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Regarding the fundamental investigations of mathematics,
there is no final ending ... no first beginning.
—PFelix Klein

All new is well-forgotten old.
—A proverb

ABSTRACT. In this expository article we describe the two main methods of
representing geodesics on surfaces of constant negative curvature by symbolic
sequences and their development. A geometric method stems from a 1898
work of J. Hadamard and was developed by M. Morse in the 1920s. It consists
of recording the successive sides of a given fundamental region cut by the
geodesic and may be applied to all finitely generated Fuchsian groups. Another
method, of arithmetic nature, uses continued fraction expansions of the end
points of the geodesic at infinity and is even older—it comes from the Gauss
reduction theory. Introduced to dynamics by E. Artin in a 1924 paper, this
method was used to exhibit dense geodesics on the modular surface. For 80
years these classical works have provided inspiration for mathematicians and
a testing ground for new methods in dynamics, geometry and combinatorial
group theory. We present some of the ideas, results (old and recent), and
interpretations that illustrate the multiple facets of the subject.
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1. INTRODUCTION

The origins of symbolic dynamics, according to many authors, including Birkhoff
[Bhl p.184], can be traced to the 1898 work of Hadamard [Ha], where the author
constructed (noncompact) surfaces in R? of negative curvature and discovered that
geodesics on these surfaces can be described by sequences of symbols via a certain
“coding” procedure. Hadamard’s idea was developed by Morse, Artin, Koebe,
Nielsen and Hedlund in the 1920s and ’30s, and since then symbolic dynamics has
become one of the important tools in the study of systems with so-called “chaotic”
behavior, of which geodesic flows on Riemannian manifolds of negative sectional
curvature represent a major class of examples.

The goal of this survey is to describe from the historical perspective the devel-
opment of the study of geodesic flows on surfaces of constant negative curvature by
means of symbolic dynamics.

Let H = {z = x+iy : y > 0} be the upper half-plane endowed with the hyperbolic

/ 2 2
metric ds = w. Recall that a geodesic with respect to this metric is either
a vertical ray or a half-circle orthogonal to the real axis. The group of Mdbius
transformations

az+b
cz+d

{2

|a,b,c,d€R,ad—bc=1}

acting on ‘H by orientation-preserving isometries can be identified with the group
PSL(2,R) = SL(2,R)/{+£12}, where 15 is the identity matrix. For a finitely gen-
erated Fuchsian group (i.e. a discrete subgroup I' C PSL(2,R)), the factor space
M = T'\'H is a surface of constant negative curvature, possibly with some singu-
larities (fixed points of elliptic elements) and punctures (cusps), and, in case of
infinite volume, funnels. All necessary information about hyperbolic geometry and
Fuchsian groups can be found in [Bl [K2].

Let SH denote the unit tangent bundle of H. The geodesic flow {¢'} on H is
defined as an R-action on the unit tangent bundle SH which moves a tangent vector
along the geodesic defined by this vector with unit speed. Let v = (z,() € SH,
z € H, ¢ € C,|¢] = Im(z). Notice that SH can be identified with PSL(2,R) by
sending v to the unique g € PSL(2,R) such that z = g(i), ¢ = ¢'(2)(¢), where ¢ is
the unit vector at the point 4 to the imaginary axis pointing upwards (see Figure ).

Under this identification the PSL(2, R)-action on H by Mobius transformations
corresponds to left multiplications, and the geodesic flow corresponds to the right
multiplication by the one-parameter subgroup

et/? 0 »
(1‘1) a = 0 o—t/2 such that % (1)) — gag .

The orbit {ga;} projects to a geodesic through ¢(7). The quotient space I'\SH can
be identified with the unit tangent bundle of M, SM, although the structure of
the fibered bundle is violated at elliptic fixed points and cusps (see [K2| §3.6] for
details). The geodesic flow {¢'} on H descends to the geodesic flow {p'} on the
factor M via the projection 7 : SH — SM of the unit tangent bundles (see e.g.
[KH. §5.3 and §5.4] for more details).
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F1GURE 1. Geodesic flow on the upper half-plane H

In all our considerations, we assume implicitly that an oriented geodesic on M is
endowed with a unit tangent (direction) vector at each point and thus is an orbit of
the geodesic flow {('} on M. For an oriented geodesic v on M, its lift to H is any
oriented geodesic 4 on H such that 7(5) = «. In this article we mainly study the
case when I' = PSL(2,Z) = SL(2,Z)/{%12} is the modular group and M is the
modular surface which topologically is a sphere with one cusp and two singularities.

A cross-section C for the geodesic flow is a subset of the unit tangent bundle
SM visited by (almost) every geodesic infinitely often both in the future and in the
past. In other words, every v € C defines an oriented geodesic v(v) on M which
will return to C infinitely often. The function f : C — R giving the time of the
first return to C' is defined as follows: if v € C and t is the time of the first return
of v(v) to C, then f(v) =t. The map R : C — C defined by R(v) = /) (v) is
called the first return map. Thus {(!} can be represented as the special flow on the
space

Cf ={(v,s) |veC, 0<s< f(v)}

given by the formula ¢*(v, s) = (v, s+t) with the identification (v, f(v)) = (R(v),0).
Let A be a finite or countable alphabet, NZ = {z = {n;}icz | ni € N} be the
space of all bi-infinite sequences endowed with the Tikhonov (product) topology,

o : NZ — NZ defined by {oz}; =141

be the left shift map, and A € N?% be a closed o-invariant subset. Then (A, o)
is called a symbolic dynamical system. There are some important classes of such
dynamical systems. The whole space (N%, o) is called the Bernoulli shift. If the
space A is given by a set of simple transition rules which can be described with
the help of a matrix consisting of zeros and ones, we say that (A, o) is a one-step
topological Markov chain or simply a topological Markov chain (sometimes (A, o)
is also called a subshift of finite type). Similarly, if the space A is determined by
specifying which (k+1)-tuples of symbols are allowed, we say that (A, o) is a k-step
topological Markov chain (a precise definition is given in Section M.

