Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

From atoms to crystals: a mathematical journey
HTML articles powered by AMS MathViewer

by Claude Le Bris and Pierre-Louis Lions PDF
Bull. Amer. Math. Soc. 42 (2005), 291-363 Request permission

Abstract:

We present an overview of some works on the models of computational quantum chemistry. We examine issues such as the existence of ground states (both for the electronic structure and the configuration of nuclei), the foundations of the models of the crystalline phase, and the macroscopic limits. We emphasize the connections between the physical modelling, the numerical concerns and the mathematical analysis of the problems.
References
    AT Allen, M.P. and D.J. Tildesley (1987) Computer simulation of liquids (Oxford Science Publications). AM Ashcroft, N.W. and N. D. Mermin (1976) Solid-State Physics (Saunders College Publishing).
  • G. Auchmuty and Wenyao Jia, Convergent iterative methods for the Hartree eigenproblem, RAIRO Modél. Math. Anal. Numér. 28 (1994), no. 5, 575–610 (English, with English and French summaries). MR 1295588, DOI 10.1051/m2an/1994280505751
  • bach-filled Bach, V., E.H. Lieb, M. Loss and J.P. Solovej (1994) There are no unfilled shells in unrestricted Hartree-Fock theory, Phys. Rev. Lett. 72, pp. 2981–2983.
  • Volker Bach, Error bound for the Hartree-Fock energy of atoms and molecules, Comm. Math. Phys. 147 (1992), no. 3, 527–548. MR 1175492
  • Bacskay Bacskay, G.B. (1961) A quadratically convergent Hartree-Fock (QC-SCF) method. Application to closed shell systems, Chem. Phys. 61, pp. 385–404. balazs Balàzs, N. (1967) Formation of stable molecules within statistical theory of atoms, Phys. Rev., vol. 156, pp. 42–47.
  • Roger Balian, From microphysics to macrophysics. Vol. I, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1991. Methods and applications of statistical physics; Translated from the French by D. ter Haar and J. F. Gregg. MR 1129462, DOI 10.1007/978-3-540-45475-5
  • Claude Bardos, François Golse, Alex D. Gottlieb, and Norbert J. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, J. Math. Pures Appl. (9) 82 (2003), no. 6, 665–683 (English, with English and French summaries). MR 1996777, DOI 10.1016/S0021-7824(03)00023-0
  • André D. Bandrauk, Michel C. Delfour, and Claude Le Bris (eds.), Quantum control: mathematical and numerical challenges, CRM Proceedings & Lecture Notes, vol. 33, American Mathematical Society, Providence, RI, 2003. Papers from the CRM Workshop held at the Université de Montréal, Montréal, QC, October 6–11, 2002. MR 2043517, DOI 10.1090/crmp/033
  • Lucie Baudouin, Otared Kavian, and Jean-Pierre Puel, Régularité dans une équation de Schrödinger avec potentiel singulier à distance finie et à l’infini, C. R. Math. Acad. Sci. Paris 337 (2003), no. 11, 705–710 (French, with English and French summaries). MR 2030406, DOI 10.1016/j.crma.2003.10.011
  • puel2 Baudouin, L., O. Kavian, J.-P. Puel (2005) Regularity for a Schrödinger equation with a potential singular at finite distance and at infinity and application to a bilinear optimal control problem, to appear. puel3 Baudouin, L., J.-P. Puel (2005), in preparation.
  • Rafael Benguria, Haïm Brézis, and Elliott H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Comm. Math. Phys. 79 (1981), no. 2, 167–180. MR 612246
  • Rafael Benguria and Elliott H. Lieb, The most negative ion in the Thomas-Fermi-von Weizsäcker theory of atoms and molecules, J. Phys. B 18 (1985), no. 6, 1045–1059. MR 786999, DOI 10.1088/0022-3700/18/6/006
  • Rafael D. Benguria and Cecilia Yarur, Sharp condition on the decay of the potential for the absence of a zero-energy ground state of the Schrödinger equation, J. Phys. A 23 (1990), no. 9, 1513–1518. MR 1048781
  • Philippe Benilan, Haim Brezis, and Michael G. Crandall, A semilinear equation in $L^{1}(R^{N})$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 4, 523–555. MR 390473
  • Philippe Bénilan, Jerome A. Goldstein, and Gisèle Ruiz Rieder, The Fermi-Amaldi correction in spin polarized Thomas-Fermi theory, Differential equations and mathematical physics (Birmingham, AL, 1990) Math. Sci. Engrg., vol. 186, Academic Press, Boston, MA, 1992, pp. 25–37. MR 1126688, DOI 10.1016/S0076-5392(08)63373-1
  • Philippe Bénilan, Jerome A. Goldstein, and Gisèle Ruiz Rieder, A nonlinear elliptic system arising in electron density theory, Comm. Partial Differential Equations 17 (1992), no. 11-12, 2079–2092. MR 1194750, DOI 10.1080/03605309208820914
  • X. Blanc, A mathematical insight into ab initio simulations of the solid phase, Mathematical models and methods for ab initio quantum chemistry, Lecture Notes in Chem., vol. 74, Springer, Berlin, 2000, pp. 133–158. MR 1855578, DOI 10.1007/978-3-642-57237-1_{7}
  • Xavier Blanc, Geometry optimization for crystals in Thomas-Fermi type theories of solids, Comm. Partial Differential Equations 26 (2001), no. 3-4, 651–696. MR 1842045, DOI 10.1081/PDE-100001767
  • Xavier Blanc and Claude Le Bris, Optimisation de géométrie dans le cadre des théories de type Thomas-Fermi pour les cristaux périodiques, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 6, 551–556 (French, with English and French summaries). MR 1715124, DOI 10.1016/S0764-4442(00)80060-9
  • blanc-inprep Blanc, X. and C. Le Bris (2005), Définition d’energies d’interface à partir de modèles atomiques, C. R. Acad. Sci., Série I, in press.
