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1. Introduction

The task of reviewing Claire Voisin’s two-volume work Hodge Theory and Com-
plex Algebraic Geometry [V] is a daunting one, given the scope of the subject matter
treated, namely, a rather complete tour of the subject from the beginning to the
present, and given the break-neck pace of Voisin’s clear, complete, but “take no
prisoners” exposition. As is the case with most substantial mathematical treatises,
digesting the content of these volumes can only occur by reconstructing and reorga-
nizing their material for oneself, led forward, of course, by the clear beacon carried
by the author, one of the foremost leaders in the field. Rather than talk descrip-
tively about the mathematics, I have chosen to exemplify below a strand of my
own adventure in understanding and reconstruction as I worked my way through
the two volumes with a group of graduate students. I hope this will serve as an
invitation to other readers to do likewise. Their efforts will be amply rewarded.

I beg my readers’ indulgence for the longer-than-usual review that resulted. As
Voisin does, I have tried to write in such a way that readers of varying levels of
background or interest can enter or leave the exposition as suits their needs and
still come away with a mathematical experience of some integrity and completeness.
And, as Voisin does, we start at the beginning.

2. deRham cohomology

The most natural and fundamental objects in geometry are the differentiable
manifolds, that is, topological spaces which are everywhere ‘in microcosm’ like Eu-
clidean space in a consistent way as one moves from point to point. The differen-
tiable structure on M is uniquely characterized by specifying which locally defined
functions on M are the differentiable ones. The strongest form that a differential
structure can take is to specify in a consistent way the functions which have a con-
vergent Taylor series, the real analytic functions. Pioneering work of Whitney and
Nash showed that every differentiable structure could be, in an appropriate sense,
approximated by a real analytic one and that, again in an appropriate sense, real
analytic structures had only trivial (infinitesimal) deformations.

Early on, the study of the differential forms on a manifold M , that is, of the indef-
inite integrals the manifold supports, became a fundamental tool for understanding
its global geometry. Many topological properties of a differentiable manifold M are
encoded in its algebra of differential forms. An easily defined degree-1 derivation d
on forms, generalizing implicit differentiation

f �→ df

on functions, turned the algebra of differential forms into a complex, called the
deRham complex after the theory’s pioneer, Georges deRham. For a differential
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r-form ω and an r-dimensional polyhedron P on M , the several-variable general-
ization ∫

P

dω =
∫

∂P

ω

of the Fundamental Theorem of Calculus (Stokes theorem) realized the homology
of the complex of differential forms as ‘cohomology’, that is, as the dual to the
homology of the complex of singular chains on M (or to homology of M as a
CW -complex).

Work of Poincaré, E. Cartan, and deRham established a remarkable internal
symmetry,

(1) Hr (M) ↔ Hm−r (M) ,

(Poincaré duality) in the deRham cohomology groups of a compact and orientable
manifold M of dimension m. Arguably the most prescient and productive vision
of this symmetry was proposed by Hodge, who associated to each (Riemannian)
metric µ on tangent vectors on M a signed involution

ω �→ ∗ω
on forms which ‘lifted’ the symmetry (1) to the level of differential forms. The
‘adjoint’

d∗ = ± ∗ ◦d ◦ ∗
of d permitted Hodge to show that every cohomology class in H∗ (M) was repre-
sented by a unique form ω characterized by the equations

dω = 0
d∗ω = 0

or, equivalently, by the fact that it is the (closed) forms of minimal size in its
deRham cohomology class. Such a form was called harmonic since it generalized
the notion of harmonic function. These computations were facilitated by a funda-
mental property of any metric µ, the property that for appropriately chosen local
coordinates around any given point, µ and its first derivatives are those of the
standard Euclidean metric on Euclidean space.

(See S.-S. Chern’s introduction to the English edition of [deR] for a very brief yet
authorative history. In particular, Chern makes the central point that the passage
to deRham cohomology permitted the ‘localization’ of the (co)boundary operator,
which in turn led the way to the powerful notions of sheaf cohomology.)

