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Harmonic analysis, in a fundamental sense, may be understood as the analysis
based on the decomposition of complicated mathematical objects into simple build-
ing blocks. The prime example of such a decomposition is a Fourier series, where
a periodic function is expanded into its fundamental modes or pure frequencies.
Likewise the Fourier transform of a function on Rd, defined as

(1) f̂(ξ) =
∫

Rd

f(x)e−2πiξ·x dx ,

and the corresponding inversion formula analyze the frequency content of f .
Underlying many finer decompositions into simpler pieces are the fundamental

invariance properties of Rd and the corresponding operators. For harmonic analysis
on Rd these are the translations t → t+x and the dilations t → at, where t, x ∈ Rd

and a ∈ R. The corresponding operators are the translation operator Tx

(2) Txf(t) = f(t − x) t, x ∈ R
d ,

and the dilation operator Da

(3) Daf(t) = |a|−d/2f(t/a) .

To achieve symmetry with respect to the Fourier transform, we add the modulation
operators Mξ:

(4) Mξf(t) = e2πiξ·tf(t) t, ξ ∈ R
d .

Then we have (Mξf)̂(ω) = f̂(ω − ξ) and (Daf)̂(ω) = D1/af̂(ω), so that the
whole set of operators TxMξDa is invariant under the Fourier transform.

When the analysis is based on translations and modulations, we speak of time-
frequency analysis or phase-space analysis; when translations and dilations are
used, we speak of time-scale analysis. In a broader sense, the combination of all
three operations (joint time-frequency time-scale methods) is often referred to as
time-frequency analysis.

In the evolution of analysis, time-frequency and time-scale methods have experi-
enced many reincarnations. Time-frequency analysis has its origins in the work of
H. Weyl [12] and J. von Neumann [10] on the mathematical foundations of quantum
mechanics, and of D. Gabor on information theory [5]. Their original problems were
the formulation of uncertainty principles, coherent states expansions, and quanti-
zation via pseudodifferential operators. These topics are still an inspiration for
current research, and indeed two chapters in this book are devoted to uncertainty
principles and pseudodifferential operators. The classical version of time-scale anal-
ysis is the Littlewood-Paley theory for the decomposition of Lp-spaces and Hardy
spaces and the theory of Calderòn-Zygmund operators [6].

The combined time-frequency time-scale analysis is much more mysterious. It
is part of some of the deepest and most difficult theorems in harmonic analysis.
For instance, the proof of Carleson’s celebrated theorem on the almost everywhere
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convergence of Fourier series by Lacey and Thiele relies heavily on a subtle de-
composition of a maximal operator, the Carleson operator, with respect to a set of
time-frequency shifts and dilations of some function [9]. Likewise, combined time-
frequency and time-scale methods occur in the solution of Calderòn’s conjecture on
the boundedness of the bilinear Hilbert transform by Lacey and Thiele [8]. Some
of these ideas are briefly described in Chapter 7 of this book in the context of the
so-called Walsh model.

This book is devoted to modern incarnations of time-frequency analysis and time-
scale analysis. The evolution of the last 20 years has reshaped time-frequency and
time-scale analysis. New topics and techniques have emerged in part through the
intensive interaction with signal and image processing and other modern engineering
applications. Classical ideas have resurfaced in applicable shape. Many of the
modern aspects may be subsumed under the notions of dictionaries, transforms,
redundancy, and adaptive methods.

(i) Dictionaries : In modern terminology, a set of building blocks is called a
dictionary; all dictionaries in this book are subsets of the time-frequency time-scale
dictionary Dmax = {MξTxDag : x, ξ ∈ Rd, a > 0} of a single function g (or several
functions gj). A time-frequency time-scale shift of g is called a wave packet, and
Dmax is the maximal wave packet dictionary.

At least two mathematical directions are defined explicitly by the study of certain
structured subsets of Dmax. The analysis of dictionaries containing only the time-
frequency shifts DG = {MβlTαkg : k, l ∈ Z

d} is Gabor analysis [3], the study
of dictionaries containing only translations and dilations DW = {D2j Tkgr : k ∈
Zd, j ∈ Z, r = 1, . . . , 2d − 1} defines wavelet theory [2].

(ii) Transforms: To any dictionary D we associate a transform CD mapping
functions into sequences indexed by D as follows:

(5) CDf(d) = 〈f, d〉 d ∈ D ,

where we identify the dictionary with the index set. Although this coefficient oper-
ator may be studied as an abstract mathematical object, the transforms associated
to wave packet dictionaries carry concrete physical information about a function f .
Using only time-frequency shifts, the transform is

(6) 〈f, d〉 = 〈f, MξTxg〉 =
∫

Rd

f(t)g(t − x) e−2πiξ·t dt .