  • X. Blanc and C. Le Bris, Thomas-Fermi type theories for polymers and thin films, Adv. Differential Equations 5 (2000), no. 7-9, 977–1032. MR 1776347
  • X. Blanc and C. Le Bris, Periodicity of the infinite-volume ground state of a one-dimensional quantum model, Nonlinear Anal. 48 (2002), no. 6, Ser. A: Theory Methods, 791–803. MR 1879075, DOI 10.1016/S0362-546X(00)00215-7
  • X. Blanc, C. Le Bris, and P.-L. Lions, From molecular models to continuum mechanics, Arch. Ration. Mech. Anal. 164 (2002), no. 4, 341–381. MR 1933632, DOI 10.1007/s00205-002-0218-5
  • X. Blanc, C. Le Bris, and P.-L. Lions, A definition of the ground state energy for systems composed of infinitely many particles, Comm. Partial Differential Equations 28 (2003), no. 1-2, 439–475. MR 1974463, DOI 10.1081/PDE-120019389
  • bll-stoc Blanc, X., C. Le Bris and P.-L. Lions (2005) On the energy of microscopic infinite stochastic lattices and their macroscopic limits, in preparation.
  • Xavier Blanc, Claude Le Bris, and Pierre-Louis Lions, Convergence de modèles moléculaires vers des modèles de mécanique des milieux continus, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 10, 949–956 (French, with English and French summaries). MR 1838776, DOI 10.1016/S0764-4442(01)01933-4
  • Xavier Blanc, Claude Le Bris, and Pierre-Louis Lions, Caractérisation des fonctions de $\mathbf R^3$ à potentiel newtonien borné, C. R. Math. Acad. Sci. Paris 334 (2002), no. 1, 15–21 (French, with English and French summaries). MR 1888656, DOI 10.1016/S1631-073X(02)02203-3
  • Philippe Blanchard and Erwin Brüning, Variational methods in mathematical physics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992. A unified approach; Translated from the German by Gillian M. Hayes. MR 1230382, DOI 10.1007/978-3-642-82698-6
  • Philippe Blanchard and Erwin Brüning, Mathematical methods in physics, Revised translation of the 1993 German edition, Progress in Mathematical Physics, vol. 26, Birkhäuser Boston, Inc., Boston, MA, 2003. Distributions, Hilbert space operators, and variational methods. MR 1936762, DOI 10.1007/978-1-4612-0049-9
  • O. Bokanowski and B. Grebert, A decomposition theorem for wave functions in molecular quantum chemistry, Math. Models Methods Appl. Sci. 6 (1996), no. 4, 437–466. MR 1395812, DOI 10.1142/S021820259600016X
  • O. Bokanowski and B. Grébert, Deformations of density functions in molecular quantum chemistry, J. Math. Phys. 37 (1996), no. 4, 1553–1573. MR 1380859, DOI 10.1063/1.531468
  • boka Bokanowski, O.M. and B. Grebert (1998) Utilization of deformations in molecular quantum chemistry and application to density functional theory, Int. J. Quant. Chem. 68, pp. 221–231. BornemannNettesheimSchutte Bornemann, F.A., P. Nettersheim and Ch. Schütte (1996) Quantum-classical molecular dynamics as an approximation to full quantum dynamics, J. Chem. Phys. 105, pp. 1074–1083.
  • Folkmar A. Bornemann and Christof Schütte, A mathematical investigation of the Car-Parrinello method, Numer. Math. 78 (1998), no. 3, 359–376. MR 1603342, DOI 10.1007/s002110050316
  • Folkmar Bornemann, Homogenization in time of singularly perturbed mechanical systems, Lecture Notes in Mathematics, vol. 1687, Springer-Verlag, Berlin, 1998. MR 1637077, DOI 10.1007/BFb0092091
  • Bowler1 Bowler, D. et al. (1997) A comparison of linear scaling tight-binding methods, Model. Simul. Mater. Sci. Eng. 5, pp. 199–202. Bowler2 Bowler, D. and M. Gillan (1999) Density matrices in $O(N)$ electronic structure calculations, Comp. Phys. Comm. 120, pp. 95–108. Boys Boys, S.F. (1950) Electronic wavefunctions. I. A general method of calculation for the stationary states of any molecular system, Proc. Roy. Soc. London Ser. A 200, pp. 542–554. braides-book Braides, A. and M.S. Gelli (2000) From Discrete to Continuum: A Variational Approach, Lecture Notes SISSA, Trieste. braides-book2 Braides, A. (2001) From discrete to continuous variational problems: an introduction, Lecture Notes School on Homogenization Techniques and Asymptotic Methods for Problems with Multiple Scales, Torino.
