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1. Introduction

This book is primarily concerned with systems of partial differential equations
of elliptic-parabolic type. Such systems are special cases of systems of partial dif-
ferential equations that occur naturally in biochemistry, biophysics, molecular biol-
ogy and in chemical thermodynamics and statistical mechanics—in short wherever
chemical kinetics and diffusive processes are present in a system. The particular
system in the text has the following form in Ω× (0, T ) where Ω is a bounded region
in two or three dimensions with a smooth boundary, ∂Ω:

ut = ∇ · (∇u − u∇v),
0 = ∆v − av + u.

(1.1)

Here ∆ is the usual Laplace operator, a ≥ 0 and ∇ is the spatial gradient. The
unknown functions u, v are nonnegative. The second equation is elliptic in v, while
the first equation is parabolic in u and hence the nomenclature for such systems.
It is assumed that the normal derivatives of both functions vanish on the boundary
and that u(x, 0) ≡ u0(x) is prescribed initially.

The system can be formally “solved” by writing v = (−∆ + aI)−1u from the
second equation, introducing this expression in the first equation and then treating
the problem as an initial-boundary value problem for the single function u. How-
ever, the justification—indeed, the determination of conditions under which one
can justify this formalism is in part the subject of this book. The primary purpose
of the book is to establish the result that if the existence (in time) interval of the
solution of the resulting nonlocal parabolic initial boundary value problem is finite,
the solution u converges weakly (in measure) to a sum of delta functions (point
masses) supported on a finite set S ⊂ Ω plus an L1 function which is continuous in
Ω − S. There is more to this story, but I am getting ahead of myself.

So who cares about (1.1)? Is it just another mathematical toy problem? Or does
it, like much of good mathematics, come from the real world? And while we are at
it, what about “free energy”? What is it? The last time I bought gasoline or paid
my electric bill, I noted that energy is anything but free!
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Thus my goals in this review are (1) to get at these equations from elementary
(i.e. undergraduate) mathematics, (2) to explain the term “free energy” in the
context of how it is understood in thermodynamics and (3) to discuss the principal
theme of the book, namely the two theorems on singularity formation for such
systems due to the author and his colleagues.

To get at the first goal, consider a very large population of particles of type N
in a region Ω say. (These could be cells on the surface of a Petri dish or protozoa
in a pond for example.) Suppose that the particle density (in particles or moles per
unit volume) is viewed as a smooth function of position and time, N(x, t). Suppose
moreover that there is no source or sink of particles in the region. Then Fick’s first
law (a consequence of the divergence theorem, but see also [2]) says that the local
density is changing with time via

(1.2)
∂N

∂t
= −∇ · J

where J is the local flux of the particle density. The flux magnitude has units of
particles or moles per unit area per unit time.

The fundamental problem of the theoretical chemist or molecular biologist is to
relate the flux of the particles to other properties of their environment. To simplify
the discussion a bit, suppose there is no overarching fluid momentum to consider.
Here are two possibilities:

• Brownian motion (random diffusion) due to bombardment of the particles
by the surrounding fluid. (This assumes that the fluid is “isotropic”, i.e.
random diffusion is direction independent.)

• The particles can signal each other by means of one or more chemical signals
and move in response to those signals.

As a crude example of this second type, consider a very large number of blindfolded
folks in a large ballroom. Suppose someone is cooking food in one corner of the
room, some highly perfumed folks are socializing in another corner of the room and
a few folks in sweaty gym clothes are chatting in a third corner of the room. That
is, other people are secreting chemical signals of their own making. The random
motion of the blindfolded individuals will be influenced by these chemical odors
(signals), positively in the case of the first two, negatively in case of the third case.
“The nose knows!” This attraction or repulsion due to chemical gradients of one
sort or another is called chemotaxis. The random walk that the blindfolded folks
make under these circumstances is called a biased or reinforced random walk [3].
This is what is meant by self interacting particles.

In mathematical terms, the component of the flux that is due to Brownian motion
is of the form J1 = −D∇xN where D is usually (but not always) a constant. See
[1, 2] for example. This says that the particles will move from regions of high
density to low density if left to their own devices.