3. Hodge theory

The subject matter of [V] lies within the realm of complex differential geometry,
the case in which M is a complex manifold, that is, is everywhere ‘in microcosm’
like complex Euclidean space, in a consistent way as one moves from point to point.
The complex structure on M is uniquely characterized by specifying which locally
defined functions on M are the holomorphic ones. Since holomorphic functions are
real analytic, an n-dimensional complex structure on M overlays a real analytic
structure on the underlying real differential manifold M of real dimension m = 2n.

Analogously the introduction of a hermitian metric µ plays a central role in the
theory. Our understanding of a compact complex manifold M is much enhanced if,
for appropriately chosen local holomorphic coordinates {zi} around any point, the
values of µ and its first derivatives at the point are those of the standard hermitian
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metric on complex Euclidean space. This is not automatic for complex manifolds.
In fact, some complex manifolds admit no µ satisfying this property at each point,
although complex projective space and all its complex submanifolds do. A metric
with this property is called a Kähler metric, and a complex manifold which admits
such a metric is called a Kähler manifold. The theory of Kähler manifolds, called
Hodge theory, is driven by a second symmetry on H∗ (M)⊗C in the case in which
M is a Kähler manifold. To describe it, complex-valued differential r-forms are said
to be of type (p, q) if they can be written everywhere locally as sums of terms of
the form

fdzi1 ∧ . . . ∧ dzip
∧ dzj1 ∧ . . . ∧ dzjq

and every differential r-form has a unique decomposition into a direct sum of (p, q)-
forms for p + q = r. Remarkably this decomposition passes to cohomology, in fact,
to harmonic forms. The second symmetry on

Hr (M) ⊗ C =
∑

p+q=r
Hp,q (M)

is therefore induced by complex conjugation (at 90◦ to the first one induced above
by the operator ∗).

In Parts I and II of Volume I, Voisin takes us through a lean, rapid, yet almost
completely self-contained development of classical Hodge theory. As mentioned
above, the prototypical example of a Kähler metric is the one induced via the
standard (Fubini-Study) metric on complex projective space P

N via an embedding

M ↪→ P
N .

Powerful interactions between topology and linear algebra find their expression in
this setting. Perhaps none is more powerful than the cohomological consequences of
‘slicing’ the n-dimensional complex manifold M ⊆ PN into a one-parameter family
of (n − 1)-dimensional complex submanifolds by intersecting it with a linear family
of hyperplanes of PN . Two fundamental facts are responsible for the power of this
so-called Lefschetz pencil technique. The first is that the action of cup product
with the (1, 1)-cohomology class representing the hyperplane and the adjoint of
that action generate a representation of sl (2, C) on H∗ (M), the weight-spaces
of which give a powerful semi-simple decomposition of H∗ (M) . The second is
that slicing by a linear ‘pencil’ of hyperplane sections opens the way to argue by
induction on the dimension of the manifold M . The (finite set of) singular slices
have only the simplest of singularities, called ordinary nodes, modeled topologically
by contracting an imbedded real (n − 1)-sphere (vanishing cycle) in a nearby slice
to a point. Lefschetz used this second fact to show that a general slice M0 of M has
the same cohomology as M itself in dimensions < (n − 1) and that the (n − 1)-st
cohomology of M injects into that of Mt under the restriction map. Said otherwise,
the relative cohomology

Hi (M, M0)

vanishes for i < n. In the remainder of Volume I and in Volume II, Voisin brings
together for the first time a truly comprehensive treatment of the modern theory
of variations of Hodge structures, of mixed Hodge structures, and of applications
to cycle theory. As such, it has already become the definitive reference.

The remainder of this review will be a record of the reviewer’s own attempt to
navigate and organize a principal thread in that treatment, namely Nori’s Connect-
edness Theorem for hypersurfaces and its consequences for cycle theory.
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4. Variations of Hodge structures

The slicing of a projective complex manifold

M ⊆ P
N

by a P1 of hyperplane sections gives rise to an incidence manifold

M̂ ⊆ P
1 × M.