  • Andrea Braides, Non-local variational limits of discrete systems, Commun. Contemp. Math. 2 (2000), no. 2, 285–297. MR 1759792, DOI 10.1142/S021919970000013X
  • Andrea Braides and Maria Stella Gelli, Limits of discrete systems with long-range interactions, J. Convex Anal. 9 (2002), no. 2, 363–399. Special issue on optimization (Montpellier, 2000). MR 1970562
  • Andrea Braides and Maria Stella Gelli, Continuum limits of discrete systems without convexity hypotheses, Math. Mech. Solids 7 (2002), no. 1, 41–66. MR 1900933, DOI 10.1177/1081286502007001229
  • H. Brezis, Semilinear equations in $\textbf {R}^N$ without condition at infinity, Appl. Math. Optim. 12 (1984), no. 3, 271–282. MR 768633, DOI 10.1007/BF01449045
  • Eric Cancès, Mireille Defranceschi, Werner Kutzelnigg, Claude Le Bris, and Yvon Maday, Computational quantum chemistry: a primer, Handbook of numerical analysis, Vol. X, Handb. Numer. Anal., X, North-Holland, Amsterdam, 2003, pp. 3–270. MR 2008386
  • ODA-KS Cancès, E. (2001a) SCF algorithms for Kohn-Sham models with fractional occupation numbers, J. Chem. Phys. 114, pp. 10616–10623. LNC Cancès, E. (2001b) SCF algorithms for Hartree-Fock electronic calculations, in: M. Defranceschi and C. Le Bris, eds., Mathematical models and methods for ab initio quantum chemistry, Lecture Notes in Chemistry 74 (Springer), pp. 17–43.
  • Eric Cancès and Claude Le Bris, On the perturbation methods for some nonlinear quantum chemistry models, Math. Models Methods Appl. Sci. 8 (1998), no. 1, 55–94. MR 1612003, DOI 10.1142/S0218202598000044
  • Eric Cancès and Claude Le Bris, On the time-dependent Hartree-Fock equations coupled with a classical nuclear dynamics, Math. Models Methods Appl. Sci. 9 (1999), no. 7, 963–990. MR 1710271, DOI 10.1142/S0218202599000440
  • Eric Cancès and Claude Le Bris, On the convergence of SCF algorithms for the Hartree-Fock equations, M2AN Math. Model. Numer. Anal. 34 (2000), no. 4, 749–774. MR 1784484, DOI 10.1051/m2an:2000102
  • outperform Cancès, E. and C. Le Bris (2000b) Can we outperform the DIIS approach for electronic structure calculations, Int. J. Quantum Chem. 79, pp. 82–90.
  • Eric Cancès, Claude Le Bris, and Mathieu Pilot, Contrôle optimal bilinéaire d’une équation de Schrödinger, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 7, 567–571 (French, with English and French summaries). MR 1760440, DOI 10.1016/S0764-4442(00)00227-5
  • E. Cancès, C. Le Bris, B. Mennucci, and J. Tomasi, Integral equation methods for molecular scale calculations in the liquid phase, Math. Models Methods Appl. Sci. 9 (1999), no. 1, 35–44. MR 1671531, DOI 10.1142/S021820259900004X
  • can-stoch Cancès, E., B. Jourdain and T. Lelièvre (2005), Quantum Monte-Carlo simulations of fermions: a mathematical analysis of the fixed-node approximation, submitted to Math. Models Methods Appl. Sci. CarParrinello Car, R. and M. Parrinello (1985) Unified approach for molecular dynamics and density functional theory, Phys. Rev. Lett. 55, pp. 2471–2474. carter Carter, E. and A. Wang (2000) Orbital-Free Kinetic Energy Density Functional Theory, in Theoretical Methods in Condensed Phase Chemistry, S. D. Schwartz, ed., Progress in Theoretical Chemistry and Physics, Kluwer, pp. 117–184. paturel-catto Catto, I. and E. Paturel, in preparation.
  • Isabelle Catto, Claude Le Bris, and Pierre-Louis Lions, The mathematical theory of thermodynamic limits: Thomas-Fermi type models, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. MR 1673212
  • I. Catto, C. Le Bris, and P.-L. Lions, On the thermodynamic limit for Hartree-Fock type models, Ann. Inst. H. Poincaré C Anal. Non Linéaire 18 (2001), no. 6, 687–760 (English, with English and French summaries). MR 1860952, DOI 10.1016/S0294-1449(00)00059-7
  • I. Catto, C. Le Bris, and P.-L. Lions, On the thermodynamic limit for Hartree-Fock type models, Ann. Inst. H. Poincaré C Anal. Non Linéaire 18 (2001), no. 6, 687–760 (English, with English and French summaries). MR 1860952, DOI 10.1016/S0294-1449(00)00059-7
  • Isabelle Catto, Claude Le Bris, and Pierre-Louis Lions, Limite thermodynamique pour des modèles de type Thomas-Fermi, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 4, 357–364 (French, with English and French summaries). MR 1378513
  • Isabelle Catto, Claude Le Bris, and Pierre-Louis Lions, Sur la limite thermodynamique pour des modèles de type Hartree et Hartree-Fock, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 3, 259–266 (French, with English and French summaries). MR 1650265, DOI 10.1016/S0764-4442(98)80143-2
  • I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. I. A necessary and sufficient condition for the stability of general molecular systems, Comm. Partial Differential Equations 17 (1992), no. 7-8, 1051–1110. MR 1179279, DOI 10.1080/03605309208820878
  • I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. I. A necessary and sufficient condition for the stability of general molecular systems, Comm. Partial Differential Equations 17 (1992), no. 7-8, 1051–1110. MR 1179279, DOI 10.1080/03605309208820878
  • I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. I. A necessary and sufficient condition for the stability of general molecular systems, Comm. Partial Differential Equations 17 (1992), no. 7-8, 1051–1110. MR 1179279, DOI 10.1080/03605309208820878
  • I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. IV. Binding of neutral systems for the Hartree model, Comm. Partial Differential Equations 18 (1993), no. 7-8, 1149–1159. MR 1233188, DOI 10.1080/03605309308820967
  • J. M. Chadam and R. T. Glassey, Global existence of solutions to the Cauchy problem for time-dependent Hartree equations, J. Mathematical Phys. 16 (1975), 1122–1130. MR 413843, DOI 10.1063/1.522642
  • Chan Chan, G. K. L. et al. (2001) Thomas-Fermi-Dirac-von Weizsäcker models in finite systems, J. Chem. Phys., vol. 114, 2, pp. 631–638. FM5 Challacombe, M. (2000) Linear scaling computation of the Fock matrix. V. Hierarchical cubature for numerical integration of the exchange-correlation matrix, J. Chem. Phys. 113, pp. 10037–10043.
