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The book under review is concerned with certain geometric aspects of problems
arising in the calculus of variations. It can be viewed as a sequel to the second au-
thor’s earlier work, [7], which dealt with variational problems for curves, that is (in
local coordinates) functions of a single independent variable. Here the focus shifts to
first order variational principles for hypersurfaces, i.e. a single function of several
variables and, in the final chapter, more general submanifolds, i.e. vector-valued
functions. The geometric approach analyzes the behavior of variational problems
(and differential equations) under changes of variables, including the equivalence
and canonical form problems, that is, when can one variational problem be mapped
to another (simpler) one by a change of variables. Symmetries of variational prob-
lems arise as self-equivalences and are connected with conservation laws via the
general Noether correspondence. A wide variety of applications arises not just in
geometry, but also in theoretical physics, engineering, image processing, and so
on. Geometrical constructions also have a direct impact on the analysis of partial
differential equations, variational problems, and, increasingly, numerical solution
methods, [§].

To understand the book’s scope, let’s begin by defining the two terms in the title.
An exterior differential system refers to a system of differential equations defined by
a collection of differential forms. As an elementary example, the differential form
equation

du Ndy —dv ANdx =0 (*)

requires the planar vector field u(z,y) = (u(z,y),v(x,y)) to satisfy the incompress-
ibility equation

Ou Ov 0

Ox + oy
Many important physical systems, such as Monge-Ampere, Maxwell, and Yang—
Mills, are naturally reformulated as exterior differential systems. To be more pre-
cise, an exterior differential system on a (smooth) manifold M is determined by a
collection (either finite or infinite) of differential forms E = {w,}. Solutions are
characterized as integral submanifolds N C M, of a prescribed dimension, that
are required to annihilate all the differential forms in the system E. Thus, each
Wy | = 0, indicating the vanishing of the pull-back of the differential form to the
submanifold N. In local coordinates, writing N = {u = f(x)} as the graph of
a function, one reduces the exterior differential system to a system of differential
equations for the components of u. Often, the integral submanifolds are also re-
quired to satisfy an independence condition, meaning that one or more differential
forms remain non-zero on the integral submanifold. For instance, in formulating
the incompressibility condition in differential form language (), one should require
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that dz A dy |n # 0 to ensure that the two-dimensional integral submanifold N is,
at least locally, the graph of a single-valued smooth vector field.

Reformulating systems of differential equations as exterior differential systems
offers significant advantages due to the natural behavior of differential forms under
smooth maps, e.g., changes of variables. Moreover, integrability conditions for
overdetermined systems are encoded by the vanishing of the square of the exterior
derivative: d? = 0. For instance, the equation V x u = v for a vector potential in R?
can be recast as an exterior differential system 2 = dw — ¢ = 0 governed by a single
two-form €2, and the integrability condition V - v = 0 stating incompressibility of
the vector field becomes merely d2 = 0.

The modern theory of exterior differential systems was inaugurated almost ex-
actly a century ago by Elie Cartan as the key tool for his penetrating studies of Lie
pseudo-groups, [5]. Cartan’s remarkable insight into Poincaré’s newly established
calculus of differential forms led to the fundamental existence theorem for analytic
exterior differential systems, now known as the Cartan—K&ahler Theorem, which is a
far-reaching generalization of the classical Cauchy—Kovalevskaya Theorem, as well
as the complete solution to the basic equivalence problem between exterior differen-
tial systems. It is worth noting that the first two authors of the book collaborated
on the definitive modern text on exterior differential systems, [3]. As modern heirs
to Cartan’s vision, we all are, in many respects, still coming to grips with these
phenomenal advances and their impact and potential in geometry, differential equa-
tions, the calculus of variations, and, increasingly, real-world applications such as
computer vision, [15].

The second term in the book’s title refers to the basic differential equations
governing the (classical) solutions to variational problems. All sufficiently regular
local minimizers (and maximizers) of a variational principle

I[lﬂ:/L(x,u("))dxl/\~~~/\dx1’ (%)

must be solutions of the associated Euler-Lagrange equations. (But see [2] for
simple examples of variational problems whose minimizers do not satisfy the Euler—
Lagrange equations.) In practice, one constructs the Euler-Lagrange equation by
taking the first variation 6Z[u] = Z[u+ du] and then integrating by parts (omitting
the boundary contributions, whose vanishing must be ensured by the boundary
conditions) to rewrite the variation

0Z[u] = / (E(L) - du) dz* A -+ A da?