In order to represent the geodesic flow as a special flow over a symbolic dynamical
system, one needs to choose an appropriate cross-section C' and code it, i.e. to find
an appropriate symbolic dynamical system (A, c) and a continuous surjective map
¢: A — C (in some cases the actual domain of € is A except a finite or countable
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set of excluded sequences) defined such that the diagram

A —2 5 A

e| le

c-t-.c
is commutative. We can then talk about coding sequences for geodesics defined
up to a shift which corresponds to a return of the geodesic to the cross-section C.
Notice that usually the coding map is not injective but only finite-to-one (see e.g.
[Al §3.2 and §5]).

There are two essentially different methods of coding geodesics on surfaces of
constant negative curvature. One method stems from the aforementioned work
of Hadamard, which was developed by Morse [MI, M2] and Koebe [Ko|. The
procedure described in Section [2] consists of recording the successive sides of a
given fundamental region cut by a given geodesic. It may be applied to any finitely
generated Fuchsian group I' and assigns to the geodesic a bi-infinite sequence of
generators of I'. However, in spite of its geometric nature and seeming simplicity,
this method has two major shortcomings: if the fundamental region has vertices
inside H, the geodesics passing through any of those vertices have multiple codes,
and the space of all admissible codes has a complicated structure. (We believe that
in general the space is not a topological Markov chain: corresponding results for the
modular surface with the standard fundamental region were proved in [GL, [KUI];
see Section [])

The second method is specific for the modular group and is of an arithmetic
nature: it uses continued fraction expansions of the end points of the geodesic at
infinity and a so-called reduction theory. This method of study and classification of
indefinite binary quadratic forms goes back to 19th-century works of Gauss [Gal,
Dirichlet [D], Markoffl] [Ma] and Hurwitz [H3]. The reduction algorithm is a map
on the set of all oriented geodesics in H; it is given by a transformation of PSL(2,Z)
determined by the continued fraction expansion of the attracting end point. This
map has an attractor (i.e. a set where each geodesic finds itself after finitely many
iterations of the map and stays there after all further iterations). The geodesics in
this attractor are called reduced geodesics. Based on the arithmetic of the group
rather than the geometry of the fundamental region, this method produces codings
of particularly simple structure—topological Markov chains. It was introduced to
dynamics by Artin [Ar] in a 1924 paper, where the author used continued frac-
tions to exhibit dense geodesics on the modular surface. If applied literally, this
method gives a GL(2,Z)-invariant code, but it does not classify geodesics on the
modular surface. Artin’s method has been modified by Series in [S1] to eliminate
this problem. Arithmetic codes for the modular group, including Artin’s, and their
relations to corresponding reduction theories for binary indefinite quadratic forms
are discussed in Section [3] and the arithmetic coding for the congruence subgroup
I'(2) is described in §7.5

Considering the model of hyperbolic geometry in the unit disc &/, Nielsen [N] gave
an analogue of continued fractions for representation of the points on the boundary

IThis is the same Markov after whom Markov chains and Markov processes are named. The
old-fashioned transliteration Markoff was used in this early publication of his Ph.D. thesis.
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of U as infinite sequences of generators of the fundamental group I' of a surface NV,
whose fundamental region is a symmetric 4g-sided polygon in U.

In [Hel] Hedlund represented geodesics in U by juxtaposing the Nielsen expan-
sions of their end points and showed that geodesics are I'-equivalent if and only if
the corresponding sequences are shift equivalent. The author used that to prove
the ergodicity of the geodesic flow on I'\I/ with respect to the natural Liouville
measure. Artin’s code was used in [He2|] to obtain similar results for the modular
surface. Notice that these proofs of ergodicity appeared prior to Hopf’s more gen-
eral analytic proof [Ho] known as “the Hopf argument”. The boundary expansions
method was further developed for other Fuchsian groups in [BoS| [S2l [S4] and is
discussed in §7.11

Ratner [R] proved the existence of a Markov partition for the geodesic flow on
a compact surface of negative curvature, so that the geodesic flow is metrically
isomorphic to a special flow over a topological Markov chain with a Holder contin-
uous ceiling function (see also [OL [OW]). Ratner’s construction is similar to [AW]
for automorphisms of the torus based on heteroclinic connections between periodic
orbits. The relationship of this construction to geometry is tenuous.

A subsequent body of work was devoted to the task of making Markov partitions
geometrically explicit. In some situations the study of a first return map defined on
a two-dimensional cross-section of SM, also known as a cross-section map, can be
realized via a particular one-dimensional (non-invertible) factor-map. The latter is
closely related to a map defined on the boundary of the hyperbolic plane studied
by Bowen and Series [BoS|, and then by Series [S2] [S4]. Series showed that the
geodesic flow on a surface of constant negative curvature and finite hyperbolic
area is a factor of a special flow over a topological Markov chain by a continuous
map which is one-to-one except for a set of the first Baire category. The symbolic
dynamics derives from [BoS|, and the results apply to a general class of surfaces of
constant negative curvature and finite area which, however, does not include the
modular surface with its standard fundamental region.