  • A. J. Coleman and V. I. Yukalov, Reduced density matrices, Lecture Notes in Chemistry, vol. 72, Springer-Verlag, Berlin, 2000. Coulson’s challenge. MR 1757452, DOI 10.1007/978-3-642-58304-9
  • H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer Study Edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. MR 883643
  • Gianni Dal Maso, An introduction to $\Gamma$-convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1201152, DOI 10.1007/978-1-4612-0327-8
  • Daniels Daniels, A. and G. Scuseria (1999) What is the best alternative to diagonalization of the hamiltonian in large scale semiempirical calculations?, J. Chem. Phys. 110, pp. 1321–1328. datta Datta, S.N. and G. Deviah (1988) The minimax technique in relativistic Hartree-Fock calculations, Pramana 30, 5, pp. 393–416. deak Deák, P., Th. Frauenheim and M. R. Pederson, eds. (2000) Computer simulation of materials at atomic level, Wiley, 2000.
  • Patrick Fischer and Mireille Defranceschi, Numerical solution of the Schrödinger equation in a wavelet basis for hydrogen-like atoms, SIAM J. Numer. Anal. 35 (1998), no. 1, 1–12. MR 1618416, DOI 10.1137/S0036142995284557
  • M. Defranceschi and C. Le Bris, Computing a molecule: a mathematical viewpoint, J. Math. Chem. 21 (1997), no. 1, 1–30. MR 1478056, DOI 10.1023/A:1019197613932
  • defclb2 Defranceschi, M. and C. Le Bris (1999) Computing a molecule in its environment: a mathematical viewpoint, Int. J. Quant. Chem. 71, pp. 257–250.
  • M. Defranceschi and C. Le Bris (eds.), Mathematical models and methods for ab initio quantum chemistry, Lecture Notes in Chemistry, vol. 74, Springer-Verlag, Berlin, 2000. MR 1857459, DOI 10.1007/978-3-642-57237-1
  • J. P. Desclaux, J. Dolbeault, M. J. Esteban, P. Indelicato, and E. Séré, Computational approaches of relativistic models in quantum chemistry, Handbook of numerical analysis, Vol. X, Handb. Numer. Anal., X, North-Holland, Amsterdam, 2003, pp. 453–483. MR 2008389
  • esteban-sere13 Dolbeault, J., M.J. Esteban, E. Séré and M. Vanbreugel (2000) Minimization methods for the one-particle Dirac equation, Phys. Rev. Letters 85 (19), pp. 4020–4023.
  • Jean Dolbeault, Maria J. Esteban, and Eric Séré, Variational characterization for eigenvalues of Dirac operators, Calc. Var. Partial Differential Equations 10 (2000), no. 4, 321–347. MR 1767717, DOI 10.1007/s005260010321
  • Jean Dolbeault, Maria J. Esteban, and Eric Séré, On the eigenvalues of operators with gaps. Application to Dirac operators, J. Funct. Anal. 174 (2000), no. 1, 208–226. MR 1761368, DOI 10.1006/jfan.1999.3542
  • Jean Dolbeault, Maria J. Esteban, and Eric Séré, Variational methods in relativistic quantum mechanics: new approach to the computation of Dirac eigenvalues, Mathematical models and methods for ab initio quantum chemistry, Lecture Notes in Chem., vol. 74, Springer, Berlin, 2000, pp. 211–226. MR 1855581, DOI 10.1007/978-3-642-57237-1_{1}0
  • esteban-sere16 Dolbeault, J., M.J. Esteban and E. Séré (2003) A variational method for relativistic computations in atomic and molecular physics, Int. J. Quantum. Chemistry 93, pp. 149–155.
  • Jean Dolbeault, Maria J. Esteban, Michael Loss, and Luis Vega, An analytical proof of Hardy-like inequalities related to the Dirac operator, J. Funct. Anal. 216 (2004), no. 1, 1–21. MR 2091354, DOI 10.1016/j.jfa.2003.09.010
  • Dovesi Dovesi R., R. Orlando, C. Roetti, C. Pisani and V.R. Saunders (2000) The periodic Hartree-Fock method and its implementation in the crystal code, Phys. Stat. Sol. (b) 217, pp. 63–88. gross Dreizler, R.M. and E.K.U. Gross (1990) Density functional theory (Springer).