The proper morphism
M̂ → P

1

is smooth except over the finite set ∆ where the corresponding fiber has a simple
node. Letting T denote the unit disk considered as the universal cover

τ : T →
(
P

1 − ∆
)
,

one considers the pull-back family

(2) M̃ := M̂ ×(P1−∆) T → T

as a deformation of the complex structure on the fiber M0 over 0 ∈ T. For t ∈ T
denote the corresponding fiber of (2) as Mt.

The family (2) is differentiably trivial, so one fixes a smooth family of C∞-
isomorphisms

ϕt : M0 → Mt

which are perturbations of the identity on M0.
The gain achieved by reducing the dimension of the object of study by one

had to be repaid by developing an understanding of the opportunities afforded by a
continuously varying family of Kähler manifolds as opposed to a single one standing
alone. This work was pioneered by Griffiths and Deligne, but only after the theory
of variation of complex structure appeared on the scene through seminal work of
Kodaira-Spencer and Kuranishi. In particular, much information about the M
itself is ultimately derivable from the knowledge of how Hp,q (Mt) varies within
the (flat) deformation of Hp+q (Mt) determined by (2). In essence, this is what is
meant by a variation of Hodge structure.

Using the identification

(3) A∗
M0

↔ A∗
Mt

induced by ϕt above, let
A∗,∗

t := ϕ∗
t A

∗,∗
Mt

⊆ A∗
M0

.

Under (3) a section of
A∗

M̃/T

becomes a smooth function
T → A∗

M0

on which the Gauss-Manin connection � is given by differentiating this map with
respect to t. Griffiths Transversality says that

� ∂
∂t

(
F pH∗

(
M̃/T

))
⊆ F p−1H∗

(
M̃/T

)

where
F pH∗ =

⊕
p′≥p

Hp′,q.
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5. The Leray spectral sequence

Let Y be any smooth quasiprojective variety and

π : X → Y

a projective smooth morphism. (In the above case we have M̃ and Y = T .) As
above the family of fibers is locally differentiably trivial, and we have the induced
Gauss-Manin connection ∇. The fundamental instrument for connecting the coho-
mology of a total space X to the cohomology of its slices π−1 (y) is called the Leray
spectral sequence, derived from the filtration

F (r) = A∗−r
X ∧ π∗Ar

Y

of A∗
X . Indeed the Leray spectral sequence and a “holomorphic” variant of it are

central to Voisin’s two volumes and will be the centerpiece of the remainder of this
review. First of all

Ei,j
0 = Ai

Y

(
Aj

X/Y

)
, d0 = dX/Y

Ei,j
1 = Ai

Y

(
Rjπ∗C

)
, d1 = ∇

Ei,j
2 = Hi

(
Y ; Rjπ∗C

)
.

Thus Ei,j
2 is realized as the j-th deRham cohomology group of the complex of

differential forms on Y with values in the local system Rjπ∗C or, what is the same
thing, the i-th hypercohomology of the holomorphic deRham complex

(4) OY ⊗ Rjπ∗C
∇−→ Ω1

Y ⊗ Rjπ∗C
∇−→ . . .

where ∇ is given by the (flat) Gauss-Manin connection.
Deligne proved the fundamental result that the Leray spectral sequence

{
Ei,j

r

}
degenerates at E2 so that

Hk (X) =
⊕k

i=0
Ei,k−i

2 .

The idea is as follows. There is a distinguished element h ∈ H0
(
R2π∗C

)
given by

the cohomology class of the hyperplane section, and the cup product map

(5) L : Riπ∗C
∪h−→Ri+2π∗C

with the flat section h of R2π∗C commutes with the Gauss-Manin connection ∇,
and so ∇ passes to the kernel of the adjoint of (5) with respect to (fiberwise)
Poincaré duality, the so-called primitive cycles. Thus the decomposition of R∗π∗C
into SL2 (C)-weight spaces is inherited by Ei,j

1 , and it is compatible with the action
of dr for r ≥ 1. But on a primitive k-class α(

Ln−k+1 ◦ d2

)
(α)

is non-zero whenever d2 (α) is, whereas Ln−k+1 (α) = 0. It is this incompatibility
of the action of the cup product commuting with a non-trivial dr for r > 2 that
gives the degeneration at E2. That is

Hr (X) =
⊕

i+j=r
Hj

(
Riπ∗C

)
,

expressing the cohomology of X as a direct sum of cohomologies of holomorphic
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bundles on Y . In the Leray spectral sequence

Ei,j
r = Hi

(
Y ; Rjπ∗C

)
,

we have that dr = 0 for r ≥ 2.

