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1. Hilbert spaces of holomorphic functions

A holomorphic function f defined in the D, the unit disk of the complex plane,
has a power series representation f(z) =

∑∞
n=0 anzn. The back-and-forth between

the analytic properties of f and the properties of the sequence {an} is one of the
basic sources of the very productive interaction between the theory of holomorphic
functions and functional analysis. In particular, some natural operators on Hilbert
space can be analyzed with great precision using tools from function theory. Con-
sider for instance the three Hilbert spaces of (one-sided) sequences of complex
numbers {an}∞0 defined by the three conditions

∑ 1
n + 1

|an|2 < ∞,

∑
|an|2 < ∞,∑
(n + 1) |an|2 < ∞.

On each of these spaces one can define a fundamental operator, the shift opera-
tor, S, which shifts sequence entries one place to the right; S((a0, a1, a2, ...)) =
(0, a0, a1, a2, ...). After checking that each operator is continuous a basic goal is to
describe its invariant subspaces (the closed subspaces mapped into themselves). By
regarding the sequences as power series coefficients of holomorphic functions we are
led to consider Hilbert spaces of holomorphic functions on D for which

‖f‖2
A2 :=

1
π

∫
D

|f(z)|2 dxdy < ∞,(BERG)

‖f‖2
H2 :=

1
2π

∫
∂D

|f(z)|2 dθ < ∞,

‖f‖2
D :=

1
π

∫
D

|f ′(z)|2 dxdy < ∞,

respectively (with a technical caveat on the middle formula). These spaces are the
Bergman space, A2, the Hardy space, H2, and the Dirichlet space D. This changed
viewpoint casts questions about S as questions about Mz, the multiplication oper-
ator defined by (Mzf)(z) = zf(z). If we were working with the ring of all functions
holomorphic in the disk, without topology, then the invariant subspaces of Mz

would be exactly the ideals of the ring. The invariant subspaces play a comparably
important role in the study of these Hilbert spaces. In each case some facts about
the invariant subspaces of Mz are quite easy to obtain. Given any finite subset Z
of D, let p be a polynomial whose zero set is Z and, in each of the three spaces, let
[p] be the smallest invariant subspace containing p. It is easy to see that [p] consists
exactly of functions of the form pf with f in the Hilbert space and also that [p]
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is the subspace of functions which vanish on Z. These invariant subspaces have
finite codimension and with a small bit of work one also finds that, after adjusting
to allow p to have repeated zeros, these are the only invariant subspaces of finite
codimension. It is now also really easy to ask very hard questions. For instance,
what are the related results for infinite sets Z? Which sets Z should be considered?
What will replace the polynomial p? Will the invariant subspace consist “exactly of
functions of the form...”? Do such constructions give all the invariant subspaces?

The book by Duren and Schuster [DS] can bring a student or researcher from a
basic background in analysis to the research frontier on these and related questions
for the Bergman space. Before discussing the Bergman space, however, we recall
the elegant classical results for the Hardy space which defined the landscape in
which Bergman space theory evolved. (The Dirichlet space has yet to earn a book
of its own, but recent research progress could justify one.)

2. The Hardy space

Z = {zi} ⊂ D is a zero set for the Hardy space; that is, there is an f ∈ H2 which
vanishes exactly on Z iff the Blaschke condition is satisfied:

∑
(1−|zi|) < ∞. (Note

for later an easy consequence: the union of two zero sets is a zero set.) Associated
with such a Z is a Blaschke product BZ ∈ H2 with exactly those zeros. The
invariant subspace of functions which vanish on Z is exactly [BZ ], which in turn
equals

{
BZf : f ∈ H2

}
. There are also invariant subspaces of the form [S] where

S(z) ∈ H2 is a singular inner function, a nonvanishing function which approaches
zero as z tends toward various points of ∂D. The basic factorization result for the
Hardy space is that any f ∈ H2 can be factored uniquely as f = BSO where B is
a Blaschke product, S is a singular inner function, and O is a zero-free function in
H2 which is not divisible (in H2) by any singular inner function. The product BS
is called the inner factor of f ; O is the outer factor. Each of the three factors B, S,
and O can be characterized intrinsically and each is given by an explicit formula.
The basic result about invariant subspaces is due to Beurling [B].

Theorem 1. Given f ∈ H2 with factorization BSO, then [f ] , the smallest invariant
subspace containing f, is BSH2 = {BSh : h ∈ H2}. These are the only invariant
subspaces.