Notice that both Bowen-Series and Morse methods can be applied only to geode-
sics in H intersecting the given fundamental region D of I", which we call D-reduced.
Of course, any geodesic is I'-equivalent to a D-reduced one. In [KI] the first author
developed an algorithm which D-reduces closed geodesics on quotients by cocom-
pact Fuchsian groups via a “reduction” map that combines two Bowen-Series-type
maps on the boundary. Unfortunately, on the set of D-reduced geodesics this map
usually differs from the Bowen-Series map and the Morse map (a shift of the Morse
coding sequence).

Adler and Flatto [AF1l [AF2] worked on the modular surface case and obtained a
representation of the geodesic flow as a special flow over a topological Markov chain
by using the cross-section corresponding to the Morse code and by “linearizing” the
cross-section map. In [AF4] they make a similar construction for the geodesic flow
on compact surfaces of genus g with a particular 8g — 4-sided fundamental region.

This paper is organized as follows. In Section 2] we present the Morse method
of coding geodesics for Fuchsian groups and its description via numerical sequences
for the modular group — the geometric code. In §2.3] we describe the cross-section
and its infinite partition for the geometric code.

In Section Bl we describe three arithmetic codes for geodesics on the modular
surface obtained via generalized minus continued fractions [KU2], called the Gauss
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code (G-code), the Artin code (A-code), and the Hurwitz code (H-code). All three
coding procedures are actually reduction algorithms which may be considered as
reduction theories for real indefinite quadratic forms translated into the matrix
language. The most elegant of the three codings is the Gauss arithmetic code
obtained in [K3| [GuK] using minus continued fraction expansions of the end points
and interpreted in [GuK] via a particular cross-section of SM. The set of such
arithmetic coding sequences was identified in [GuK]: it is a symbolic Bernoulli
system on the infinite alphabet Ng = {n € Z | n > 2}, i.e. consists of all bi-
infinite sequences constructed with symbols of the alphabet Ng. We give similar
interpretations for the Artin and the Hurwitz codes and show that the space of
admissible sequences for each code is a one-step topological Markov chain with
countable alphabet. We describe the corresponding symbolic representations of the
geodesic flow on the modular surface as a special flow over a topological Markov
chain on infinite alphabet using these arithmetic codes and give an explicit Markov
partition for each code in §3.31

In Section @] we further analyze the geometric code for the modular group. In
contrast with arithmetic codes, the set of admissible geometric coding sequences
is quite complicated and, as has been proved in [KUI], is not a finite-step topo-
logical Markov chain (see Theorem [£9)). Therefore, there are geodesics whose
geometric code differs from any arithmetic code. In [KUI] we identified a class of
admissible geometric codes which, as well as the corresponding geodesics, we call
geometrically Markov. We proved that geometrically Markov geodesics constitute
a maximal one-step topological Markov chain in the set of all admissible geometric
codes (Theorem [4.3]), which is the maximal symmetric (i.e. given by a symmetric
transition matrix) topological Markov chain (Theorem [6]). It is worth noting that
the H-code comes closest to the geometric code: for geometrically Markov geodesics
whose codes do not contain 1’s and —1’s, the H-code coincides with the geometric
code (Theorem [£4]). The last part of this section is devoted to a survey of the work
by Grabiner and Lagarias [GL].

In Section Bl we survey other codings and interpretations for the modular group:
a description of the Minkowski lattice basis reduction and connections with the geo-
metric code and H-code, a Farey tiling interpretation of the A-code after Moeckel
and Series (§5.2)), a horocycle interpretation of the H-code after Fried (§5.3), and
also works of Adler and Flatto (§54) and Arnoux (§5.5]).

Section [G] is devoted to applications of arithmetic codes. In §6.2] we use the
invariant Liouville measure of the geodesic flow to calculate invariant measures of
one-dimensional factor-maps. In §6.3] we describe how classical results (density of
closed geodesics and topological transitivity of the geodesic flow on the modular
surface) can be proved using the G-code. In §6.41 we mention the work of Pollicott
[P] on the asymptotic growth of the number of closed geodesics and their limit
distribution proved using Artin’s code. And finally, in §6.5 we explain how to
obtain estimates of the topological entropy of the geodesic flow restricted to certain
flow-invariant subsets of SM.

In Section [7] we describe the Bowen-Series boundary expansion for finitely gener-
ated Fuchsian groups and illustrate it with an example of the congruence subgroup
I'(2). We develop Morse, boundary expansion, and arithmetic (via even continued
fractions) codes for this group and show that in this particular case they coincide.
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In this article we will consider only oriented geodesics which do not go to a cusp
of M in either direction. In what follows, when we say “every oriented geodesic”, we
refer to every geodesic from this set. The set of excluded geodesics is insignificant
from the measure-theoretic point of view, as explained in [KU2].

2. GEOMETRIC CODING

2.1. The Morse method. We first describe the general method of coding geodesics
on a surface of constant negative curvature by recording the sides of a given funda-
mental region cut by the geodesic. This method first appeared in a paper by Morse
[MI] in 1921. However, in a 1927 paper, Koebe [Ko] mentioned an unpublished
work from 1917, where the same ideas were apparently used. Starting with [S4]
Series called this method Koebe-Morse, but since this earlier work by Koebe has
not been traced, we think it is more appropriate to call this coding method the
Morse method. We will follow [K3] in describing the Morse method for a finitely
generated Fuchsian group I' of cofinite hyperbolic area.

A Dirichlet fundamental region D of I' always has an even number of sides
identified by generators of I" and their inverses; we denote this set by {g;}. We
label the sides of D (on the inside) by elements of the set {g;} as follows: if a side
s is identified in D with the side g;(s), we label the side s by g;. By labeling all
the images of s under I' by the same generator g;, we obtain the labeling of the
whole net S = I'(0D) of images of sides of D such that each side in S has two labels
corresponding to the two images of D shared by this side. We assign to an oriented
geodesic in H a bi-infinite sequence of elements of {g;} which label the successive
sides of S this geodesic crosses.