as a pairing between the variation du and the Euler-Lagrange expression E(L).
Since dZ[u] must vanish at critical points u, they must satisfy the Euler-Lagrange
equation E(L) = 0. Of course, being a solution to the Euler-Lagrange equation
is only a necessary condition for a minimizer; sufficient conditions are based on
the sign of the second variation §2Z[u]. In multivariable calculus, not every vector
field is a gradient; for similar reasons, not every system of differential equations
is a system of Euler-Lagrange equations, and the inverse problem of the calculus
of variations, i.e. deciding when a system of differential equations is equivalent
to an Euler-Lagrange system, while solved under certain restrictions, remains a
challenging problem in general.
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The most natural means of connecting the calculus of variations and differential
forms rests on the modern variational bicomplex, whose roots can be found in the
work of Hilbert and Cartan on invariant integrals, of Helmholtz and Jesse Douglas
on the inverse problem, followed by the Belgian mathematicians Lepage, DeDonder
and Dedecker, and culminating in the general constructions of Vinogradov, Tsu-
jishita, Tan Anderson, and their collaborators in the 1970’s and early 1980’s. The
bicomplex is constructed on the infinite jet bundle J*°, which is defined as the space
of equivalence classes of submanifolds N C M of a prescribed dimension under the
equivalence relation of infinite order contact — or, in more prosaic local coordinate
language, as the space of Taylor series of functions. Specification of local coor-
dinates on M as independent and dependent variables (x,u) naturally splits the
differential one-forms on J* into horizontal forms, dz?', ..., dzP, and contact forms,
which are characterized by the fact that they vanish on all jets of submanifolds:
6 ];..n = 0. As a result, the space of differential forms Q = €D, ; 2%/ on J>° decom-
poses, where each summand 2%/ is spanned by wedge products of 7 horizontal and j
contact forms. (In a coordinate-free approach, [I8], one works with filtrations rather
than direct sums.) The exterior derivative also splits, d = dgy + dy, into horizontal
and vertical (contact) components, so dg: Q59 — QLI while dy : Q8 — QbIFL
Thus, d2, =0 = d%/, while dgdy + dydg = 0, thereby defining the variational bi-
complez. Like the usual deRham complex, both the vertical differential dy and the
horizontal differential dy are locally exact, meaning the kernel of its action on Q%7
is the image of the preceding differential. (For the vertical differential, this follows
from the standard Poincaré lemma, but local exactness of dy is deeper.) However,
unlike the deRham complex, the vertical complexes never terminate, while in the
horizontal direction there is no final map since not every differential form in QP
lies in the image of di. Indeed, if this were not true, every variational integral (xx)
would only depend on the boundary values of the function u, and so there would
be no calculus of variations!

The reason for the term “variational bicomplex” is that geometric constructions
in the calculus of variations have natural interpretations as objects in the bicomplex.
Thus, the integrand or Lagrangian of a variational problem (xx) is a differential p-
form

A= L(x,u™)dzt A AdaP e QPO

Its vertical differential dy A € QP! corresponds to the first variation, while integra-
tion by parts corresponds to quotienting by the image of the horizontal differential
dy: QP~b1 - QP1 The elements of the quotient space are known as source forms
and can be identified with systems of differential equations. In particular, the image
of dy A is the Euler-Lagrange source form for the given Lagrangian. Local exact-
ness of the vertical subcomplex (after quotienting) gives a solution to the direct
inverse problem: a source form defines a system of Euler—Lagrange equations, so
p = E()) for some Lagrangian form A € QPV if and only if dyp = 0 as an element
of the quotient QP2/dyQP~12 — these are the classical Helmholtz conditions or,
equivalently, the condition of formal self-adjointness of the Fréchet derivative of
the system of differential equations, [I3]. Furthermore, classical conservation laws
are naturally interpreted as differential forms & € QP~1.0 with the property that
the horizontal differential dgié € QP9 vanishes on solutions to the Euler-Lagrange
equations. Noether’s theorem, relating symmetries of the variational problem to
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conservation laws, reduces to a simple exterior differential algebra identity in the bi-
complex framework. The global cohomology of the bicomplex plays a crucial role in
the geometric study of differential equations and the calculus of variations: conser-
vation laws, characteristic classes, etc., appear as cohomology representatives and
can thus be analyzed by powerful methods from homological algebra, particularly
spectral sequences. Further information and a wide range of interesting applications
in mathematics and physics can be found in [I} [17] [18].

However, the book under review takes a rather different tack when connecting
the calculus of variations with differential forms. Unlike the universally applicable
and natural bicomplex constructions, their reformulation of variational problems as
exterior differential systems tends to be ad hoc and not as well motivated. More-
over, it is not immediately apparent how to extend their approach to the more
challenging situations of higher order variational problems. Still, the authors pro-
vide very valuable insight into how the amazing tools Cartan bequeathed us can be
successfully applied to a wide variety of deep and interesting areas of differential
geometry and analysis. The theory is illustrated by a number of examples arising in
geometry and the applications of partial differential equations, including the wave
and Monge-Ampere equations, minimal surfaces, and harmonic maps. A significant
fraction of the text is devoted to the study of conformally invariant systems and in-
cludes results on the classification and applications of symmetries and conservation
laws. Additional topics of interest include intrinsic characterization of the second
variation, the Poincaré—Cartan form, and the connections between higher order
symmetries and conservation laws, integrability, and Béacklund transformations.