6. Holomorphic filtration of Rπ∗C

Suppose, in the previous section, we replace the constant sheaf C on X with its
(quasi-isomorphic) holomorphic deRham resolution

(6) OX
∂X−→ Ω1

X
∂X−→ . . . .

Then we can filter by subcomplexes

Ωl
Y ∧

{
OX

∂−→ Ω1
X

∂−→ . . .
}

,

and the associated spectral sequence
{
El,r

r

}
abutting on R∗π∗C has El,r

1 -term given
by Rl+rπ∗ applied to the (total) complex

Ωl
Y ⊗

{
OX

∂X/Y−→ Ω1
X/Y

∂X/Y−→ . . .

}
,

that is,

Ωl
Y ⊗

{
Rrπ∗OX ⊕ Rr−1π∗Ω1

X/Y ⊕ . . .
}

.

Furthermore by Griffiths Transversality

d1 : El,r
1 → El+1,r

1

is given by the morphisms

(7)
⊕

p+q=r

(
Ωl

Y ⊗ Rqπ∗Ω
p−l
X/Y

∇−→ Ωl+1
Y ⊗ Rq+1π∗Ω

p−l−1
X/Y

)

of sheaves on Y , where ∇ is induced by the Gauss-Manin connection as in the maps
(3) above. (Compare this with (4) above.) So we are led to the study of the relative
holomorphic deRham resolution

OX/Y
∂X−→ Ω1

X/Y
∂X−→ . . .

of the constant sheaf C and the morphisms (7).
This “holomorphic” Leray spectral sequence for a projective smooth morphism

π : X → Y

is especially powerful when Y parametrizes smooth intersections

Fy1 ∩ . . . ∩ Fyr
∩ M

for a fixed (n + r)-manifold

M ⊆ P
N

and hypersurfaces Fyi
of sufficiently high degree. Arguments based on induction

on r lead to consideration of the case r = 1.
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7. Koszul cohomology

Let
τ : Y → H0 (OM (d))

have image inside the set of sections with smooth zero-sets and X → Y be the
universal zero set. Let L now denote the pullback of OM (d) to M × Y with
universal section s. Following Green and Müller-Stach ([GMV], pp. 41-43), let

D
1
M×Y (L)

denote the sheaf of first-order differential operators on sections of L, which sits in
an exact (Euler) sequence

(8) 0 → OM×Y → D
1
M×Y (L) Σ−→ TM×Y → 0

given by the symbol map Σ. Taking exterior powers of the dual sequence

0 → Ω1
M×Y → J

1
M×Y (L) → OM×Y → 0

(with respect to the left OM×Y module structure on D1 (L)) yields short exact
sequences

0 → Ωp
M×Y →

∧p
J

1
M×Y (L) → Ωp−1

M×Y → 0.

The evaluation map

D
1
M×Y (L) → L

D �→ D (s)

considered as a holomorphic section σ of

J
1
M×Y (L) ⊗ L

has the property that

L−1 ⊗
∧p

J
1
M×Y (L) ∧σ−→ Ωp

M×Y → Ωp
X

is exact and so gives a Koszul resolution

(9) . . .
∧σ−→ L−2 ⊗

∧∗−1
J

1
M×Y (L) ∧σ−→ L−1 ⊗

∧∗
J

1
M×Y (L) → Ω∗

M×Y,X .