We describe the Morse coding sequence of a geodesic in H under the assumption
that it does not pass through any vertex of the net S; we call such general position
geodesics. (Morse called the coding sequences admissible line elements, and some
authors [S4] [GL] referred to them as cutting sequences.) We assume that the geo-
desic intersects D and choose an initial point on it inside D. After exiting D, the
geodesic enters a neighboring image of D through the side labeled, say, by g1 (see
Figure [2)). Therefore this image is ¢1 (D), and the first symbol in the code is ¢;. If
it enters the second image of D through the side labeled by g3, the second image

FIGURE 2. Morse coding
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is (919297 1)(91(D)) = g192(D), and the second symbol in the code is gz, and so
on. Thus we obtain a sequence of all images of D crossed by our geodesic in the
direction of its orientation: D, g1(D), g192(D),..., and a sequence of all images
of D crossed by our geodesic in the opposite direction: g5 *(D), (gog_1)~*(D),....
Thus, the Morse coding sequence is

["'79*17907917927”']'

By mapping the oriented geodesic segments between every two consecutive crossings
of the net S back to D (as shown in Figure [), we obtain a geodesic in D. The
coding sequence described above may be obtained by taking generators labeling the
sides of D (on the outside) the geodesic hits consequently.

An element g € T is called hyperbolic if the associated Mébius transformation
has two fixed points on the boundary of H (one repelling and one attracting). A
geodesic on M is closed if and only if it is the projection of the axis of a hyperbolic
element in I'. For general position geodesics, a coding sequence is periodic if and
only if the geodesic is closed. If a geodesic is the axis of a primitive hyperbolic
element g € T', i.e. a hyperbolic element which is not a power of another element
in I', we have

g=29192-.-0n
for some n. In this case the sequence is periodic with the least period [g1, ga, . . . , gn].

An ambiguity in assigning a Morse code occurs whenever a geodesic passes
though a vertex of D: such geodesics have more than one code, and closed geodesics
have nonperiodic codes along with periodic ones (see [GL [KUI] for relevant dis-
cussions).

For free groups I' with properly chosen fundamental regions, all reduced (here
this simply means that a generator g; does not follow or precede g, ) bi-infinite
sequences of elements from the generating set {g;} are realized as Morse coding
sequences of geodesics on M (see [S4]), but, in general, this is not the case. Even
for the classical example of I' = PSL(2,7Z) with the standard fundamental region

(2.1) F={zeH||z| >1, |Rez| <1/2}

no elegant description of admissible Morse coding sequences is known and probably
does not exist. Important results in this direction were obtained in [GL], where the
admissible coding sequences were described in terms of forbidden blocks. The set
of generating forbidden blocks found in [GL] has an intricate structure attesting
the complexity of the Morse code (see §4.3 for more details).

2.2. Geometric code for the modular surface. Let I' = PSL(2,Z) and M =
I'\'H be the modular surface. Recall that the generators of PSL(2,Z) acting on H
are T(z) = z+ 1 and S(z) = —1. The Morse code with respect to the standard
fundamental region F' can be assigned to any oriented geodesic 7y in F' (which does
not go to the cusp of F in either direction) and can be described by a bi-infinite
sequence of integers as follows. The boundary of F' consists of four sides: left
and right vertical, identified and labeled by T" and T—!, respectively; left and right
circular, both identified and labeled by S (see Figure[]). It is clear from geometrical
considerations that any oriented geodesic (not going to the cusp) returns to the
circular boundary of F' infinitely often. We first assume that the geodesic is in
general position, i.e. does not pass through the corner p = % + z@ of F (see
Figure B). We choose an initial point on the circular boundary of F' and count
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FIGURE 3. The fundamental region and a geodesic on M

the number of times it hits the vertical sides of the boundary of F moving in the
direction of the geodesic. A positive integer is assigned to each block of hits of the
right vertical side (or a block of T’s in the Morse code), and a negative to each
block of hits of the left vertical side (or a block of 7~1’s). Moving the initial point
in the opposite direction allows us to continue the sequence backwards. Thus we
obtain a bi-infinite sequence of nonzero integers

[’Y] = ["‘7”72an717n07n17"']a

uniquely defined up to a shift, which is called the geometric code of v. Moving
the initial point in either direction until its return to one of the circular sides of F’
corresponds to a shift of the geometric coding sequence [y]. Recall that a geodesic
in general position is closed if and only if the coding sequence is periodic. We
refer to the least period [ng,n1,...,n,,] as its geometric code. For example, the
geometric code of the closed geodesic on Figure Blis [4, —3].

A geodesic with geometric code [y] can be lifted to the upper half-plane H (by
choosing the initial point appropriately) so that it intersects

TENF), ..., T (F), T S(F),..., T ST S(F),...,

in the positive direction (the sign in the first group of terms is chosen in accordance
with the sign of ng, etc.) and

S(F),STTY(F),..., ST "*(F),...,ST "-*ST "-2(F),...,

in the negative direction.

The case when a geodesic passes through the corner p of F' was described to
a great extent in [GL, §7]. Such a geodesic has multiple codes obtained by ap-
proximating it by general position geodesics which pass near the corner p slightly
higher or slightly lower. If a geodesic hits the corner only once, it has exactly two
codes. If a geodesic hits the corner at least twice, it hits it infinitely many times
and is closed. If it hits the corner m times in its period, it has exactly 2n + 2
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codes, i.e. shift-equivalence classes of coding sequences, some of which are not pe-
riodic. It is unknown however whether there is an upper bound on the number of
shift-equivalence classes of coding sequences corresponding to closed geodesics [GLL
§9].