This transform is known under a dozen names, such as short-time Fourier transform,
Gabor transform, radar ambiguity function, coherent state transform, etc., each of
which indicates a particular scientific application. Choosing g to be a Gaussian or
a smooth compactly supported cut-off function, the coefficient 〈f, MξTxg〉 can be
taken as a measure for the amplitude of the “frequency” ξ at “time” x.

Using translations and dilations only, the transform becomes

(7) 〈f, d〉 = 〈f, DaTxg〉 = |a|−d/2

∫
Rd

f(t)g
( t − x

a

)
dt .

This is the (continuous) wavelet transform. By taking g to be compactly supported
with

∫
Rd g(t) dt = 0, it describes the local change of f near x in a neighborhood

of size a. As a tends to zero, this transform “zooms” in to x and can be used to
determine the local smoothness of f at x.
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In taking the full time-frequency time-scale dictionary Dmax, one obtains the
wave packet transform; it combines the virtues of both the short-time Fourier trans-
form and the wavelet transform. For g(t) = e−πt·t this transform is also known as
the FBI-transform (for Fourier, Bros, Iagolnitzer) and is instrumental for the anal-
ysis of wavefront sets in PDE, e.g., [4].

The immediate questions to be asked about a dictionary concern its properties,
special construction, and applications. When does a dictionary span L2(Rd)? Can
we construct structured dictionaries that form an orthonormal basis? In particular,
do there exist “nice” functions g such that the corresponding Gabor system DG or
wavelet system DW is an orthonormal basis? How do we deal with overcomplete
dictionaries? For a given dictionary D, how can a function f ∈ L2(Rd) be repre-
sented as a series expansion f =

∑
d∈D cd d? How can the coefficients cd ∈ C of such

an expansion be determined? How accurately can a function f be approximated
by a finite linear combination with respect to the dictionary D?

What are the advantages of special wave packet dictionaries? How are Gabor
dictionaries or wavelet dictionaries applied? How can a dictionary be used for the
analysis of an operator?

A large part of this book is devoted to answering these questions. The inves-
tigation of structured orthonormal bases is particularly interesting. For wavelet
dictionaries, a fundamental construction of Ingrid Daubechies [2] exhibits a class
of “wavelets” g that are n-times differentiable (for given n ≥ 0) and compactly
supported such that DW = {D2j Tkg : j, k ∈ Z} is an orthonormal basis for L2(R).
The construction of such wavelet bases, their parametrization, and many variations
are explained in Chapters 1 and 2.

By contrast, there does not exist any “nice” orthonormal basis of time-frequency
shifts. The obvious orthonormal basis {MlTkχ[0,1] : k, l ∈ Z} for L2(R) lacks
smoothness and decay in the frequency domain. The Balian-Low Theorem as-
serts that this example is typical. If DG = {MlTkg : k, l ∈ Z} is an ortho-
normal basis for L2(R), then g possesses maximal uncertainty in the sense that∫ ∫

|g(x)|2|ĝ(ξ)|2x2ξ2 dxdξ = ∞. Possible remedies are either to investigate modi-
fied time-frequency dictionaries of the form {cos(lx) g(x− k/2), sin(lx) g(x− k/2) :
k, l ∈ Z, l ≥ 0} (described in Chapter 4) or to abandon the basis property.

Currently there is no systematic theory about mixed dictionaries containing time-
frequency shifts and dilations. They first occurred in the theory of Cordoba and
Fefferman about pseudodifferential operators [1] and are currently investigated in
the context of density theorems and so-called alpha-modulation spaces.

(iii) Redundancy : A dictionary D is called redundant if f is overdetermined by
the coefficients 〈f, d〉, d ∈ D. Redundancy is a very useful property in many appli-
cations in signal and image processing, because the extra information contained in
the redundant coefficients can be used to compensate for the loss or distortion of
some of the coefficients 〈f, d〉. The first question to be answered is how f can be
recovered or approximated from the coefficients with respect to D. The best notion
to deal with redundant dictionaries is the concept of a frame. A countable set
{dn : n ∈ N} in L2(Rd) is called a frame for L2(Rd) if there exist positive constants
A, B > 0 such that

(8) A‖f‖2
2 ≤

∞∑
n=1

|〈f, dn〉|2 ≤ B‖f‖2
2 ∀f ∈ L2(Rd) .
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An easy Hilbert space argument yields the existence of a dual frame {en} such that
every f ∈ H can be expanded into a series

f =
∑

n

〈f, dn〉en =
∑

n

〈f, en〉dn .

The frame expansion is similar to an orthonormal expansion, but in general the
coefficients are not uniquely determined.

Frames are inevitable in time-frequency analysis, because a Gabor dictionary
DG = {MβlTαkg : k, l ∈ Z

d} with a “nice” g ∈ L2(Rd) cannot be an orthonormal
basis. To preserve the simple structure of DG, one is therefore forced to look at
frames of this form [2, 7].

