kirmse’s mistake, you need to perform a curious trick. Pick a number j
from 1 to 7. Then, take all the Kirmse integers

a = a0 +
7∑

i=1

aiei

and switch the coefficients a0 and aj. As a lattice, the resulting ‘Cayley integers’
are just a reflected version of the Kirmse integers, so they are still well-packed.
But bizarrely, they are now closed under multiplication! Since this trick involved
an arbitrary choice, there are 7 different copies of the Cayley integers containing
the Gravesian integers. And this is as good as it gets: each one is maximal among
lattices closed under multiplication.

Conway and Smith then study prime factorization in the Cayley integers. This
is a fascinating subject, but even trickier than the quaternionic case, since the
octonions are nonassociative: one has to worry about different parenthesizations,
as well as different orderings. So at this point, I will stop trying to explain their
work and leave it to them. Instead, I will say a bit about a topic that Conway and
Smith skip: how the Hurwitz integers and Cayley integers show up in the theory
of Lie groups.

Every compact simple Lie group K has a subgroup that is isomorphic to a
product of circles and is as big as possible while having this property. Though not
unique, this subgroup is unique up to conjugation; it is called a ‘maximal torus’
and denoted T . Since it is abelian, it is much easier to study than K itself. We
cannot recover K just from this subgroup T . But K has a god-given Riemannian
metric on it, which restricts to a metric on T . One of the miracles of Lie theory is
that knowing the group T together with this metric on it is enough to determine
K up to isomorphism, at least when K is connected.

We can simplify things even further if we work with the Lie algebra t of the torus
T . Since T is abelian, the bracket on t vanishes. If that were all, t would be a mere
vector space. However, t also has an inner product coming from the Riemannian
metric on T . There is also a lattice L in t, namely the kernel of the exponential
map

exp: t → T.
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So, t is really an inner product space with a lattice in it. From the lattice one
can recover the torus T ∼= t/L, and from the inner product on t one can recover
the metric on this torus. So, we have compressed all the information about K
into something very simple: an inner product space containing a lattice. Not every
lattice in an inner product space comes from a compact simple Lie group in this
manner. However, we can work out which ones do — and Hurwitz integers and the
Cayley integers do!

In this context, the Hurwitz integers are called the ‘D4 lattice’, and the cor-
responding Lie group is Spin(8), the double cover of the rotation group in 8 di-
mensions. I already mentioned that this group is closely tied to the octonions via
triality. Now we are seeing its ties to the quaternions! In this context, triality
manifests itself as the symmetry that cyclically permutes the Hurwitz integers i, j,
and k.

Similarly, in this context the Cayley integers are called the ‘E8 lattice’. The
corresponding group is also called E8. It is the biggest of the 5 exceptional cases that
show up in the classification of compact simple Lie groups. In order of increasing
dimension, these are called G2, F4, E6, E7 and E8 — where the subscript gives the
dimension of the maximal torus. They are all connected to the octonions, and they
all play a role in string theory. In some ways E8 is the most mysterious, because its
smallest nontrivial representation is the ‘adjoint representation’, in which it acts by
conjugation on its own Lie algebra. Since E8 is 248-dimensional, this means that
the smallest matrices we can use to describe its elements are of size 248×248. This
is a nuisance, but the real problem is that the best way to understand a group is
to see it as the group of symmetries of something. In the adjoint representation,
we are only seeing E8 as symmetries of itself ! It seems to be pulling itself up into
existence by its own bootstraps.

Recently some mathematical physicists have been studying a construction of
E8 as the symmetries of a 57-dimensional manifold equipped with extra structure
[12, 14]. When I heard this, the number 57 instantly intrigued me — and not just
because Heinz advertises 57 varieties of ketchup, either. No, the real reason was that
the smallest nontrivial representation of E8’s little brother E7 is 56-dimensional.
When you study exceptional Lie algebras, you start noticing that strange numbers
can serve as clues to hidden relationships... and indeed, there is one here.

One can actually find the numbers 56 and 57 lurking in the geometry of the 240
Cayley integers of norm 1. However, it helps to begin with some general facts about
graded Lie algebras. Here I am not referring to Z/2-graded Lie algebras, also known
as ‘Lie superalgebras’. Instead, I mean Lie algebras g that have been written as a
direct sum of subspaces g(i), one for each integer i, such that [g(i), g(j)] ⊆ g(i+ j).
If only the middle 3 of these subspaces are nonzero, so that

g = g(−1) ⊕ g(0) ⊕ g(1),

we say that g is ‘3-graded’. Similarly, if only the middle 5 are nonzero, so that