As above, filter Ω∗
M×Y,X by the holomorphic Leray filtration

Ωl
Y ∧ Ω∗−l

M×Y,X

so that, as above,

(10) d1 : El,r
1 → El+1,r

1

of the resulting spectral sequence for the filtration of Ω∗
M×Y,X is given by the

morphisms

(11)
⊕

p+q=r

(
Ωl

Y ⊗ Rqπ∗Ω∗−l
M×Y/Y,X/Y

∇−→ Ωl+1
Y ⊗ Rq+1π∗Ω∗−l−1

M×Y/Y,X/Y

)
.

Similarly the filtration of ∧∗
J

1
M×Y (L)

induced by the subspace
π∗Ω1

Y ⊆ J
1
M×Y (L)
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induces a filtration on (9). The E0-term of the resulting spectral sequence for the
induced filtration of (9) is given by the tensor product of Ωl

Y with the resolution

. . .
∧σ−→ L−2 ⊗

∧∗−l−1
J

1
M×Y/Y (L) ∧σ−→ L−1 ⊗

∧∗−l
J

1
M×Y/Y (L) → Ω∗−l

M×Y/Y,X/Y

of Ω∗−l
M×Y/Y,X/Y , where, referring to (8), J1

M×Y/Y (L) is constructed from

D
1
M×Y/Y (L) = Σ−1

(
TM×Y/Y

)
as above. Furthermore

d1 : El,r
1 → El+1,r

1

is

Ωl
Y ⊗ Rqπ∗

(
. . .

∧σ−→ L−2 ⊗
∧∗−l−1

J1
M×Y/Y (L)

∧σ−→ L−1 ⊗
∧∗−l

J1
M×Y/Y (L)

)
↓

Ωl+1
Y ⊗ Rq+1π∗

(
. . .

∧σ−→ L−2 ⊗
∧∗−l−2

J1
M×Y/Y (L)

∧σ−→ L−1 ⊗
∧∗−l−1

J1
M×Y/Y (L)

)
.

But, for d >> 0, if we filter “to the right” to compute Rqπ∗ in this last diagram,
we get

Ωl
Y ⊗ Hn+1−q

(
. . .

∧σ−→ Hn+1
(
L−2 ⊗

∧∗−l−1
J1

M (L)
) ∧σ−→ Hn+1

(
L−1 ⊗

∧∗−l
J1

M (L)
))

↓
Ωl+1

Y ⊗ Hn−q

(
. . .

∧σ−→ Hn+1
(
L−2 ⊗

∧∗−l−2
J1

M (L)
) ∧σ−→ Hn+1

(
L−1 ⊗

∧∗−l−1
J1

M (L)
))

.

To continue the computation, apply Serre duality on M to obtain the diagram
(12)∧l TY ⊗Hn−q+1

(
. . .←H0

(
L2⊗Ωn+1

M ⊗
∧∗−l−1

D1
M (L)

)
←H0

(
L⊗Ωn+1

M ⊗
∧∗−l

D1
M (L)

))
↑∧l+1 TY ⊗Hn−q

(
. . .←H0

(
L2⊗Ωn+1

M ⊗
∧∗−l−2

D1
M (L)

)
←H0

(
L⊗Ωn+1

M ⊗
∧∗−l−1

D1
M (L)

))
,

where the horizontal arrows are induced by differentiating the universal section s.
To understand the vertical map, notice that the morphism

(13) TY → H0 (L)

associated to the universal section s gives a tautological section

τ ∈ Ω1
Y ⊗ H0 (L) ,

and the vertical map in (12) is induced by contraction with this section.