This is a complete and satisfying description of the invariant subspaces. The
possible B’s are parametrized by sequences satisfying the Blaschke condition, the
possible S’s are parametrized by positive singular measures on the circle, and the
pairs (B, S) parametrize the full collection of invariant subspaces. The cyclic vectors
for Mz, those f ∈ H2 for which [f ] = H2 (the analogs of invertible elements in the
ring) are precisely the outer functions, those with trivial inner factor, B(z)S(z) ≡ 1.

Another fundamental result about H2 is a description of the interpolating se-
quences: those sequences Z = {zi} ⊂ D which are so scattered that one can freely
interpolate the values of an H2 function, subject only to the natural size restriction.
That restriction can be described using the point evaluation functionals. Evalua-
tion of functions in H2 at a point z ∈ D is a continuous linear functional and hence,
by Hilbert space basics, can be realized by an inner product, f(z) = 〈f, kz〉 , for
a unique kz in H2. General theory then insures that if f ∈ H2, then the function
zi → f(zi)/ ‖kzi‖ = (1 − |zi|)1/2f(zi) is a bounded function on Z. Z is called an
interpolating sequence for H2 if all the functions on Z which are obtained this way
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are in l2(Z), and if, furthermore, every function in l2(Z) can be obtained this way.
Analogous definitions are used for both A2 and D. A complete description of such
sequences was given by Shapiro and Shields [SS] building on the earlier work of
Carleson [C]. For any z in D set k̃z = kz/ ‖kz‖ and note that, by the Cauchy-
Schwarz inequality, for any z, w,

∣∣∣
〈
k̃z , k̃w

〉∣∣∣ ≤ 1. If Z is an interpolating sequence,

then it must be possible, given any i, j, to find f ∈ H2 so that (1−|zi|)1/2f(zi) = 0,
(1 − |zj |)1/2f(zj) = 1, and to do this with control of the size of ‖f‖ . This implies
a weak separation condition on the points of Z which is necessary for Z to be an
interpolating sequence: there is ε > 0 so that for all i, j,

(SEP)
∣∣∣
〈
k̃zi , k̃zj

〉∣∣∣ ≤ 1 − ε.

An equivalent geometric statement is that there is a uniform lower bound on the
hyperbolic distances d(zi, zj). Shapiro and Shields showed that the necessary and
sufficient condition for Z to be an interpolating sequence is that (SEP) hold and
that the sequence satisfy a very explicit, although somewhat technical, density
condition (that

∑ ‖kzi‖−2
δzi be a Carleson measure).

3. The Bergman space

Much less is known about the Bergman space and most (but not all) questions
seem fundamentally more difficult than their analogs on the Hardy space. For
instance it is a result of Horowitz [Ho] that, in contrast to H2, there are pairs of
zero sets for A2 whose union is not a zero set. A complete description of zero sets for
A2 is not known. What is known, and there is a great deal, is in Chapter 4 of [DS].
The description of the invariant subspaces for Mz acting on A2 must be even more
complicated than the description of the zero sets. If V is an invariant subspace for
Mz in H2, then dim(V/Mz(V )) = 1, but for the Bergman space this index can take
any value. This was first shown using abstract techniques by Apostol, Bercovici,
Foias, and Pearcy [ABFP]. [DS] presents the more recent constructive examples
that exhibit this behavior.

One of the reasons for the increase in complication as we pass from H2 to A2

is that functions in H2 have nontangential boundary limits a.e. and their behavior
near the boundary is (relatively) well understood. However, even after the deep
investigations beginning with Korenblum’s work, [K1], [K2], the behavior of A2

functions near the boundary is not well understood. Some of what is known is in
[DS] and more is in [HKZ].

Around 1990 there were two fundamental advances in the theory of the Bergman
space. First, H̊akan Hedenmalm found a class of functions that could be viewed
as analogs of Blaschke products and inner functions in H2 [He]. Building on that
and the work of Aleman, Richter, and Sundberg [ARS] we now have the framework
of a theory of invariant subspaces for Mz on A2 which has substantial similarities
to the theory in the Hardy space. We can give some of the flavor here. For the
most straightforward case, consider the invariant subspace VZ of functions which
vanish on a set Z, and assume for convenience 0 /∈ Z. Consider the function fZ

in VZ which maximizes Re f(0) subject to ‖f‖A2 = 1. In the Hardy space such a
construction will single out the Blaschke product for the zero set. Here it produces
a function with some similar fundamental properties: fZ will vanish on Z and
nowhere else, fZ generates the invariant subspace [fZ ] = VZ , fz is a contractive
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divisor; that is, if h ∈ VZ , then h/fZ ∈ A2 and ‖h/fZ‖ ≤ ‖h‖ (for the Hardy space
there would be equality here), and hence [fZ ] =

{
fZh : h ∈ A2

}
. As in H2, fZ is

rational if Z is finite. Furthermore, any f ∈ A2 can be written as a (Bergman) inner
function of roughly this type times a (Bergman) outer function O which is cyclic
for Mz, [O] = A2. Again, both the inner and outer functions have explicit intrinsic
descriptions. However, the situation is not as clean as in the Hardy space: the
factorization is not unique, the factors are not given by explicit formulas and their
analytic properties remain quite mysterious, there are invariant subspaces which
are not of the form [f ] for a single f (but such subspaces are generated by the inner
functions they contain), etc.