Canonical codes considered in [K3| were obtained by the convention that a
geodesic passing through p in the clockwise direction exits F' through the right
vertical side of F labeled by T' (this corresponds to the approximation by geodesics
which pass near the corner p slightly higher). According to this convention, the
geometric codes of the axes of transformations A, = T*S, Az = T38T%S and
Agz = TOST3S are [4],[3,6] and [6, 3], respectively. However, all these geodesics
have other codes. For example, the axis of A4 has a code [2,—1] obtained by
approximation by geodesics which pass near the corner p slightly lower, and two
nonperiodic codes for the same closed geodesic are

[...,4,4,4,4,3,-1,2,-1,2,—-1,2,...]and [...,2,—-1,2,-1,2,—-1,3,4,4,4,...].

9 3

For more details, see [GL, [KU1].

Symbolic representation of geodesics via geometric code. Let
NZ:{a::{ni}ieZ\nieN}

be the set of all bi-infinite sequences on the alphabet N' = {n € Z | n # 0},
endowed with the Tykhonov product topology, and o : N — N7 the left shift
map given by {oz}; = n;4+1. Let Xo be the set of admissible geometric coding
sequences for general position geodesics in M, and X be its closure in the Tykhonov
product topology. It was proved in [GL, Theorem 7.2] that every sequence in X is
a geometric code of a unique oriented geodesic in M and every geodesic in M has
at least one and at most finitely many codes (see examples above). Thus X is a
closed o-invariant subspace of NZ.

2.3. The cross-section for the geometric code. Since every oriented geodesic
which does not go to the cusp of F in either direction returns to the circular
boundary of F' infinitely often, the set B C SM consisting of all unit vectors in
SM with base points on the circular boundary of F' and pointing inside F' (see
Figure[) is a cross-section which captures the geometric code.

FIGURE 4. The cross-section B
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The partition of the cross-section B. We parameterize the cross-section B
by the coordinates (¢,0), where ¢ € [—n/6,7/6] parameterizes the arc and 6 €
[—¢,m — ¢] is the angle the unit vector makes with the positive horizontal axis
in the clockwise direction. The elements of the partition of B are labeled by the
symbols of the alphabet A, B = U,cnC, and are defined by the following con-
dition: C,, = {v € B | ng(v) = n}; i.e. C, consists of all tangent vectors v in B
such that, for the coding sequence of the corresponding geodesic in H, ng(z) = n.
Let R : B — B be the first return map. Since the first return to the cross-
section exactly corresponds to the left shift of the coding sequence x associated
to v, we have ng(R(v)) = n1(v). The infinite geometric partition and its image
under the return map R are sketched in Figure Bl Boundaries between the ele-
ments of the partition shown in Figure [ correspond to geodesics going into the
corner; the two vertical boundaries of the cross-section B are identified and corre-
spond to geodesics emanating from the corner. They have more than one code. For

(=m/6, m+7/6)

(m/6, —m/6)

FicURE 5. The infinite geometric partition and its image under
the return map R
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example, the codes [4] and [...,2,—1,2,—-1,2,—1,3,4,4,4,...] correspond to the
point on the right boundary of B between Cy and Cjs, and the codes [2, —1] and
[...,4,4,4,4,3,—1,2,—1,2,—1,2,...] correspond to the point on the left boundary
between Cy and C3 which are identified and are the four codes of the axis of Ay.

The coding map for the geometric code. It was proved in [GL, Lemma 7.1]
that if a sequence of general position geodesics is such that the sequence of their
coding sequences converges in the product topology, then the sequence of these
geodesics converges to a limiting geodesic uniformly. Since the tangent vectors
in the cross-section B are determined by the intersection of the corresponding
geodesics with the unit circle, we conclude that the sequence of images of the
coding sequences under the map € : X — B converges to the image of the limiting
coding sequence. This implies that the map € is continuous.

2.4. Which geometric codes are realized? Not all bi-infinite sequences of
nonzero integers are realized as geometric codes. For instance, the periodic sequence
{8,2} is not a geometric code since the geometric code of the axis of T8ST?S is
[6,—2], as can be seen in Figure [ [K3].

FIGURE 6. The geometric code of the axis of T®ST?S is [6, —2]

Figure [l gives an insight into the complexity of the geometric code, where the
elements C,, and their forward iterates R(C,,) are shown. Each C,, is a curvilinear
quadrilateral with two vertical and two “horizontal” sides, and each R(C,) is a
curvilinear quadrilateral with two vertical and two “slanted” sides. The horizontal
sides of C,, are mapped to vertical sides of R(C,,), and the vertical sides of C,
are stretched across the parallelogram representing B and mapped to the “slanted”
sides of R(C,,).

If ng(v) = n and ny(v) = m for some vector v € B, then R(C,) N C,, # 0.
Therefore, as Figure [ illustrates, the symbol 2 in a geometric code cannot be
followed by 1, 2, 3, 4 and 5.

We say that C,, and R(C},) intersect “transversally” if their intersection is a
curvilinear parallelogram with two “horizontal” sides belonging to the horizontal
boundary of C), and two “slanted” sides belonging to the slanted boundary of
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R(C},). Notice that for each transverse intersection R(C),) N C,, its forward iterate
under R stretches to a strip inside R(C,,) between its two vertical sides. Hence,
the symbol m can follow symbol n in a coding sequence.