8. The case of hypersurfaces

In the case in which M = Pn+1 the computation of (12) becomes more trans-
parent using the isomorphism

D
1
M (OPn+1 (d)) =

∑n+1

i=0
OPn+1 (1)

∂

∂Xi

so that, writing

Sk = H0 (OPn+1 (k)) ,

V =
∑n+1

i=0
C

∂

∂Xi
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(12) becomes
(14)∧l TY ⊗ Hn−q+1

(
. . . ← S2d−(n+2)+(∗−l−1) ⊗

∧∗−l−1 V ← Sd−(n+2)+(∗−l) ⊗
∧∗−l V

)
↑∧l+1 TY ⊗ Hn−q

(
. . . ← S2d−(n+2)+(∗−l−2) ⊗

∧∗−l−2 V ← Sd−(n+2)+(∗−l−1) ⊗
∧∗−l−1 V

)

with horizontal maps given by contraction with∑n+1

i=0

∂s

∂Xi
dXi

and vertical maps given by contracting with τ. In fact in this case d does not have
to be large to get (14). Since J1

Pn+1 (L) is itself semi-negative, the only requirement
is that d > 0.

At this point we assume
∗ − l ≤ n

so that Sd−(n+2)+(∗−l)−(d−1) = S∗−n−1−l = 0. Thus

(15) . . . ← S2d−(n+2)+(∗−l−1) ⊗
∧∗−l−1

V ← Sd−(n+2)+(∗−l) ⊗
∧∗−l

V

is a full Koszul resolution, so that Hn−q+1 = 0 unless

∗ − l = n − q + 1.

In this last case, if we let

Rk =
OY ⊗ Sk{

∂s
∂Xi

}
k

where
{

∂s
∂Xi

}
is the (homogeneous) Jacobian ideal of s in the graded ring S∗, then

when q = n + 1 − (∗ − l) we have∧l
TY ⊗ Hn−q+1 =

∧l
TY ⊗ Rd(∗−l+1)−(n+2)

and ∧l+1
TY ⊗ Hn−q =

∧l+1
TY ⊗ Rd(∗−l)−(n+2).

Furthermore the dual of d1 is(∧l+1
TY

)
⊗ Rd(∗−l)−(n+2)

τ−→
(∧l

TY

)
⊗ Rd(∗−l+1)−(n+2).

Notice that in the case dim Y = 0 the spectral sequence degenerates at E1 giving
rise to Griffiths’ residue theory for the (primitive) Hodge structure of hypersurfaces
in Pn+1. In the case in which dim Y = 1, the spectral sequence degenerates at E2,
giving rise to Griffiths’ residue theory for (one-parameter) variations.

9. Nori connectedness

Now consider the general case of a smooth projective morphism

π : X → Y

where Y parametrizes smooth intersections

Fy1 ∩ . . . ∩ Fyr
∩ M

for a fixed (n + r)-manifold
M ⊆ P

N
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and Fyi
hypersurfaces of sufficiently high degree di. A fundamental result of Nori

is that, if Y is an open subset of the smooth complete-intersections in∏r

i=1
H0 (OM (di))

for di >> 0, then

(16) Hk (M × Y ) → Hk (X)

is an isomorphism for
k < 2n

and an injection for
k = 2n;

that is, for k ≤ 2n,
Hk (M × Y, X) = 0.

Furthermore the result continues to hold if Y is replaced by a submersive base
extension

T → Y.

Using that (16) is a morphism of mixed Hodge structures and applying conjugate
symmetry to the associated graded morphism of Hodge structures, the proof of
Nori’s theorem is reduced to the corresponding assertions for

(17) Hq
(
Ωp

M×Y

)
→ Hq (Ωp

X)

where

p + q < 2n,≤ 2n

p < n,≤ n.

In turn these assertions are implied by the corresponding ones for

Rqπ∗
(
Ωp

M×Y

)
→ Rqπ∗ (Ωp

X) .

Thus one must show that, for p < n and p + q ≤ 2n,

(18) Rqπ∗

(
Ωp

M×Y,X

)
= 0

where Ω∗
M×Y,X denotes the kernel of

Ω∗
M×Y → Ω∗

X .