g = g(−2) ⊕ g(−1) ⊕ g(0) ⊕ g(1) ⊕ g(2),

we say L is ‘5-graded’, and so on. In these situations, some nice things happen [12].
First of all, g(0) is always a Lie subalgebra of g. Second of all, it acts on each other
space g(i) by means of the bracket. Third of all, if g is 3-graded, we can give g(1)
a product by picking any element k ∈ g(−1) and defining

x ◦ y = [[x, k], y].
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This product automatically satisfies the identities defining a ‘Jordan algebra’:

x ◦ y = y ◦ x,

x ◦ (y ◦ (x ◦ x)) = (x ◦ y) ◦ (x ◦ x),

so 3-graded Lie algebras are a great source of Jordan algebras [15].
If k is the Lie algebra of a compact simple Lie group K, there is a very nice way

to look for gradings of its complexification g = C ⊗ k. This involves some more
Lie theory — standard stuff that I will only briefly sketch here [1, 10]. Recall that
we can pick a maximal torus T for K. The Lie algebra t of this maximal torus
is contained in k, and similarly its complexification h = C ⊗ t is contained in g.
It turns out that g is the direct sum of h and a bunch of 1-dimensional complex
vector spaces gr, one for each ‘root’ r. Roots are certain special vectors in the ‘dual
lattice’ L∗, meaning the lattice of vectors � ∈ t∗ such that �(v) is an integer for all
v in the original lattice L. It is handy to define g0 to be h, so that

g =
⊕

r∈{roots}∪{0}
gr.

The great thing about this decomposition is that

[gr, gr′ ] ⊆ gr+r′

whenever r and r′ are either roots or zero. So, to put a grading on g, we just need
to slice t with evenly spaced parallel hyperplanes in such a way that each root, as
well as the origin, lies on one of these hyperplanes.

Now let us turn to the case of E8. Let us call the complexification of its Lie
algebra — what we have been calling g above — simply e8. In this case t is
the octonions and L is the Cayley integers. However, it will be simpler to work
in a coordinate system where L is the Kirmse integers, since they have the same
geometry as a lattice and they are easier to describe. This could be called ‘Kirmse’s
revenge’.

If we use the inner product 〈x, y〉 = Re(x∗y) on the octonions to identify t
with its dual, it turns out that L∗ = L: the lattice of Kirmse integers is self-dual.
Moreover, the roots are just the Kirmse integers of norm 1. Since there are 240
of these, the dimension of E8 is 240 + dim(h) = 248. To put a grading on e8,
you should imagine these 240 roots as the vertices of a gleaming 8-dimensional
diamond. Imagine yourself as a gem cutter, turning around this diamond, looking
for nice ways to slice it. You need to slice it with evenly spaced parallel hyperplanes
that go through every vertex, as well as the center of the diamond.

The easiest way to do this is to let each slice go through all the roots whose
real part takes a given value. This value can be 1, 1

2 , 0,− 1
2 , or −1, so we obtain a

5-grading of the Lie algebra e8. We can count the number of roots in each slice:

• The number of roots with real part 1 is 1.
• The number of roots with real part 1

2 is 56.
• The number of roots with real part 0 is 126.
• The number of roots with real part − 1

2 is 56.
• The number of roots with real part −1 is 1.

The only root with real part 1 is the octonion 1. Similarly, the only root with real
part −1 is the octonion −1. We get 56 roots with real part 1

2 by multiplying the
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number of lines in the Fano plane by the number of sign choices in

1
2
(1 ± ei ± ej ± ek).

The number of roots with real part − 1
2 is the same, by symmetry. We get 126 roots

with real part 0 by subtracting all the other numbers on the above list from 240.
It follows that there is a 5-grading of e8:

e8 = e8(−2) ⊕ e8(−1) ⊕ e8(0) ⊕ e8(1) ⊕ e8(2),

where the dimensions of the subspaces work as follows:

248 = 1 + 56 + 134 + 56 + 1.

Here we must remember to include t in e8(0), obtaining a Lie subalgebra of dimen-
sion 126 + 8 = 134.

This immediately shows how to get E8 to act on a 57-dimensional manifold. Form
the group E8, and form the subgroup P whose Lie algebra is e8(−2)⊕e8(−1)⊕e8(0).
The quotient E8/P is a manifold on which E8 acts. Its tangent spaces all look
like e8(1) ⊕ e8(2), so they are 57-dimensional! These tangent spaces are complex
vector spaces, so we are getting a 57-dimensional complex manifold on which the
complexification of E8 acts, but with some extra work we can get certain ‘real forms’
of E8 to act on 57-dimensional real manifolds. The options have been catalogued
by Kaneyuki [13].