We also observe that the elements C,,, and R(C,,) intersect transversally if and
only if |n| > 2, |m| > 2, and

1/n+1/m| <1/2.

This is a flow-invariant subset which constitutes the essential part of the set of
geometrically Markov codes; see Theorems and in Section [l

3. ARITHMETIC CODING

3.1. Reduction theory for indefinite quadratic forms. Let us consider a ge-
odesic in ‘H which is a semicircle orthogonal to the real axis R. It can be given by
an equation of the form

(3.1) Alz2 + B(Rez) +C =0,

with A, B, C real, A # 0 scaled so that D = B? — 4AC = 1. We associate to this
geodesic a real quadratic form

(3.2) Q(x,y) = Az® + Bay + Cy?

of discriminant D = 1. Conversely, each real quadratic form with discriminant 1
of the form ([B.2]) defines a geodesic in H given by ([B.I). We denote the geodesic
corresponding to the quadratic form @ by v(Q).

b
d
SL(2,7) we set x = ax’ + by, y = c&’ + dy’, and define Q' = ¢ - Q by the following
equation:

The group SL(2,Z) acts on quadratic forms by substitutions. For g = (z €

Q'(z,y) = Q" y),
ie.
9-Q=Qog™".

Thus, the set of all real quadratic forms of discriminant 1 is decomposed into
SL(2,7Z)-equivalence classes. It is easy to see that this action corresponds to the
action of SL(2,Z) on geodesics by Mobius transformations: for any g € SL(2,7Z),
v(g - Q) = g(v(Q)). In other words, SL(2,Z)-equivalent quadratic forms yield
SL(2,7Z)-equivalent geodesics in H, hence projecting to the same geodesic in M.
Therefore, we obtain a bijection between the set of geodesics in M and the set of
SL(2,7Z)-equivalence classes of real indefinite quadratic forms of discriminant 1. In
order to classify geodesics in M we can use a version of reduction theory for binary
quadratic forms.

In the most general terms, a reduction theoryis an algorithm for finding canonical
representatives in each equivalence class. Such representatives are called “reduced”
elements. Each equivalence class contains a nonempty canonical set of reduced ele-
ments that form a bi-infinite sequence (which in some cases is periodic). Following
the reduction algorithm one can pass from a given element to a reduced equivalent
element in a finite number of steps. An application of the reduction algorithm to a
reduced element yields the neighboring element on the right in the sequence.

This concept was first used by Gauss [Gal in 1801 to classify integral binary
quadratic forms of a given positive discriminant. In 1854 Dirichlet [D] described
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Gauss’s reduction algorithm both for GL(2,Z)- and SL(2, Z)-equivalence using reg-
ular continued fraction expansions of the roots of the corresponding quadratic equa-
tion. Dirichlet’s version of Gauss’s algorithm was extended by Markoff [Ma] to
quadratic forms with real coefficients. Hurwitz [H1] noticed that minus (backward)
continued fractions were more suited for SL(2,Z)-equivalence and expressed the
reduction theory for real binary quadratic forms of positive discriminant via the
closest integer minus continued fractions (see also [Fr2]).

Zagier [ZL Chapter 13] gives a complete account of the Gauss reduction the-
ory for indefinite integral binary quadratic forms of a given discriminant D > 0
(which is not a perfect square) via the theory of minus continued fractions; for
its translation into the matrix language see [K3]. Recall that closed geodesics on
M are in one-to-one correspondence with conjugacy classes of primitive hyperbolic
matrices in PSL(2,Z) (see [K3] for details). We associate to a hyperbolic matrix
A= <Z Z) € SL(2,Z) (which means |a + d| > 2) an integral quadratic form
Qa(x,y) = cx?® — (d—a)xy — by? of discriminant D = (a+d)? —4 > 0 (it is easy to
see that D is not a perfect square). Two matrices with the same trace are SL(2,Z)-
conjugate if and only if the corresponding quadratic forms are SL(2,Z)-equivalent.
Conversely, to each integral quadratic form Q(z,y) of discriminant D > 0 (which
is not a perfect square) corresponds a geodesic in H connecting the roots of the
quadratic equation Q(z,1) = 0. Its image in M is closed since there exists a hyper-
bolic matrix A € SL(2,Z) with the same axis (the set of integral matrices having
this axis is a real quadratic field Q(v/D), where A corresponds to a nontrivial unit
of norm 1). Two closed geodesics of the same length correspond to quadratic forms
of the same discriminant; therefore the Gauss reduction theory classifies closed
geodesics on M of given length.

3.2. Continued fractions method of reduction. In this section we describe a
method of constructing arithmetic codes for geodesics on the modular surface M
using expansions of the end points of their lifts to H in what we call generalized
minus continued fractions [KU2|]. Notice that if a geodesic does not go to the cusp
of M in either direction, then the end points of all its lifts to H are irrational.

It was proved in [KUI, Lemma 1.1] that given a sequence of nonzero integers
{n;},i=0,1,..., such that

(3.3) |n;| = 1 implies n; - ny41 < 0,

the formal minus continued fraction expression constructed out of this sequence
gives a well-defined real number

(3.4) T =ng—

e
! 1

ng — —

(between ng — 1 and ng + 1) denoted by (ng,n1,...) for short.

For a well-chosen integer-valued function (-), any irrational number x can be
expressed uniquely in the form (3] where the digit ng is an integer equal to (z),
and the digits n; (i > 1) are nonzero integers determined recursively by n; =

1

(i), Tiy1 = —ﬁ, starting with 1 = —_—-. In [IKU2] we described three
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such functions (-) producing different continued fraction expansions whose digits
incidentally satisfy the condition ([B.3]).