  • Maria J. Esteban and Éric Séré, Stationary states of the nonlinear Dirac equation: a variational approach, Comm. Math. Phys. 171 (1995), no. 2, 323–350. MR 1344729
  • Maria J. Esteban and Éric Séré, Existence de solutions stationnaires pour l’équation de Dirac non linéaire et le système de Dirac-Poisson, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 11, 1213–1218 (French, with English and French summaries). MR 1309103
  • Maria J. Esteban, Vladimir Georgiev, and Eric Séré, Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations, Calc. Var. Partial Differential Equations 4 (1996), no. 3, 265–281. MR 1386737, DOI 10.1007/BF01254347
  • Maria J. Esteban and Eric Séré, Existence and multiplicity of solutions for linear and nonlinear Dirac problems, Partial differential equations and their applications (Toronto, ON, 1995) CRM Proc. Lecture Notes, vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 107–118. MR 1479240, DOI 10.1090/crmp/012/08
  • Maria J. Esteban, Vladimir Georgiev, and Eric Séré, Bound-state solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac systems, Lett. Math. Phys. 38 (1996), no. 2, 217–220. MR 1403074, DOI 10.1007/BF00398323
  • Maria J. Esteban and Eric Séré, Solutions of the Dirac-Fock equations for atoms and molecules, Comm. Math. Phys. 203 (1999), no. 3, 499–530. MR 1700174, DOI 10.1007/s002200050032
  • Maria J. Esteban and Eric Séré, An overview on linear and nonlinear Dirac equations, Discrete Contin. Dyn. Syst. 8 (2002), no. 2, 381–397. Current developments in partial differential equations (Temuco, 1999). MR 1897689, DOI 10.3934/dcds.2002.8.381
  • Maria J. Esteban and Eric Sere, Les équations de Dirac-Fock, Séminaire sur les Équations aux Dérivées Partielles, 1997–1998, École Polytech., Palaiseau, 1998, pp. Exp. No. V, 10 (French, with French summary). MR 1660518
  • M. J. Esteban and E. Séré, Nonrelativistic limit of the Dirac-Fock equations, Ann. Henri Poincaré 2 (2001), no. 5, 941–961. MR 1869528, DOI 10.1007/s00023-001-8600-7
  • Maria J. Esteban and Eric Séré, On some linear and nonlinear eigenvalue problems in relativistic quantum chemistry, Variational and topological methods in the study of nonlinear phenomena (Pisa, 2000) Progr. Nonlinear Differential Equations Appl., vol. 49, Birkhäuser Boston, Boston, MA, 2002, pp. 15–27. MR 1879732
  • Maria J. Esteban and Eric Séré, A max-min principle for the ground state of the Dirac-Fock functional, Mathematical results in quantum mechanics (Taxco, 2001) Contemp. Math., vol. 307, Amer. Math. Soc., Providence, RI, 2002, pp. 135–141. MR 1946024, DOI 10.1090/conm/307/05275
  • esteban-sere19 Esteban, M.J. and E. Séré, Dirac-Fock models for atoms and molecules and related topics. Proceedings ICMP2003.
  • Charles L. Fefferman, The atomic and molecular nature of matter, Rev. Mat. Iberoamericana 1 (1985), no. 1, 1–44. MR 834355, DOI 10.4171/RMI/1
  • Charles Fefferman, The $N$-body problem in quantum mechanics, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S67–S109. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861484, DOI 10.1002/cpa.3160390707
  • Charles L. Fefferman and Luis A. Seco, On the energy of a large atom, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 525–530. MR 1056556, DOI 10.1090/S0273-0979-1990-15969-5
  • C. Fefferman and L. A. Seco, On the Dirac and Schwinger corrections to the ground-state energy of an atom, Adv. Math. 107 (1994), no. 1, 1–185. MR 1283205, DOI 10.1006/aima.1994.1060
  • C. L. Fefferman and L. A. Seco, The mathematics of large atoms, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1995) École Polytech., Palaiseau, 1995, pp. Exp. No. XI, 12. MR 1360480
  • FischerThese Fischer, P. and M. Defranceschi (1994) The wavelet transform: a new mathematical tool for Quantum Chemistry, in: E.S. Kryachko and J.L. Calais, eds., Conceptual Trends in Quantum Chemistry (Kluwer), pp. 227–247.
  • Søren Fournais, Maria Hoffmann-Ostenhof, Thomas Hoffmann-Ostenhof, and Thomas Østergaard Sørensen, Analyticity of the density of electronic wavefunctions, Ark. Mat. 42 (2004), no. 1, 87–106. MR 2056546, DOI 10.1007/BF02432911
  • S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Østergaard Sørensen, On the regularity of the density of electronic wavefunctions, Mathematical results in quantum mechanics (Taxco, 2001) Contemp. Math., vol. 307, Amer. Math. Soc., Providence, RI, 2002, pp. 143–148. MR 1946025, DOI 10.1090/conm/307/05276
  • Søren Fournais, Maria Hoffmann-Ostenhof, Thomas Hoffmann-Ostenhof, and Thomas Østergaard Sørensen, The electron density is smooth away from the nuclei, Comm. Math. Phys. 228 (2002), no. 3, 401–415. MR 1918782, DOI 10.1007/s002200200668
  • frenkel Frenkel, D. and B. Smit (1996) Understanding molecular simulation (Academic Press).
  • G. Friesecke, The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions, Arch. Ration. Mech. Anal. 169 (2003), no. 1, 35–71. MR 1996268, DOI 10.1007/s00205-003-0252-y
  • Gero Friesecke and Richard D. James, A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods, J. Mech. Phys. Solids 48 (2000), no. 6-7, 1519–1540. The J. R. Willis 60th anniversary volume. MR 1766412, DOI 10.1016/S0022-5096(99)00091-5
  • G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci. 12 (2002), no. 5, 445–478. MR 1923388, DOI 10.1007/s00332-002-0495-z
  • Galli Galli, G. (2000) Large scale electronic structure calculations using linear scaling methods, Phys. Stat. Sol (b) 217, pp. 231–249.
  • Clifford S. Gardner and Charles Radin, The infinite-volume ground state of the Lennard-Jones potential, J. Statist. Phys. 20 (1979), no. 6, 719–724. MR 537267, DOI 10.1007/BF01009521
  • Goedecker Goedecker, S. (1999) Linear scaling electronic structure methods, Reviews of Modern Physics 71, pp. 1085–1123.