If p = n, one must also show injectivity of

Rqπ∗
(
Ωp

M×Y

)
→ Rqπ∗ (Ωp

X)

for q ≤ 2n − p, but we will restrict our attention to (18).
As above the spectral sequence for the filtration

Ωl
Y ∧ Ω∗−l

M×Y,X

of Ω∗
M×Y,X yields

El,r
1 = Ωl

Y ⊗ Rl+rπ∗

(
Ω∗−l

M×Y/Y,X/Y

)
with

d1 = ∇ : Ωl
Y ⊗ Rl+rπ∗

(
Ω∗−l

M×Y/Y,X/Y

)
→ Ωl+1

Y ⊗ Rl+1+rπ∗

(
Ω∗−l−1

M×Y/Y,X/Y

)
.
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To prove (18) it will suffice to show that
(19)
Rl+q−1π∗

(
Ωp−l+1

M×Y/Y,X/Y

)
→ Rl+qπ∗

(
Ωp−l

M×Y/Y,X/Y

)
→ Rl+q+1π∗

(
Ωp−l−1

M×Y/Y,X/Y

)

is exact in the middle whenever p + q ≤ 2n.
We illustrate the exactness of (19) in the case of hypersurfaces in P

n+1. Thus

TY = OY ⊗ H0 (OPn+1 (d)) = OY ⊗ Sd.

In this case we have seen above that, if p − l < n, then

Rl+qπ∗

(
Ωp−l

Pn+1×Y/Y,X/Y

)
= 0

unless
p − l = n + 1 − q,

in which case

Rl+qπ∗

(
Ωp−l

Pn+1×Y,X/Y

)
= OY ⊗

(∧l
Sd

)
⊗ Rd(p−l+1)−(n+2).

So the dual of (19) becomes(∧l+1
Sd

)
⊗ Rd(p−l)−(n+2)

τ−→
(∧l

Sd

)
⊗ Rd(p−l+1)−(n+2)(20)

τ−→
(∧l−1

Sd

)
⊗ Rd(p−l+2)−(n+2),

which we must study for l ≤ p and

p < n

q = n + 1 − (p − l) ≤ 2n − p,

that is, for
l ≤ p < n.

If p − l = 0, we are studying

Rp+n+1π∗

(
Ω0

Pn+1×Y/Y,X/Y

)
,

so only have to worry about the case p = 0.
But the Koszul cohomology theorem of Green ([GMV], p. 74) gives exactness of(∧l+1

Sd

)
⊗ Sd(p−l)−(n+2)

τ−→
(∧l

Sd

)
⊗ Sd(p−l+1)−(n+2)(21)

τ−→
(∧l−1

Sd

)
⊗ Sd(p−l+2)−(n+2)

in the middle when
d (p − l + 1) − (n + 2) ≥ l + d,

that is, when

(22) d (p − l) ≥ l + n + 2.

So, using that p < n, sequence (21) is exact in the middle for p − l > 0 as long as
d > 2n.

Also we have the free graded resolution (15) of R∗ as an S∗-module. Use it to
resolve (20) by free S∗-modules. If one arranges the resolution from below and uses
Green’s theorem to compute the E1-term of the spectral sequence associated to the
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“to the top” filtration, one concludes the exactness of (20) at the middle as long as
(22) holds, which in turn is satisfied as long as p− l > 0 and d > 2n. On the other
hand, if p − l = 0, we have seen above that the only case is p = 0 where we have

Rn+1π∗

(
Ω0

Pn+1×Y/Y,X/Y

)∨
= Rd−(n+2)

mapping to
(
Sd

)∨ ⊗ Rnπ∗

(
Ω1

Pn+1×Y/Y,X/Y

)∨
= Hom

(
Sd, R2d−(n+2)

)
by multiplication. But this map is injective by Macaulay’s theorem ([V] II, p. 172).
Thus the first assertion of Nori’s theorem is proved for hypersurfaces whenever
d > 2n.

10. Cycle theory

To study subvarieties of a quasi-projective manifold X, one builds a free abelian
group on the set of closed irreducible subvarieties of codimension k and then divides
out by the equivalence relation induced from the linear equivalence of divisors in
a codimension-(k − 1) subvariety. The resulting Chow group, denoted CHk (X) or
CHdim M−k (X) has the property that a correspondence

Γ ⊆ X × T
p−→ X

↓q

T

in CHk+r (X × T ) induces a morphism

p∗ ◦ q∗ : CHr (T ) → CHk (X) .