G-expansion. Let |x| be the integer part of = (or the floor function), i.e. the
largest integer less than or equal to x. The function (z) = [z] = |x] + 1 (which
differs for integers from the classical ceiling function) gives the minus continued
fraction expansiond described in [Z] and used in [K3] for coding closed geodesics.
Since the coding procedure for closed geodesics is the same as the Gauss reduction
theory for indefinite integral quadratic forms, we refer to this expansion as the
Gauss- or G-expansion and call the corresponding code G-code. G-codes for oriented
geodesics, not necessarily closed, were introduced in [GuK]. The digits ng,n1, ...
of a G-expansion satisfy the condition n; > 2 if ¢ > 1. Conversely, any infinite
sequence of integers ng,ni,no,... with n; > 2 for ¢ > 1 defines a real number
whose G-expansion is [ng,n1, na,...].

lz] ifz>0
[z] ifz<O0
which was used in [KU2] to reinterpret the classical Artin code (A-code). This
expansion has digits of alternating signs, and we call it the A-ezpansion. Conversely,
any infinite sequence of nonzero integers with alternating signs ng, 71, no, . . . defines
a real number whose A-expansion is [ng,n1,n2, ... .

The G- and A-expansions satisfy the following properties:

A-expansion. The function (z) = [z| = { gives an expansion

(1) Two irrationals x,y are PSL(2,Z)-equivalent <= their expansions have
the same tail; that is, if * = (ng,n1,...) and y = (mg, mq,...), then
ni+x = My for some integers k,l and all ¢ > 0.

(2) A real number z is a quadratic irrationality <= (ng, n1,...) is eventually

periodic.

(3) Let « and 2’ be conjugate quadratic irrationalities, i.e. the roots of a
quadratic polynomial with integer coefficients. If x = (7g, 721, - - -, 7% ), then
= = (W, -, 71, 7).

Let us remark that properties (2) and (3) are also valid for regular continued fraction
expansions, while property (1) holds if one replaces PSL(2,Z) by PGL(2,7Z).

H-expansion. The third expansion is obtained using the function (z) = (x)
(the nearest integer to z). It was first used by Hurwitz [H1] in order to es-
tablish a reduction theory for indefinite real quadratic forms, and we call it the
Hurwitz- or H-expansion. The digits n; (i > 1) of an H-expansion satisfy |n;| > 2,
and if |n;|] = 2, then n;n;11 < 0. Conversely, any infinite sequence of inte-
gers ng,ni,No,... with the above property defines an irrational number whose
H-expansion is (ng,ny,ng,...).

The H-expansion satisfies property (2), but not (1) and (3). There is a minor
exception to property (1) which was overlooked in [KU2]: it is possible for two irra-
tionals not sharing the same tail to be PSL(2,Z)-equivalent, but this can happen
if and only if one irrational has a tail of 3’s in its H-expansion and the other one
has a tail of —3’s; i.e. the irrationals are equivalent to r = (3 — +/5)/2 ([HI} [[r2]).
Property (3) is more serious. In order to construct a meaningful code, we need to

2The paper [ScSh| presents a more general form of such continued fractions used in the study
of Hecke groups.
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use a different expansion for 1/u (introduced also by Hurwitz) so that a property
similar to (3) is satisfied. It uses yet another integer-valued function

(z) —sgn(x) if sgn(z)((z) —2z)>r=(3—5)/2,

(@) = -
(x) otherwise

and is called the H-dual expansion. Now if x = (mg,ny, ..., ng), then % has a

purely periodic H-dual expansion - = (T, .-, i1, 70)). The formula for ((-)) comes

from the fact that if = (ng,n1,...), then the entries n; satisfy the asymmetric
restriction: if |n;| = 2, then n;n,11 < 0 (for more details, see [H1l [Fr2l [KU2]).

Convergents. If z = (ng,n1,...), then the convergents r, = (ng,n1,...,nx) can
be written as px/qr where py and g are obtained inductively as:
p—2=0,p1=1; pr =ngpr—1—pr—2 for k>0
q—2=-1,¢-1=0; g = npqr—1 — qr—2 for k>0.
The following properties are shared by all three expansions:
e l=q <l|n|<|g|<...;
® pr—1qk — prqr—1 = 1, for all k > 0.
The rates of convergence, however, are different. For the A- and H-expansions we
have

1
(3.5) - Bl< s,
qk 9%
while for the G-expansion we have only
1
(3.6) PR
dk dk

A quadratic irrationality = has a purely periodic expansion if and only if z and z’
satisfy certain reduction inequalities which give us the notion of a reduced geodesic
for each code.

Definition 3.1. An oriented geodesic in H going from u to w (with u, w irrationals)
is called

o G-reducedif 0 <u<1and w>1;

o A-reduced if |w| > 1 and —1 < sgn(w)u < 0;

o H-reduced if |w| > 2 and sgn(w)u € [r — 1,7].

Now we can describe a reduction algorithm which works for each arithmetic code,
a-code, where a = G, A, H. For the H-code we consider only geodesics whose end
points are not equivalent to 7.

Reduction algorithm. Let v be an arbitrary geodesic on ‘H with end points u
and w, and w = (ng,n1,na,...). We construct the sequence of real pairs {(ug, wi)}
(k > 0) defined by ug = u, wy = w and:

Wiy = ST 8T ™MST ™w,  wugyqy =ST ™ ... ST ™MST "0y

Each geodesic with end points uy and wy, is PSL(2,Z)-equivalent to v by construc-
tion.