  • D. Gogny and P.-L. Lions, Hartree-Fock theory in nuclear physics, RAIRO Modél. Math. Anal. Numér. 20 (1986), no. 4, 571–637. MR 877058, DOI 10.1051/m2an/1986200405711
  • Jerome A. Goldstein and Gisèle Ruiz Rieder, Thomas-Fermi theory with an external magnetic field, J. Math. Phys. 32 (1991), no. 10, 2907–2917. MR 1130565, DOI 10.1063/1.529084
  • Gisèle Ruiz Goldstein, Jerome A. Goldstein, and Wenyao Jia, Thomas-Fermi theory with magnetic fields and the Fermi-Amaldi correction, Differential Integral Equations 8 (1995), no. 6, 1305–1316. MR 1329842
  • Stephen J. Gustafson and Israel Michael Sigal, Mathematical concepts of quantum mechanics, Universitext, Springer-Verlag, Berlin, 2003. MR 2002159, DOI 10.1007/978-3-642-55729-3
  • George A. Hagedorn, Crossing the interface between chemistry and mathematics, Notices Amer. Math. Soc. 43 (1996), no. 3, 297–299. MR 1375215
  • George A. Hagedorn, A time dependent Born-Oppenheimer approximation, Comm. Math. Phys. 77 (1980), no. 1, 1–19. MR 588684
  • Hehre Hehre, W.J., L. Radom, P.v.R. Schleyer, and J.A. Pople (1986) Ab initio molecular orbital theory (Wiley).
  • Maria Hoffmann-Ostenhof, Thomas Hoffmann-Ostenhof, and Thomas Østergaard Sørensen, Electron wavefunctions and densities for atoms, Ann. Henri Poincaré 2 (2001), no. 1, 77–100. MR 1823834, DOI 10.1007/PL00001033
  • W. Hunziker and I. M. Sigal, The quantum $N$-body problem, J. Math. Phys. 41 (2000), no. 6, 3448–3510. MR 1768629, DOI 10.1063/1.533319
  • Rafael José Iório Jr. and Dan Marchesin, On the Schrödinger equation with time-dependent electric fields, Proc. Roy. Soc. Edinburgh Sect. A 96 (1984), no. 1-2, 117–134. MR 741652, DOI 10.1017/S0308210500020527
  • jay Jay, L.O., H. Kim, Y. Saad and J.R. Chelikowski (1999) Electronic structure calculations for plane wave codes without diagonalization, Comp. Phys. Comm. 118, pp. 21–30. Jones Jones, R.O. and O. Gunnarsson (1989) The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61, pp. 689–746.
  • Tosio Kato, On the eigenfunctions of many-particle systems in quantum mechanics, Comm. Pure Appl. Math. 10 (1957), 151–177. MR 88318, DOI 10.1002/cpa.3160100201
  • Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
  • Kittel Kittel, Ch. (1996) Introduction to Solid State Physics, 7th Ed., Wiley. klahn Klahn, B. and W.A. Bingel (1977) The convergence of the Rayleigh-Ritz method in Quantum Chemistry, Theor. Chim. Acta 44, pp. 26–43. KohnNL Kohn, W. (1999) Nobel Lecture: Electronic structure of matter-wave functions and density functionals, Rev. Mod. Phys. 71, pp. 1253–1266. KouteckyBonacic Koutecký, J. and V. Bonacic (1971) On convergence difficulties in the iterative Hartree-Fock procedure, J. Chem. Phys. 55, pp. 2408–2413. ScuseriaFMM Kudin, K. and G.E. Scuseria (1998) A fast multipole algorithm for the efficient treatment of the Coulomb problem in electronic structure calculations of periodic systems with Gaussian orbitals, Chem. Phys. Lett. 289, pp. 611–616. EDIIS Kudin, K., G.E. Scuseria and E. Cancès (2002) A black-box self-consistent field convergence algorithm: one step closer, J. Chem. Phys. 116, pp. 8255–8261. clb-these Le Bris, C. (1993) Quelques problèmes mathématiques en chimie quantique moléculaire, Ph.D. thesis, École Polytechnique.
  • C. Le Bris (ed.), Handbook of numerical analysis. Vol. X, Handbook of Numerical Analysis, X, North-Holland, Amsterdam, 2003. Special volume: computational chemistry. MR 2008385
  • C. Le Bris, Some results on the Thomas-Fermi-Dirac-von Weizsäcker model, Differential Integral Equations 6 (1993), no. 2, 337–353. MR 1195387
  • Claude Le Bris, A general approach for multiconfiguration methods in quantum molecular chemistry, Ann. Inst. H. Poincaré C Anal. Non Linéaire 11 (1994), no. 4, 441–484 (English, with English and French summaries). MR 1287241, DOI 10.1016/S0294-1449(16)30183-4
  • Claude Le Bris, On the spin polarized Thomas-Fermi model with the Fermi-Amaldi correction, Nonlinear Anal. 25 (1995), no. 7, 669–679. MR 1341520, DOI 10.1016/0362-546X(94)00177-J
  • André D. Bandrauk, Michel C. Delfour, and Claude Le Bris (eds.), Quantum control: mathematical and numerical challenges, CRM Proceedings & Lecture Notes, vol. 33, American Mathematical Society, Providence, RI, 2003. Papers from the CRM Workshop held at the Université de Montréal, Montréal, QC, October 6–11, 2002. MR 2043517, DOI 10.1090/crmp/033
  • acta Le Bris, C. (2005) Computational chemistry from the perspective of numerical analysis, to appear in Acta Numerica. lester Lester, W.A., Jr. (1997–2002) Recent advances in quantum Monte Carlo methods, 2 volumes, World Scientific. Levine Levine, I.N. (1991) Quantum Chemistry (Prentice Hall).
  • Mathieu Lewin, The multiconfiguration methods in quantum chemistry: Palais-Smale condition and existence of minimizers, C. R. Math. Acad. Sci. Paris 334 (2002), no. 4, 299–304 (English, with English and French summaries). MR 1891007, DOI 10.1016/S1631-073X(02)02252-5
  • Mathieu Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Ration. Mech. Anal. 171 (2004), no. 1, 83–114. MR 2029532, DOI 10.1007/s00205-003-0281-6
  • Lieb-bound Lieb, E.H. (1984) Bound on the maximum negative ionization of atoms and molecules, Phys. Rev. A 29, pp. 3018–3028.
