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Riemann’s interest in the zeta function was surely in response to the observa-
tions (and calculations) of Gauss and Legendre regarding the distribution of prime
numbers which suggested the asymptotic formula, now known as the Prime Number
Theorem (P.N.T.):

m(x) ~ as x — 00,

log x
where m(x) = #{primes < z}. But it is safe to say that the program he outlined
was, to say the least, much more profound than any ‘frequency’ theorem he might
have wished to prove, bringing as it did the analytic methods of Dirichlet to a new
level. Riemann proposed that a fuller understanding of the distribution of prime
numbers should result from further analysis of the zeta function
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(where the product is over primes), which had been substantially investigated by
Euler, and indeed Hadamard and de la Vallée Poussin confirmed Riemann’s idea
(utilising his results) following Chebychev’s earlier result which states that

m(x)log x
x

is bounded away from zero and infinity.

Riemann proved that ((s) has a meromorphic extension to C and that it satisfies
a simple functional equation; hence the importance of locating zeros and poles, and
in particular the Riemann Hypothesis.

These fundamental ideas proved to be so fruitful that over the last 150 years or
so a plethora of zeta functions has arisen (in a variety of fields) associated with, for
example, Dedekind, Epstein, Artin, Mazur, Weil, Selberg, to name but a few.

Selberg [Se] was the first to introduce a zeta function which has a direct bearing
on dynamical systems, for it encapsulates the data of closed geodesic lengths for
surfaces of constant curvature —1, and these geodesics are in one-one correspon-
dence with the periodic orbits of the associated geodesic flow which takes place
on the unit tangent bundle of the manifold (where a unit tangent vector is carried
along its geodesic at unit speed).

The Selberg zeta function is defined by

Z(s) = H H(l — e~ (TR,
v k=0
where the product is over all closed geodesics v and [ denotes length. Selberg
proved that Z(s) has an extension to C which is entire and except for those on
the real line (which can be specified) its zeros lie on R(s) = 1/, thus confirming
the Riemann Hypothesis in this context. Moreover the zeros of Z(s) are intimately
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related to the eigenvalues of the Laplace-Beltrami operator which, via Selberg’s
trace formula, are closely bound up with the lengths of the closed geodesics.

Huber and others were to use these ground-breaking results to prove an analogue
of the P.N.T. (with closed geodesics in place of primes) and with error terms — the
so-called Prime Orbit Theorem (P.O.T.).

This, briefly, is the background to one of the main aspects of the book under
review which comprises Margulis’s previously unpublished 1970 Ph.D. thesis (al-
though see [M] for a partial account) together with a very useful and pleasantly
economical survey by Richard Sharp of subsequent developments regarding the
asymptotics of closed orbits of dynamical systems. The book is almost equally
divided between the helpfully detailed thesis and the survey.

Margulis’s thesis concerns Anosov flows. These differentiable dynamical systems
(first order differential equations on compact Riemannian manifolds) generalise ge-
odesic flows on manifolds of variable negative curvature. The formal definition
requires that the tangent bundle may be continuously split into invariant sub-
bundles E*, E*, E° where, under the differential of the flow, vectors in E* (E*)
expand (contract) exponentially and E° is the one-dimensional bundle of vectors
tangent to orbits, expansion and contraction coefficients being bounded.

Margulis proves the P.O.T. in this more general context which takes the form

eh:c

W(J?)NH as T — 0o

where 7(z) = #{closed orbits v : I(y) < x} and where h (the standard measure
of ‘chaos’) is the topological entropy of the flow or equivalently the least upper
bound of measure theoretic entropies. (If x is replaced by log(z)/h, we get the
more familiar ratio of the P.N.T. of course.) Prior to this Sinai [Si.I] had found
bounds for log 7(z)/x.

Margulis’s proof is intertwined with his proof of an equally important theorem
which describes how closed orbits are uniformly distributed within the manifold,
where the uniformity is with respect to a special flow-invariant probability measure
which is now known as the Margulis measure — it is the unique measure of maximal
entropy. In fact the construction of this measure dominates the first half of his
thesis.