Now suppose we have chemical signals present produced by our particles that
induce them to move toward (positive chemotaxis) or away from (negative chemo-
taxis) each other. Consider first a single such species, W, and let W (x, t) denote
its local density. Then the component of the flux has an additional term of the
form J2 = NΨ(W )∇W (in the simplest case this component is taken to be linear
in N). In this situation, Ψ(W ) is called the chemotactic sensitivity. We see that
J1 +J2 = −D∇N +NΨ(W )∇W. Thus if Ψ is positive, we say that the gradient of
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W works against the gradient of diffusion of N , while if Ψ is negative, the gradient
of W works with the gradient of N .

If there are several chemical species Wi, i = 1, . . . , m as in the case of the odors
in the ballroom, for example, we write J2 = NΣm

i=1Ψj(
−→
W )∇Wi. The densities and

the fluxes of the chemical species also satisfy Fick’s law in their own right.
Let us assume, which is usually the case when N is a cell type and W is a chemical

attractant or repellent, that the cells express W at a rate α > 0 proportional to the
cell density and that W has a turnover rate β > 0. (The turnover rate is, up to a
factor of ln 2, the reciprocal of the half life.) Suppose that D is constant and that
Ψ(W ) ≡ DΨ0 is a nonzero constant.

Then we can write the following system:

∂N

∂t
= D∇ · (∇N − Ψ0N∇W ),

∂W

∂t
= Dw∆W + αN − βW.

(1.3)

(Local existence and uniqueness theorems for such systems and their generalizations
have been established. See [15] for a history of these issues.) This system admits
two special subsystems. In the first subsystem the operating assumption is α =
Dwα̂, β = Dwβ̂ where the hatted quantities are order zero in Dw as it becomes
large. (See [6] where the assumption is made that β̂ is order zero.) Then one makes
the time scale change τ = Dt, fixes D and lets Dw → +∞. Reverting to t (in place
of τ ), one has formally:

∂N

∂t
= ∇ · (∇N − Ψ0N∇W ),

0 = ∆W + α̂N − β̂W.

(1.4)

The first equation in (1.3) can be written in the form

∂N

∂t
= ∇ ·

[
N∇ ln

(
N

exp(Ψ0W )

)]
.(1.5)

Now the sign of Ψ0 becomes critical. If this number is positive (attractive chemo-
taxis), we can find positive constants λ, µ such that u = λN and v = µW that will
permit the reduction of (1.4) to (1.1). If Ψ0 is negative, i.e. in the case of repulsive
chemotaxis, this reduction can be made only if we allow λ and µ to be negative.
Because it is attractive chemotaxis that leads to aggregation, we take Ψ0 = 1.

For the second subsystem, the operating assumption is that the diffusivity Dw is
very small in comparison with β/µn for the first few nonzero Neumann eigenvalues
µn. This will be true if the half life of the chemical species W is very small, as is
the case for various growth factors. Then we can write the following system:

∂N

∂t
= D∇ · (∇N − N∇W ),

∂W

∂t
= αN − βW.

(1.6)

In this case, we drop the boundary conditions on W . This system is no less in-
triguing than (1.1). It is possible for this system to exhibit singularity formation
in finite time. This possibility was demonstrated numerically in [10]. Singularity
formation for (1.6) was analyzed in [8] for β = 0 and in [5, 7, 9] when β > 0.
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Turning to the second goal, recall from thermodynamics, [13] for example, that
the energy, E, the Kelvin temperature, T , and the entropy, S, for a system of
particles undergoing reversible processes and PV work are related by the differential
form dE = dQrev − dW = TdS − PdV, according to the first and second laws of
thermodynamics. The energy and the entropy differentials are exact while the PV
work is path dependent. Chemists have found that the Gibbs free energy, namely,
G = E + PV − TS, is more useful for isothermal processes, as the contribution
to the total energy from the entropy is removed. The total differential for the
Gibbs free energy is dG = −SdT + V dP . For example, if we have an isothermal
expansion of an ideal gas, dT = 0 and PV = nRT where R is the universal
gas constant. Then dG = nRTdP/P so that G = nRT ln(P/P0) + G0(T ) =
nRT ln(N/N0)+G0(T ) where the subscript denotes some fixed reference state and
where N = n/V = P/RT is the concentration of the gas. Chemists prefer to use
something called the chemical potential, i.e., the free energy per mole. Thus we
write Γ = (G − G0)/n = RT ln(N/N0) + Γ0(T ).