Let CHr (T )hom . denote the group of homologically trivial r-cycles. Nori filters
CHk (X) by the increasing sequence of subgroups

Nr

(
CHk (X)

)
= image

(
CHk+r (X × T ) × CHr (T )hom .

p∗◦q∗

−→ CHk (X)
)

.

For example, N0

(
CHk (X)

)
is the space of cycles which are called algebraically

equivalent to zero.
Again consider the case of a smooth projective morphism

π : X → Y

with Y open in
∏r

i=1 H0 (OM (di)) parametrizing smooth intersections

Fy1 ∩ . . . ∩ Fyr
∩ M

for a fixed (n + r)-manifold
M ⊆ P

N

with di >> 0. Let Z ∈ CHk (M) be such that 0 �= {Z} ∈ H2k (M)primitive for
n − k. Nori used his connectivity result to show that, for s < n − k and general y,
no multiple of

Z · Xy

lies in
Ns

(
CHk (Xy)

)
.



BOOK REVIEWS 519

11. Algebraic equivalence on hypersurfaces of a quadric

We finish our excursion through Voisin’s Volume II by showing how connectivity
implies the last result in the simplest non-trivial example, namely when r = 1 and
Z is the difference of the two rulings of an even-dimensional quadric in complex
projective space. For n odd, let

M ⊆ P
n+2

be a smooth hypersurface of degree 2 and let

W → H0 (OM (d))∗

be the universal hypersurface of M of degree d >> 0. Let

Z = P − Q ∈ CH
n+1

2 (M) → Hn+1 (M)primitive

be the difference of the two rulings of M . Suppose over some

V open ⊆ (smooth locus) ⊆ H0 (OM (d))

that some multiple of P · Wv and Q · Wv are algebraically equivalent in Wv. Then
by a classical argument, shrinking V and passing to a smooth base extension T ,
there must exist a proper family of smooth curves

C → T

parametrizing the algebraic equivalence. That is, for

WT = T ×V W

there are sections
cP , cQ : T → C

and a cycle Γ of codimension n+1
2 in the fibered product

WC
q−→ WT ⊆ M × T

↓p ↓
C → T

such that the fiber Ct parametrizes an effective algebraic equivalence between

q∗ (p∗ (cP (t)) · Γ) = m (Wt · P ) + N(t)

and
q∗ (p∗ (cQ (t)) · Γ) = m (Wt · Q) + N(t)

in Wt for each t ∈ T .
If we let

ΓP = q∗ (Γ · p∗ (cP (T )))
ΓQ = q∗ (Γ · p∗ (cQ (T ))) ,

then by construction

ΓP = m (P × C) · WC + N

ΓQ = m (Q × C) · WC + N.

Since the codimension of Γ in X is n+1
2 and 2

(
n+1

2

)
< 2n for odd n ≥ 3, we have

by Nori’s connectedness that there exists δ ∈ Hn+1 (M × C) whose image in

Hn+1 (WC)
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is the class of Γ. Then writing

M × C
q̃−→ M × T

↓p̃ ↓
C → T

we have that

q∗ ({ΓP − ΓQ}) = q̃∗ (δ · p̃∗ {cP (T ) − cQ (T )})|WT

= m {((P × T ) − (Q × T )) · WT }
on WT . So by Nori connectivity for the family WT ⊆ M × T , we have on M × T
that

q̃∗ (δ · p̃∗ {cP (T ) − cQ (T )}) = m {(P × T ) − (Q × T )} .

But restricting this last equality to a fiber Ct of C/T gives the contradiction in
H

n+1
2 (M × {t}) that

m {(P × {t}) − (Q × {t})} = q̃∗ (δ · p̃∗ {cP (t) − cQ (t)}) = 0.

12. Afterword

And so, to readers with the interest and fortitude to have arrived at the end of
this review, my wish is that the tour just presented gives at least a bit of an idea of
the mathematical rewards awaiting those who invest their mathematical energies
in this beautiful pair of volumes.
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