  • Elliott H. Lieb, Kinetic energy bounds and their application to the stability of matter, Schrödinger operators (Sønderborg, 1988) Lecture Notes in Phys., vol. 345, Springer, Berlin, 1989, pp. 371–382. MR 1037324, DOI 10.1007/3-540-51783-9_{2}4
  • Elliott H. Lieb, The stability of matter: from atoms to stars, Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 1, 1–49. MR 1014510, DOI 10.1090/S0273-0979-1990-15831-8
  • lieb-dft2 Lieb, E.H. (1985) Density functionals for Coulomb systems, in: R.M. Dreizler and J. da Providencia, eds., Density Functional Methods in Physics (Plenum, New York), pp. 31–80.
  • Elliott H. Lieb and Barry Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys. 53 (1977), no. 3, 185–194. MR 452286
  • Elliott H. Lieb and Barry Simon, The Thomas-Fermi theory of atoms, molecules and solids, Advances in Math. 23 (1977), no. 1, 22–116. MR 428944, DOI 10.1016/0001-8708(77)90108-6
  • Elliott H. Lieb, A lower bound for Coulomb energies, Phys. Lett. A 70 (1979), no. 5-6, 444–446. MR 588128, DOI 10.1016/0375-9601(79)90358-X
  • lieb-exch2 Lieb, E.H. and S. Oxford (1981) Improved lower bound on the indirect Coulomb energy, Int. J. Quant. Chem., vol. 19, pp. 427–439.
  • Elliott H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys. 53 (1981), no. 4, 603–641. MR 629207, DOI 10.1103/RevModPhys.53.603
  • lieb-dft Lieb, E.H. (1983) Density functionals for Coulomb systems, Int. J. Quantum Chem. 24, pp. 243–277. liebNE Lieb, E.H. (1984) Bound of the maximum negative ionization of atoms and molecules, Phys. Rev. A 29, pp. 3018–3028. lieb-thir-ineq Lieb, E.H. and W. Thirring (1976) Inequalities for the moment of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities, in Studies in Mathematical Physics, E.H. Lieb, B. Simon and A. Wightman, eds., Princeton Univ. Press, pp. 269–303. lieb-thir-waals Lieb, E.H. and W. Thirring (1986) Universal nature of van der Waals forces for Coulomb systems, Phys. Rev. A 34, pp. 40–46.
  • P.-L. Lions, Hartree-Fock and related equations, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. IX (Paris, 1985–1986) Pitman Res. Notes Math. Ser., vol. 181, Longman Sci. Tech., Harlow, 1988, pp. 304–333. MR 992653
  • Pierre-Louis Lions and Andrew Majda, Equilibrium statistical theory for nearly parallel vortex filaments, Comm. Pure Appl. Math. 53 (2000), no. 1, 76–142. MR 1715529, DOI 10.1002/(SICI)1097-0312(200001)53:1<76::AID-CPA2>3.3.CO;2-C
  • P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys. 109 (1987), no. 1, 33–97. MR 879032
  • P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201. MR 834360, DOI 10.4171/RMI/6
  • P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109–145 (English, with French summary). MR 778970
  • eccomas Lions, P.-L. (1996) Remarks on mathematical modelling in quantum chemistry, Computational Methods in Applied Sciences, Wiley, pp. 22–23.
  • Wing Kam Liu, Dong Qian, and Mark F. Horstemeyer, Preface [Special issue on multiple scale methods for nanoscale mechanics and materials], Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 17-20, iii–v. MR 2069426
  • Mcweeny McWeeny, R. (1992) Methods of molecular quantum mechanics, 2nd edition (Academic Press).
  • Yvon Maday and Gabriel Turinici, Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations, Numer. Math. 94 (2003), no. 4, 739–770. MR 1990591, DOI 10.1007/s002110100358
  • march March, N.H. (1992) Electron density theory of atoms and molecules (Academic Press).
  • W. J. Ventevogel and B. R. A. Nijboer, On the configuration of systems of interacting particles with minimum potential energy per particle, Phys. A 98 (1979), no. 1-2, 274–288. MR 546896, DOI 10.1016/0378-4371(79)90178-X
  • W. J. Ventevogel and B. R. A. Nijboer, On the configuration of systems of interacting particles with minimum potential energy per particle, Phys. A 99 (1979), no. 3, 569–580. MR 552855, DOI 10.1016/0378-4371(79)90072-4
  • Ordejon Ordejon, P., D.A. Drabold and R.M. Martin (1995) Linear system-size scaling methods for electronic structure calculations, Phys. Rev. B 51, pp. 1456–1476.
  • S. Pagano and R. Paroni, A simple model for phase transitions: from the discrete to the continuum problem, Quart. Appl. Math. 61 (2003), no. 1, 89–109. MR 1955225, DOI 10.1090/qam/1955225
  • parr Parr, R. G. and W. Yang (1989) Density functional theory of atoms and molecules (Oxford University Press).
  • Eric Paturel, Solutions of the Dirac-Fock equations without projector, Ann. Henri Poincaré 1 (2000), no. 6, 1123–1157. MR 1809795, DOI 10.1007/PL00001024
  • HF-unique Payne, P. W. (1979) Density functionals in unrestricted Hartree-Fock theory, J. Chem. Phys. 71, pp. 490–496. Pisani Pisani, C., ed. (1996) Quantum mechanical ab initio calculation of the properties of crystalline materials, Lecture Notes in Chemistry 67, Springer. diis Pulay, P. (1982) Improved SCF convergence acceleration, J. Comp. Chem. 3, pp. 556–560. raabe Raabe, D. (1998) Computational materials science, Wiley.