It is reasonable to assume that the flux is down the free energy gradient and
is proportional to the local concentration of the gas. Hence J = −σN∇Γ =
−σRT∇N where sigma is some proportionality constant. Then D = σRT. Unfor-
tunately, an ideal gas is just that, ideal. Therefore, [13], chemists have replaced
N0 = N0(T ) by a factor, 1/γ, called the activity coefficient, and the density N by
A = Nγ, called the activity as a correction factor, in order to keep the same form
of the equation for the chemical potential in the nonideal case. Thus, we define
the activity coefficient by Γ = RT ln(γN) + Γ0(T ) and identify W = − ln(γ). Then
the dynamics for W is equivalent to dynamics for the activity coefficient. (In gas
dynamics, the term “fugacity” is used in lieu of the pressure when the gas is not
ideal.) In [8] we followed the dynamics for 1/γ, the approach taken in [10] in their
modeling of the continuous (pde) version of reinforced random walk of [3].

How does this notion of free energy relate to that described in the book? We
return to (1.4). By rescaling N we can take α̂ = 1. Then we have, after multiplying
both sides of the first of (1.5) by Γ − Γ0 = ln(Ne−W ), integrating over the region
Ω and noting the zero flux boundary conditions on both W and N ,

d

dt

∫
Ω

(Γ − 1)N dx = −D

∫
Ω

N |∇Γ|2x

if we take the reference potential, Γ0 = 0. The author defines

W(N, W ) =
∫

Ω

(Γ − 1)N dx

as the free energy. More precisely, it is the total free energy of the system, a weighted
integral of the local chemical potential or just an integral of the local free energy.
More importantly it is decreasing in time, as it should from a thermodynamic point
of view. From the dynamical systems point of view, it is an example of a Lyapunov
functional.

One can carry this a little further by writing (with a = β̂) W = (aI −∆)−1N =∫
Ω

Ga(x,x′)N(x′, t)dx′ where Ga is the Green’s function for aI − ∆ with no flux
boundary conditions. Using this to eliminate W from W leads to a functional in
N that depends only on time. We denote it by F(N).

The content of the book is centered around two very interesting theorems of the
author [12] and the author and Senba [11]. To set the stage, we let Ω be a bounded
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region in the plane with a smooth boundary. Let M(Ω) denote the set of measures
on Ω and let ⇀ denote weak-* convergence. Of special interest is the measure
defined by the L∞ function

m∗(x) =

{
8π (x ∈ Ω)
4π (x ∈ ∂Ω).

Suppose the solution (u, v) of (1.1) exists on Ω × [0, Tmax) and that Tmax < ∞.
Then there is a finite set of points S ⊂ Ω, a nonnegative function f ∈ L1(Ω) ∩
C(Ω\S) and a function m ∈ L∞(Ω) such that m(x0) ≥ m∗(x0) for x0 ∈ S and

(1.7) u(x, t) dx ⇀ f(x)dx +
∑
x0∈S

m(x0)δ(x − x0) dx

as t ↑ Tmax. Moreover, the set S is precisely the set of blow-up points of u
and limt↑Tmax

‖u(t)‖L∞ = +∞. Because ‖u(t)‖L1 = ‖u0‖L1 , one sees that

2�(S ∩ Ω) + �(S ∩ ∂Ω) ≤ ‖u0‖L1/(4π)

where �(S) denotes the finite cardinality of S. The meaning of this result is that
the chemotaxis has a strong localizing effect on the evolution of the particle density
u, the aggregation of the particles occurring at most at a finite number of points
either in the domain or on its boundary. Notice that when ‖u0‖L1 < 4π, aggregation
cannot occur.