Theorem 3.2. The above algorithm produces in finitely many steps an a-reduced
geodesic PSL(2,7Z)-equivalent to ~y; i.e. there exists a positive integer £ such that
the geodesic with end points uy and wy is a-reduced.
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To an a-reduced geodesic v we associate a bi-infinite sequence of integers

(v) = (..., n—2,n_1,n0,01,N2,...),

called its arithmetic code, by juxtaposing the a-expansions of 1/u = (n_1,n_o,...)
and w = (ng,ny,na,...) (for the H-code we need to use the dual H-expansion of

1/u).

Remark 3.3. Any further application of the reduction algorithm to an a-reduced
geodesic yields a-reduced geodesics whose codes are left shifts of the code of the
initial a-reduced geodesic.

The proof of Theorem follows the same general scheme for each code, but
the notion of reduced geodesic is different in each case, and so are the properties of
the corresponding expansions and estimates.

Now we associate to any oriented geodesic v in H the a-code of a reduced geodesic
PSL(2,7Z)-equivalent to -y, which is obtained by the reduction algorithm described
above.

Theorem 3.4. FEach geodesic v in H is PSL(2,Z)-equivalent to an a-reduced geo-
desic (o« = G, A, H). Two reduced geodesics v and ~' in H having arithmetic codes
(7) = ()2 _ and (') = (n))2_, are PSL(2,Z)-equivalent if and only if for

some integer I and all integers i one has n; = n;y;.

In [KU2|] we present a geometric proof of Theorem B.4] by constructing a cross-
section Cy (o = G, A, H) for each code directly related to the notion of a-reduced
geodesics. We explain the main ideas below.

3.3. Construction of the cross-sections for arithmetic codes. Let C, =
P U Q1 UQ2 be a subset of the unit tangent bundle SM, where P consists of all
tangent vectors with base points in the circular boundary of F' and pointing inward
such that the corresponding geodesic is a-reduced; )1 consists of all tangent vectors
with base points on the right vertical side of F' pointing inwards such that if v is
the corresponding geodesic, then T'S(7) is a-reduced; Qo consists of all tangent
vectors with base points on the left vertical side of F' pointing inwards such that if
7 is the corresponding geodesic, then T=1S(v) is a-reduced. If 7 : SH — SM is
the natural projection of the unit tangent bundles, notice that C, = 7(C,) where
C, is the set of all unit tangent vectors with base points on the unit semi-circle
|z] = 1 and pointing outward such that the associated geodesic on H is a-reduced
(Figure [M). It is easy to see that for the G-code the part Qs is absent.

Every oriented geodesic v on M can be represented as a bi-infinite sequence of
segments o; between successive returns to C,. To each segment o; we associate
the corresponding a-reduced geodesic 7; on H. Thus we obtain a sequence of
reduced geodesics {v;}2_ . representing the geodesic . If one associates to ~;
its a-code, (v;) = (...,n_2,n_1,n0,n1,N2,...), then ;41 = ST " (~;) and the
coding sequence is shifted one symbol to the left. Thus all a-reduced geodesics ~;
in the sequence produce the same, up to a shift, bi-infinite coding sequence, which
we call the a-code of v and denote by (). The left shift of the sequence corresponds
to the return of the geodesic to the cross-section Cl.

Example 3.5. Let v be a geodesic on ‘H from v = v/5 to w = —/3. The G-
expansions are

w=1[-1,223], 1/u=7T1,2,6,22].
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—2 -1 0 1 2
F1GURE 7. The cross-section C, = P U Q1 U Q2

First, we need to find an equivalent G-reduced geodesic. For this we use the re-
duction algorithm described above for G-expansions and construct the sequence
(u1,w1), (ug,ws),..., until we obtain a G-reduced pair equivalent to (u,w). We
have

w; = ST(w) = (1+V3)/2, w =8T(u)=(1-+5)/4,
wy = ST 2(w1) =1+ 1/V3, ug = ST *(uy) = (7 — V/5)/11,
and the pair (ug,ws) is already G-reduced. The G-expansions of 1/us and ws are
wy = [2,3], 1/uz =13,2,2,6,2],
hence [v] = [2,6,2,2,3,2,3] = [...,2,2,6,2,2,2,6,2,2,3,2,3,2,3,2,3,...].

3.4. Symbolic representation of geodesics via arithmetic codes. Let Ng
be the Bernoulli space on the infinite alphabet Ng = {n € Z | n > 2}. We proved
that each oriented geodesic which does not go to the cusp of M in either direction
admits a unique G-code, [y] € J\/g which does not contain a tail of 2’s. Taking
the closure of the set of such G-codes, we obtain the entire space ./\/’é. Now, each
bi-infinite sequence z € NZ produces a geodesic on H from u(x) to w(x), where

1
u(z)
Notice that if a sequence has a tail of 2’s, then the oriented geodesic goes to the
cusp. Thus the set of all oriented geodesics on M can be described symbolically as
the Bernoulli space X¢ = NZ.

For the A-code, the set of all oriented geodesics (which do not go to the cusp) on
M can be described symbolically as a countable one-step Markov chain X4 C N%
with the infinite alphabet N4 = {n € Z | n # 0} and transition matrix A,

(3.7) w(z) = [no,n1,... 1, =[n_1,n_9,...].

1 ifnm <0,
0 otherwise.

(3.8) A(n,m) = {

For the H-code, recall first that the reduction algorithm and Theorem [3.4] are
valid only for geodesics whose end points are not equivalent to r. Taking the closure
of the set of all such H-codes, we obtain a set Xy containing also the bi-infinite
sequences with a tail of 3’s or —3’s. These exceptional sequences are H-codes of
some geodesics with one of the end points equivalent to r, but not of all such
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geodesics. 