A much more general question concerns the construction and characterization
of frames consisting of countable subsets of the maximal time-frequency time-scale
dictionary Dmax = {MξTxDag}. This problem is amazingly rich and offers links to
complex analysis, numerical analysis, approximation theory, and sampling theory.
Chapter 3 surveys the abstract theory of frames and of Gabor frames, discusses the
connection of frames with sampling theory, and presents several numerical recon-
struction algorithms.

(iv) Adaptive decompositions : In some applications to signal and image process-
ing, the goal is to capture the essential information about a function, a signal, or an
image with as few coefficients 〈f, d〉 as possible. Intuitively, the best approximation
of f is obtained by projecting f onto the subspace spanned by those dn ∈ D that
correspond to the largest coefficients |〈f, dn〉| ≥ |〈f, d〉| for d 
= d1, . . . dn. Since
the optimal subspace to which f is projected depends on f , the approximation is
called adaptive. When only few coefficients are required for a good approximation
of f , then f is sparse with respect to the given dictionary. As a general principle,
sparsity with respect to a time-frequency or time-scale dictionary is related to the
smoothness of f . For instance, if a function is sparse with respect to a wavelet
dictionary, then it belongs to a Sobolev space or to a Besov space.

Similarly, for an operator A on a Hilbert space H one may consider the matrix
entries 〈Ad, d′〉, d, d′ ∈ D, with respect to a dictionary. By keeping only the large
entries, one may hope to obtain a good approximation of A. The art is now to
design a dictionary in which only few entries are large. Then A possesses a sparse
approximation with respect to D. A large class of pseudodifferential operators is
sparse with respect to Gabor dictionaries, whereas singular integral operators, pre-
cisely the class of Calderòn-Zygmund operators, are sparse with respect to wavelet
dictionaries. These ideas are highlighted in Chapter 6. The analysis of operators
with wave packet dictionaries is more subtle; some sketches are given in Chapter 7.

This book. Time-Frequency and Time-Scale Methods by J. Hogan and J. Lakey
covers an enormous range in time-frequency analysis and time-scale analysis.
The topics range from sampling algorithms for trigonometric polynomials to the
Fefferman-Phong eigenvalue estimates for Schrödinger operators, from the con-
struction of orthonormal wavelet bases to the investigation of functions of bounded
variation with wavelets, from the standard uncertainty principle to the discussion
of the bilinear Hilbert transform with wave packets. The common thread of all
these topics is the use of time-frequency or time-scale dictionaries and the aspects
of dictionaries, frames, and adaptive decompositions.
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This book is not an introduction. To read it with profit, the reader should know
the basic material on wavelets, as contained in the first chapters of [2, 11], and of
time-frequency analysis, as outlined in [4, 7].

This book is about methods and ideas. The main goal is to motivate, discuss, and
describe important results and new developments in time-frequency and time-scale
analysis. Full proofs are rarely given, but insightful sketches of proofs or at least
descriptions of the underlying ideas are given for most results. This style makes
it possible to cover an enormous amount of material, and indeed the book reviews
the main results of (an estimated) 200 articles in some detail. The organization
of the book is therefore non-standard: the order of presentation is dictated by
relationship of topics, but not by the hierarchy of prerequisites and the logic of
proofs. Each chapter, if written in a self-contained style with full proofs and all
technical details, would easily fill an entire book by itself. The book can therefore
not be compared to any of the existing textbooks on harmonic analysis, wavelet
theory, or time-frequency analysis.

The advantage of this presentation is an organic and coherent picture of a huge
body of literature. The reader is spared most technical details and can focus on
the inner working of ideas. The disadvantage is that it is not easy to learn from
this book directly. It is probably best used as a first orientation and guide about
methods and ideas. For an in-depth study of the discussed topics, the reader should
then consult either the original references or one of the available textbooks.

The resulting book is like a gigantic mosaic. Each facet describes an interest-
ing result. While neighboring facets are not necessarily related in any formal way,
the entire mosaic, when viewed from a distance, displays a coherent and magnif-
icent picture, the picture of time-frequency and time-scale analysis. The book is
a great resource for experts to obtain an overview of the field and its literature.
It is also recommended for advanced graduate students who want to escape their
specialization and expand their horizons to a broader view of their field.
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cations, Birkhäuser Boston, Boston, MA, 1998. MR1601119 (98h:42001)

[4] G. B. Folland, Harmonic analysis in phase space, Princeton Univ. Press, Princeton, NJ, 1989.
MR0983366 (92k:22017)

[5] D. Gabor, Theory of communication, J. IEE (London) 93 (1946), no. III, 429–457.
[6] Loukas Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Upper Saddle

River, NJ, 2004.
[7] Karlheinz Gröchenig, Foundations of time-frequency analysis, Birkhäuser Boston Inc.,
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