What about interpolating sequences? In the 1980’s there were some weak re-
sults by the reviewer [R], who concluded there was no clean necessary and sufficient
condition for a sequence to be an interpolating sequence for the Bergman space.
In a striking 1993 paper Kristian Seip [S1] gave a clean necessary and sufficient
condition. In addition to the Bergman space version of (SEP) which is again nec-
essary, and for the same reason, the sequence must have an appropriate density
of at most 1/2. (For the Bergman space modeled on Lp the crucial density is
1/p.) The relevant density is an asymptotic average density with a slightly in-
volved definition. However, as an example, for a > 0, b ∈ R the image of the set
{an(mb + i) : n, m ∈ Z} under a conformal map of the upper half plane to the unit
disk has density 2π/(b log a). In the same paper, using similar densities, Seip also
described the sampling sequences for the Bergman space, a related notion which
has only a trivial analog in the Hardy space. The sampling sequences for A2 must
have density at least 1/2.

4. This book

In this book the authors consider the classical Bergman space, defined by
(BERG), and also the Banach and quasi-Banach spaces of functions obtained when
the exponent 2 in (BERG) is replaced by p, 0 < p < ∞. The first four chapters
collect function-theoretic background material and develop basic results such as
growth estimates for functions, coefficient estimates (non-trivial as soon as p 
= 2)
as well as what is known about zero sets. The rest of the book develops the
two newer themes: two chapters are on sampling and interpolation and three on
Bergman inner and outer functions and aspects of the invariant subspace theory.

The authors have included prerequisite material as well as lots of detail and
explicit examples. As a result, even though there are no problems at the end of
chapters, the book would be a very good choice for a graduate course, a reading
course, or seminar presentations. Of course some topics are omitted. For instance,
all the topics in the book are also studied when dxdy in (BERG) is replaced by
(1 − |z|2)αdxdy with α > −1, that is, not included. But in general the notes and
references provide a good road map to topics not included.

There is substantial overlap in topics between this book and the recent book
of Hedenmalm, Korenblum and Zhu [HKZ]. That book, with its substantially
broader scope, will be invaluable to workers in the field, but it is more demanding
and perhaps less well suited to a student new to the area.

The material on sampling and interpolation is also covered in Seip’s new mono-
graph [S2] where it is the author’s intent “to view the sizable literature on inter-
polating sequences for spaces of analytic functions as one subject.” In particular
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it has the first presentation in a book of recent work characterizing interpolating
sequences for D [Bo]. Seip’s book is a wonderful complement to the one being
reviewed.

5. A broader view

Of course there are many generalizations of these themes. Hardy and Bergman
spaces are studied for general domains in C and Cn. In fact Bergman spaces can
be used to study the geometry of those domains, a viewpoint that was championed
by Stefan Bergman and is still important. Also, beyond Mz, a wide variety of
operators and operator algebras acting on Bergman and Hardy spaces are studied
systematically.

More surprisingly, and perhaps more fundamentally, both the theory of the
Hardy space and of the Bergman space have strong resonances outside the study
of spaces of holomorphic functions. There is a mature and powerful real variable
Hardy space theory which has distilled some of the essential oscillation and cancel-
lation behavior of holomorphic functions and then found that behavior ubiquitous.
A good introduction to that is [CW]; a more recent and fuller account is in [St].
The theory of the Bergman space is less well developed, but already there are deep
and unexpected relations with other areas. For example, the study of the Bergman
inner functions turns out to be entwined with the theory of the bi-Laplace equa-
tion: ∆2u = ∆(∆u) = 0 and its Green function. In a different direction, work on
interpolating and sampling sequences for the Bergman space is a function-theoretic
analog of recent work on wavelet frames and bases in Euclidean space. The Möbius
group acting on the disk plays a role similar to the Ax + B group acting on the
Euclidean phase space and similarities between basic results in the two areas are
clarified by casting both in the language of the associated hyperbolic geometries.
That view of things is set out in [AAG].

What comes next for the Bergman space? I recall the words of a sportscaster
about the Boston Red Sox after they lost the 1967 World Series: “They’re a young
team and their future is still ahead of them.”
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