In the above grading of e8, the 134-dimensional Lie algebra e8(0) is the direct
sum of the Lie algebra e7 and the 1-dimensional abelian Lie algebra gl(1). This
comes as little surprise if one knows that the dimension of e7 is 133, but the reason
for it is that if we take all the roots of e8 that are orthogonal to a given root, we
obtain the roots of e7. From this point of view, the 5-grading of e8 looks like this:

e8 = C ⊕ F ⊕ (e7 ⊕ gl(1)) ⊕ F ⊕ C.

Recall that e8(0) = e7 ⊕ gl(1) acts on all the other spaces e8(i). In particular, C

is the 1-dimensional trivial representation of e7 ⊕ gl(1), while F is the ‘Freudenthal
algebra’: a 56-dimensional representation of e7 ⊕ gl(1), which happens to be the
smallest nontrivial representation of e7. This gadget was Freudenthal’s way of
trying to understand the group E7. It has a symplectic structure and ternary
product that are invariant under E7, and he showed that E7 is precisely the group
of transformations preserving these structures [2, 9]. It is not clear to me how
enlightening this is. More interesting is that these three facts:

• E8 is 248-dimensional,
• E8 is the symmetry group of a 57-dimensional manifold equipped with extra

geometrical structure, and
• E7 is the symmetry group of a 56-dimensional vector space equipped with

extra algebraic structure

turn out to have a common origin: namely, that when we pack 8-dimensional balls
in a lattice modelled after the Cayley integers, each ball has 240 nearest neighbors,
and when we take any one of these neighbors and count the number of others that
touch it, we find that there are 56!

There are many more games to play along these lines. For example, we have
just seen that the pure imaginary Kirmse integers of norm 1 are the roots of E7.
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These form the vertices of a gemstone in 7 dimensions, and we can repeat our
‘gem-cutting’ trick to get a 3-grading of E7:

e7 = e7(−1) ⊕ e7(0) ⊕ e7(1)

for which the dimensions work as follows:

133 = 27 + 79 + 27.

Since the dimension of e6 is 78, it is not very surprising that e7(0) is the direct sum of
e6 and the one-dimensional abelian Lie algebra gl(1). Since 3-gradings give Jordan
algebras, it is also not surprising that e7(1) is a famous 27-dimensional Jordan
algebra. The ‘exceptional Jordan algebra’ is the space h3(O) of 3 × 3 self-adjoint
matrices with octonion entries, equipped with the product a ◦ b = 1

2 (ab + ba). This
is a Jordan algebra over the real numbers. It is 27-dimensional, since its elements
look like this:

h3(O) = {

 α z∗ y∗

z β x
y x∗ γ


 : x, y, z ∈ O, α, β, γ ∈ R}.

Its complexification J = C ⊗ h3(O) is none other than e7(1). The space e7(−1) is
best thought of as the dual of this, so we have:

e7 = J
∗ ⊕ (e6 ⊕ gl(1)) ⊕ J.

Using our facts about graded Lie algebras, this implies that e6 acts on J and J∗. In
fact, J and its dual are the smallest nontrivial representations of e6. Furthermore,
if we use the above inclusion of e6 in e7, we can take our previous decomposition of
e8:

e8 = C ⊕ F ⊕ (e7 ⊕ gl(1)) ⊕ F ⊕ C

and decompose everything in sight as irreducible representations of e6. When we
do this, the Freudenthal algebra decomposes as

F = C ⊕ J
∗ ⊕ J ⊕ C,

with the dimensions working as follows:

56 = 1 + 27 + 27 + 1.

Usually people identify J with its dual here and use this decomposition to write
elements of the Freudenthal algebra as 2 × 2 matrices:

F = {
(

α x
y β

)
: x, y ∈ J, α, β ∈ C}.

This is probably too much ‘exceptional mathematics’ for most people to enjoy,
at least on first exposure, so I shall stop here. The point, however, is that the three
largest exceptional Lie groups sit inside each other like nested Russian dolls, in a
pattern determined by the geometry of the Cayley integers — or the Kirmse inte-
gers, if you prefer. Furthermore, this pattern explains how the smallest nontrivial
representations of these Lie groups can be built from matrices involving octonions.
There is a world of strange beauty to be explored here... and Conway and Smith’s
book provides a lucid and elegant introduction.

Indeed, I should emphasize that Conway and Smith’s book is remarkably self-
contained. It assumes no knowledge of number theory, string theory, Lie theory or
lower-case Gothic letters. It scarcely hints at some of the more esoteric delights I
have mentioned here. Indeed, I mention these only to show that the quaternions
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and octonions are part of a fascinating and intricate landscape of structures, which
can be toured at greater length elsewhere [3, 17]. The place to start is Conway and
Smith.
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