When Anosov introduced his flows he also defined discrete versions, namely
diffeomorphisms (and their iterates) of compact manifolds [A]. They are defined in
a similar way to the flows except that the one-dimensional sub-bundle is now absent.
A prototype of an Anosov diffeomorphism is provided by an automorphism of the
torus whose defining matrix has no unit modulus eigenvalues. Anosov had laid the
foundations for the dynamical theory of his systems including much of the measure
theory. But it was Sinai [Si.2] who provided the subsequent constructions needed
for ergodic theory, and for this he developed what was to prove to be one of the most
powerful methods in this field, namely the construction and utilisation of Markov
partitions for Anosov diffeomorphisms. (For two-dimensional torus automorphisms
this had been done by Adler and Weiss.) Markov partitions enable a diffeomorphism
to be represented by a topological Markov chain (or shift of finite type), and this
can be done almost faithfully.

However, Margulis’s thesis could not benefit from this method as its relevance
for flows was only subsequently established in the work of Ratner [Ra] and Bowen
[B.1]. He therefore had to invent methods which perhaps even now have not been
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fully exhausted. This involved an analysis of the Riemann volume induced on the
unstable (expanding) leaves associated with E* which (via functional analysis) he
utilised in the construction of special leaf measures (in general singular with re-
spect to the Riemann measure) which are uniformly expanded under the flow. The
expansion rate is given precisely by the topological entropy (or rather its expo-
nential). A similar construction applies to stable (contracting) leaves associated
with E* where we have a contracting rate which exactly cancels the E" expansion
rate. By putting these measures together, so to speak, a flow-invariant measure
— the Margulis measure — is produced. The argument is delicate and requires the
comparison of leaf measures for different leaves. After this construction Margulis
established the ergodic theory of Anosov flows with respect to this measure and in
particular he shows they are K flows (‘K’ for Kolmogorov) (assuming there are no
continuous eigenfunctions) and hence ergodic, and thereby his work subsumes the
classical results of Hopf and Hedlund for geodesic flows on manifolds of negative
curvature. Here one should note that when the system preserves a ‘smooth’ mea-
sure this ergodic theory had already been established; see for example [AZSi]. The
novelty of Margulis’s work centres on his special and important measure.

Around the time that Anosov introduced his systems, Smale (see [Sm] for details)
was investigating his hyperbolic dynamics in the form of Axiom A diffeomorphisms
and flows. These are also defined in terms of the tangent bundle structure, in
fact with the same requirements when restricted to vectors tangent to the non-
wandering set. (The set consists of points whose neighbourhoods necessarily return
under some iteration or under the flow.) This relaxation vastly expanded the scope
of the methods of the Russian school and opened up the field to new methods due
in large part to Sinai, Ruelle and Bowen.

Perhaps the most important new ingredient was the introduction of statisti-
cal/thermodynamical concepts (free energy, pressure, equilibrium states, etc.)
which was made possible following the Sinai-Bowen construction of Markov par-
titions for these more general systems, both for hyperbolic diffeomorphisms and
hyperbolic flows. This enabled results for lattice gases (developed by Ruelle [R.1]
and others) to be applied to Smale’s systems. The full story is too long to be related
here.

With the aid of Markov partitions it is possible to transfer many problems to an
associated topological Markov chain where for each Lipschitz function (a potential)
there is a positive Perron—Frobenius operator which is quasi-compact when acting
on a suitable Banach space. In the absence of a geometrically defined Laplace—
Beltrami operator, which was central to Selberg’s work, this transfer operator pro-
vides the necessary data for a host of problems. In particular properties of the
zeta function are deduced from properties of this operator (eigenvalues are related
to periodic orbits) and rates of convergence (in ‘mixing’ problems) are calculated
using properties of the operator, and each potential is associated with an invariant
probability measure — its equilibrium state.