The author refined this result in [12]. This refinement is concerned with the
asymptotic behavior of the solution near each point of S. For the growth of the
solution at the singularities, there are two possibilities:

1. x0 ∈ S is type I if for all C > 0,

lim sup
t↑Tmax

sup
|x−x0|≤C(Tmax−t)1/2

(Tmax − t)u(x, t) < +∞.

2. x0 ∈ S is type II if there is C > 0,

lim sup
t↑Tmax

sup
|x−x0|≤C(Tmax−t)1/2

(Tmax − t)u(x, t) = +∞.

Clearly blowup is more rapid at a type II singularity than at a type I singularity.
Define the local backward self-similar change of variables y = (x−x0)/(Tmax−t)1/2,
s = − ln((Tmax − t) and z(y, s) = (Tmax − t)y(x, t).

Then m(x0) = m∗(x0). (This is called mass quantization.) Moreover

1. If x0 ∈ S is type II and tn ↑ T is a sequence along which the superior limit
in the definition is infinite, then

z(y, sn + ·) dy ⇀ m∗(x0)δ(y) dy

in C∗(R1,M(R2)). (Here z = 0 outside the region where it is not defined
by u.)

2. If x0 ∈ S is type I, then the local free energy blows up. That is,

lim
t↑Tmax

FbR(u(t)) = +∞

for all b > 0 where the local free energy is given by
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FR(u) =
∫

Ω

ψx0,R,2Ru(lnu−1)dx− 1
2

∫
Ω

∫
Ω

(x)ψx0,R,2R(x′)G(x′,x)u(x′)u(x) dxdx′

where ψx0,R,2R is unity in B(x0, R); vanishes outside B(x0, 2R); and on
Ω\B(x0, 2R) takes values in [0, 1], is smooth, and has zero flux on ∂Ω.

The author remarks that the existence of type (I) singularities, i.e. singularities
that aggregate to a delta function even in similarity variables, has yet to be demon-
strated. He also remarks that it is possible for type II singularities to show the
same finite time blowup in the local free energy.

In the context of biological systems, the classic model for (1.1) is that of Dic-
tyostelium discoideum, one of a class of cellular slime molds, [4, p. 498ff.]. On
these pages one will find a very nice biological discussion of the formation of sin-
gularities in the density function for these slime molds. (To paraphrase Kevin
Costner in Field of Dreams: “If you starve them, they will aggregate!”) Roughly
speaking, the amoeba that constitute the slime mold bacteria are commonly found
in the soil. As long as there is sufficient food supply they are more or less uni-
formly spread. As the food supply becomes exhausted, they first aggregate in
a pulsating wave like manner. Because a picture is worth a thousand words,
I refer the reader to two Web sites for some truly fascinating movies, namely
cosmos.bot.kyoto-u.ac.jp/csm/movies.html and asb.aecom.yu.edu/segall/
dicty/dictwel.htm. There one can see the aggregation and the presumptive for-
mation of delta functions in real time.

An interesting question, among many, that remains open for the system (1.1) is
the question of blowup in infinite time. In Chapter 12, the author shows that if this
does happen, the solution evolves weak-* to a set of blow-up points (which may be
infinite) in the same manner as stated in (1.7) with m = m∗ (mass quantization).

The organization of the book is briefly summarized as follows. Chapters 1 and
2 are concerned with a summary and introduction of the problem as well as with
a classification of the problem in the hierarchy of equations of particle dynamics.
Chapters 3-5 involve issues arising in the classical theory of differential equations,
local existence, uniqueness, blowup, etc. Chapters 6-10 are concerned with the
stationary problem for system (1.1), while the last five chapters, 11-15, deal with
the results we described above. These last ten chapters are not easy reads by
any means. (There are some errors involving the historical development of the
subject. For example, the author refers to a paper ([14]) (with an incorrect date of
publication) that appeared several years after [8].)

The book itself is well organized and readable although very technical. It is a
book about the mathematics of system (1.5) and not biology or thermodynamics.
In that sense, I found the title somewhat misleading. In any case, it certainly
belongs on the bookshelf of specialists in nonlinear pde/math biology.
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