On the whole, the book is well written, although it tends to cover the basics
too rapidly for the non-expert. It is not an introductory text: To fully appreciate
the development, the reader needs to be reasonably familiar with exterior alge-
bra, differential forms, basics of exterior differential systems, as well as the Cartan
equivalence method. (The latter is reviewed, but far too quickly, within the con-
text of Monge—Ampere systems.) Moreover, despite the sophisticated mathematical
machinery, the overall aims are fairly modest, mostly concentrating on the “clas-
sical” situation of first order variational problems which, until the final chapter,
only involve a single function with scalar Euler—-Lagrange equation, thus avoiding
significant and as yet unresolved issues in the higher order cases. The introduction
includes a nice, albeit abbreviated, survey of some historical highlights, mentioning
some of the contemporary contributors, but without citations. Indeed, a signifi-
cant weakness is the lack of references to the literature, both classical and modern,
coupled with a single-minded concentration on the authors’ own approach to the
subject that avoids any serious comparisons with alternative viewpoints such as
those provided by the variational bicomplex. The reader will find it a challenge
to place their results within a broader research context or to track down relevant
articles or books to help supplement the sometimes cryptic presentations of basic
ideas and techniques.

Let me conclude by briefly surveying the individual chapters:

Chapter 1 introduces the basic themes of the text: contact geometry, the equiv-
alence and inverse problems for first order Lagrangians in one dependent variable,
the Poincaré-Cartan form, which first arose as the integrand in Hilbert’s invariant
integral and plays a key role in the classical sufficiency conditions for minimiz-
ers, as well as the most basic version of Noether’s Theorem that relates geometric
symmetries of variational problems and conservation laws of their Euler-Lagrange
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equations. Simple applications to Euclidean-invariant variational problems occupy
the final section.

Chapter 2 covers the geometry of the Poincaré-Cartan forms in the context of
first order variational problems in a single dependent variable. Section 2.1 ap-
plies the Cartan equivalence method to hyperbolic Monge-Ampeére systems, a key
outcome being a solution to the inverse problem, establishing conditions that the
system arise from a variational principle. The method is also used to establish
conditions for such systems to be equivalent to the scalar wave equation, ugy = 0,
reproducing a classical result known to Darboux; more recent, deeper work on the
fascinating topic of Darboux integrable equations, [9], is not mentioned.

Chapter 3 applies the techniques developed in the preceding chapters to study
conformally invariant variational problems. One of the main applications is to deter-
mine the symmetries and conservation laws of the conformally invariant nonlinear
Laplace equation Au = u("+2)/("=2): however, the sophisticated machinery is not
necessary as this result is readily established using Lie symmetry group methods
and the classical Noether theorem, [I3]. A particular case of an analytical unique-
ness theorem due to Pohozaev is quoted, again without providing a wider context
or how such results are connected with transformation groups via the Noether iden-
tity; a good source is the recent book by Reichel, [T6]. Incidentally, on p. 100, the
last name of the French mathematician Emile Cotton is misspelled.

Chapter 4 briefly surveys three additional topics. The first section develops
the second variation from a geometric viewpoint. I was surprised that there is
no mention of basic analytical constructions, such as strong ellipticity and the
Legendre-Hadamard positivity condition. The second section discusses the gener-
alized Poincaré—Cartan form proposed by Betounes for first order variational prob-
lems involving more than one dependent variable, but does not mention competing
versions due to Weyl, [19], and Carathéodory, [4]. The choice of Poincaré-Cartan
form has significant repercussions in the still not completely satisfactory establish-
ment of a field theory for multiple integrals, and some discussion of the strengths
and weaknesses of the different approaches would have been useful. For higher
order variational problems, matters are even less well understood, and there is
considerable controversy over whether an appropriate Poincaré—Cartan form even
exists. Two excellent surveys are by Kastrup, [10], and Gotay, [6], and further
results in this direction, based on the Cartan equivalence method, can be found in
the reviewer’s paper [14].

The final section deals with higher order symmetries and conservation laws. The
authors fall into the unfortunately common trap of calling this a “generalization of
Noether’s Theorem” (and, even worse, leaving it as a conjecture), when, in point of
fact, the full version already appears in Noether’s original paper, [I2]. Kosmann-
Schwarzbach, [11]], has recently published a wonderful overview of the convoluted
and at times embarrassing history of this famous result. The discovery of the soliton
has revealed the deep connections between higher order symmetries/conservation
laws and the integrability of the underlying partial differential equations, and the
book concludes with a discussion of integrability and Béacklund transformations in
the context of pseudo-spherical (constant negative curvature) surfaces.

In summary, despite its narrow focus and lack of references, the book is a welcome
addition to the current literature in this active and applicable area of mathematical
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research, providing a summary of the authors’ personal approach, but falling short
of a comprehensive guide to the field.
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