Margulis’s uniform distribution theorem and an analogue of the Chebychev the-
orem were proved in this more general setting by Bowen [B.2]. Subsequently the
sharper P.O.T. was proved by Parry and Pollicott [P.P] following an earlier more
restricted version. The methods here were adaptations of the Wiener—Ikehara
Tauberian method and relied on many of Ruelle’s thermodynamic results, and
of course Bowen’s Markov partitions were indispensable. One of the advantages
of the transfer operator procedure is that one can design it (using an appropriate
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potential) to serve a variety of problems. For example the uniform distribution
theorem can be generalised by replacing lengths of closed orbits by integrals of the
potential around closed orbits which results in a limit corresponding to the poten-
tial’s equilibrium state. The method can also be applied to skew-products (or group
extensions with compact group) whose quotient dynamics are hyperbolic. Here we
encounter problems which are analogous to the Galois extension problems of al-
gebraic number theory, which were first investigated by Sarnak. When the group
is countable and abelian (no longer compact) the same methods apply (through
subtle improvements and different Tauberian theorems) and can be used to obtain
asymptotic information about closed orbits in a fixed homology class.

Evidently there are several levels of generality here, beginning with geodesic flows
on manifolds of constant negative curvature, then moving to variable negative cur-
vature and on to Anosov flows and hyperbolic (Axiom A) flows. The symbolic
method behind all these is a suspension flow (with Hélder return times) defined
over a topological Markov chain. Generality, say at the level of hyperbolic flows,
is bought at a cost regarding error estimates. Or to put it another way, the more
geometry we have (the negative curvature situation, especially when the curvature
is constant) the less we have to rely on the Markov partition method which, al-
though sufficient for interesting results, generally lacks precision for higher order
asymptotics.

Nevertheless Dolgopyat [D] has shown that Markov methods are still capable
of yielding surprisingly good results. For Anosov flows he has obtained a uniform
bound on the norms of iterates of the transfer operator L™ _, . (fixed function r), in
a domain R(s) > o9, where o9 < 1. This has many consequences and in particular
Pollicott and Sharp [P.S] have used it for the geodesic flow case (when the manifold
is either two-dimensional or ‘ */4 pinched’) to show

m(x) = li(exp hx) + O(exp cx)

for some ¢ < h. Here li is the usual analytic number function li(y) = 2y 1<§Iguu ~ logy.

Sharp’s lucid account covers some successful attempts to improve the error terms
for asymptotic results in the context of general hyperbolicity (i.e. the less than ideal
settings lacking ‘geometry’), but his main emphasis concerns distribution theorems
under a variety of constraints. There are references to Ruelle’s results (see [R.2] for
an overview) when the system is assumed to be analytic with analytic foliations and
to the results of Rugh [Ru] and Fried [E] which depend on weaker (but nevertheless
quite strong) assumptions.

Such hypotheses lead to improved extendability results for the zeta functions
either to the whole of C or to a strip to the left of $(s) = 1 (where there is a simple
pole at s = 1). From there, error terms can be made more precise and convergence
theorems such as rates of decay of correlations are sharpened. However, there are
many problems requiring further investigation. For some time now it has seemed
desirable to find a way of avoiding the convoluted procedure of passing to shifts of
finite type (and then on to one-sided shifts) in order to employ a transfer operator,
and some new ideas of Gouezel and Liverani have met with some success. Transfer
operators have a dual relationship to what are surely the most natural operators,
those induced by the diffeomorphisms of the flow. The one-parameter group of
unitary operators (composition with the flow followed by a suitable multiplication)
has self-adjoint infinitesimal generators unbounded on Hilbert space but perhaps
more amenable on a suitable subspace. The general problem of finding optimal
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conditions for full extendability and for a functional equation seems to be wide
open. Even when limited to shifts of finite type we do not know the best conditions
on ceiling functions (return times) which will lead to ideal zeta functions.

There are many other problems which I am not competent to sensibly com-
ment on. There is a great deal of current research activity engaging physicists and
number theorists regarding dynamical zeta functions. Most of this has to do with
the Hilbert—Polya ‘dream’ of relating the Riemann zeta function to some as yet
undiscovered operator and its eigenvalues. Much has to do with an attempt to
understand the process of transition from quantum to classical mechanics. There is
every reason to hope that deep connections between dynamics and number theory
are yet to be revealed.

Margulis’s thesis is an excellent text for graduate students looking for problems,
and Sharp’s update will surely guide ambitious research students toward ‘rich pick-
ings’.
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