  • Charles Radin, The ground state for soft disks, J. Statist. Phys. 26 (1981), no. 2, 365–373. MR 643714, DOI 10.1007/BF01013177
  • Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
  • levelshift Saunders, V. R. and I.H. Hillier (1973) A “level-shifting" method for converging closed shell Hartree-Fock wavefunctions, Int. J. Quantum Chem. 7, pp. 699–705.
  • Martin Schechter, Operator methods in quantum mechanics, North-Holland Publishing Co., New York-Amsterdam, 1981. MR 597895
  • Scuseria-LSDFT Scuseria, G.E. (1999) Linear scaling density functional calculations with Gaussian orbitals, J. Phys. Chem. A 103, pp. 4782–4790.
  • Jan Philip Solovej, Universality in the Thomas-Fermi-von Weizsäcker model of atoms and molecules, Comm. Math. Phys. 129 (1990), no. 3, 561–598. MR 1051505
  • Jan Philip Solovej, Proof of the ionization conjecture in a reduced Hartree-Fock model, Invent. Math. 104 (1991), no. 2, 291–311. MR 1098611, DOI 10.1007/BF01245077
  • Jan Philip Solovej, The size of atoms in Hartree-Fock theory, Partial differential equations and mathematical physics (Copenhagen, 1995; Lund, 1995) Progr. Nonlinear Differential Equations Appl., vol. 21, Birkhäuser Boston, Boston, MA, 1996, pp. 321–332. MR 1380999
  • spruch Spruch, L. (1991) Pedagogic notes on Thomas-Fermi theory (and on some improvements): atoms, stars and the stability of bulk matter, Rev. Mod. Phys. 63, pp. 151–209. Stanton1 Stanton, R.E. (1981) The existence and cure of intrinsic divergence in closed shell SCF calculations, J. Chem. Phys. 75, pp. 3426–3432. Stanton2 Stanton, R.E. (1981) Intrinsic convergence in closed-shell SCF calculations. A general criterion, J. Chem. Phys. 75, pp. 5416–5422.
  • E. B. Starikov, On the convergence of the Hartree-Fock self-consistency procedure, Molecular Phys. 78 (1993), no. 2, 285–305. MR 1203047, DOI 10.1080/00268979300100241
  • Michael Struwe, Variational methods, Springer-Verlag, Berlin, 1990. Applications to nonlinear partial differential equations and Hamiltonian systems. MR 1078018, DOI 10.1007/978-3-662-02624-3
  • Swirles1 Swirless, B. (1935) The relativistic self-consistent field, Proc. Roy. Soc. A 152, pp. 625–649. Swirles2 Swirless, B. (1936) The relativistic interaction of two electrons in the self-consistent field method, Proc. Roy. Soc. A 157, pp. 680–696. szabo Szabo, A. and N.S. Ostlund (1982) Modern quantum chemistry: an introduction to advanced electronic structure theory (MacMillan).
  • James D. Talman, Minimax principle for the Dirac equation, Phys. Rev. Lett. 57 (1986), no. 9, 1091–1094. MR 854208, DOI 10.1103/PhysRevLett.57.1091
  • Walter Thirring, A course in mathematical physics. Vol. I. Classical dynamical systems, Springer-Verlag, New York-Vienna, 1978. Translated from the German by Evans M. Harrell. MR 507189
  • Herschel Rabitz, Gabriel Turinici, and Eric Brown, Control of quantum dynamics: concepts, procedures and future prospects, Handbook of numerical analysis, Vol. X, Handb. Numer. Anal., X, North-Holland, Amsterdam, 2003, pp. 833–887. MR 2008399
  • ventevogel Ventevogel, W.J. (1978) On the configuration of a one-dimensional system of interacting particles with minimum potential energy per particle, Physica, vol. 92A, p. 343. yser1 Yserentant, H. (2004) On the electronic Schrödinger equation, preprint.
  • Harry Yserentant, On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives, Numer. Math. 98 (2004), no. 4, 731–759. MR 2099319, DOI 10.1007/s00211-003-0498-1
  • yser3 Yserentant, H. (2004) Sparse grid spaces for the numerical solution of the electronic Schrödinger equation, Numer. Math., submitted. zhislin Zhislin, G.M. (1960) Discussion of the spectrum of Schrödinger operators for systems of many particles (Russian), Tr. Moskov. Mat. Obshch. 9, pp. 81–120.
Similar Articles
Additional Information
  • Claude Le Bris
  • Affiliation: CERMICS, École Nationale des Ponts et Chaussées, 6 & 8, avenue Blaise Pascal, 77455 Marne-La-Vallée, France
  • MR Author ID: 328085
  • Email: lebris@cermics.enpc.fr
  • Pierre-Louis Lions
  • Affiliation: Collège de France, 11, place Marcelin Berthelot, 75231 Paris Cedex 05, France
  • Email: lions@dmi.ens.fr
  • Received by editor(s): November 20, 2004
  • Published electronically: April 18, 2005
  • Additional Notes: This article is an extended version by the two authors of notes based upon a series of lectures given by PLL at Collège de France during the fall semester of the academic year 2003/04.
  • © Copyright 2005 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Bull. Amer. Math. Soc. 42 (2005), 291-363
  • MSC (2000): Primary 35Bxx, 35Jxx, 35Pxx, 49Kxx, 81Q05, 81Q10, 82Bxx
  • DOI: https://doi.org/10.1090/S0273-0979-05-01059-1
  • MathSciNet review: 2149087