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Three topics figure prominently in the modern higher arithmetic: zeta-functions,
Galois representations, and automorphic forms or, equivalently, representations.
The zeta-functions are attached to both the Galois representations and the auto-
morphic representations and are the link that joins them. Although by and large
abstruse and often highly technical, the subject has many claims on the attention
of mathematicians as a whole: the spectacular solution of Fermat’s Last Theorem;
concrete conjectures that are both difficult and not completely inaccessible, above
all that of Birch and Swinnerton-Dyer; roots in an ancient tradition of the study of
algebraic irrationalities; a majestic conceptual architecture with implications not
confined to number theory; and great current vigor. Nevertheless, in spite of major
results modern arithmetic remains inchoate, with far more conjectures than the-
orems. There is no schematic introduction to it that reveals the structure of the
conjectures whose proofs are its principal goal and of the methods to be employed,
and for good reason. There are still too many uncertainties. I nonetheless found
while preparing this review that without forming some notion of the outlines of the
final theory, I was quite at sea with the subject and with the book. So ill-equipped
as I am in many ways – although not in all – my first, indeed my major, task was
to take bearings. The second is, bearings taken, doubtful or not, to communicate
them at least to an experienced reader and, so far as this is possible, even to an
inexperienced one. For lack of time and competence I accomplished neither task
satisfactorily. So, although I have made a real effort, this review is not the brief,
limpid yet comprehensive, account of the subject, revealing its manifold possibili-
ties, that I would have liked to write and that it deserves. The review is imbalanced
and there is too much that I had to leave obscure, too many possibly premature
intimations. A reviewer with greater competence who saw the domain whole and,
in addition, had a command of the detail would have done much better.1

It is perhaps best to speak of L-functions rather than of zeta-functions and to
begin not with p-adic functions but with those that are complex-valued and thus –
at least in principle, although one problem with which the theory is confronted is to
establish this in general – analytic functions in the whole complex plane with only
a very few poles. The Weil zeta-function of a smooth algebraic variety over a finite
field is a combinatorial object defined by the number of points on the variety over
the field itself and its Galois extensions. The Hasse-Weil zeta-function of a smooth
variety over a number field F is the product over all places p of the zeta-function
of the variety reduced at p. Of course, the reduced variety may not be smooth for
some p and for those some additional care has to be taken with the definition. In
fact it is not the Hasse-Weil zeta-function itself which is of greatest interest, but
rather factors of its numerator and denominator, especially, but not necessarily, the
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irreducible factors. The zeta-function is, by the theory of Grothendieck, a product,
alternately in the numerator and denominator, of an Euler product given by the
determinant of the action τm(Φp) of the Frobenius at p on the l-adic cohomology
in degree m,

(1)
∏
p

1
det

(
1 − τm(Φp)/Nps

) .

Algebraic correspondences of the variety with itself, if they are present, will act on
the cohomology and commute with the Frobenius elements, thereby entailing an
additional decomposition of τm and an additional factorization of the determinants
in (1) and thus of (1) itself. These factors are the L-functions that are one of the
key concepts of the modern theory. Grothendieck introduced a conjectural notion
of motive as objects supporting these factors. Although there are many major
obstacles to creating a notion of motive adequate to the needs of a coherent theory,
not least a proof of both the Hodge and the Tate conjectures, it is best when trying
to acquire some insight into the theory’s aims to think in terms of motives. In
practice they are concrete enough.

Since their zeta-functions are major objects to be understood, the first element
of a very important nexus, whose four elements will be described one by one, is the
collection M of motives M over a given finite extension F of Q. With each M is
associated an L-function L(s, M) about which, at first, we know little except that
it is an Euler product convergent in a right half-plane. The category of motives as
envisioned by Grothendieck is Tannakian so that with each M is also associated
a reductive algebraic group µGM with a projection onto the Galois group of some
sufficiently large, but if we prefer finite, extension L of F . The field of coefficients
used for the definition of µGM lies, according to needs or inclination, somewhere
between Q and Q. The µ in the notation is to make it clear that the group µGM

has a different function than the group G. It is not the carrier of automorphic
forms or representations but of motives.

An automorphic representation π is a representation,usually infinite-dimensional,
of an adelic group G(A), the group G being defined over F and reductive. With
G is associated an L-group LG, which is a reductive algebraic group over C that
functions in some respects as a dual to G. There is a homomorphism of LG onto
Gal(L/F ), L being again a sufficiently large finite extension of F . Generalizing
ideas of Frobenius and Hecke, not to speak of Dirichlet and Artin, we can associate
with π and with almost all primes p of F a conjugacy class {A(πp)} in LG. Then,
given any algebraic, and thus finite-dimensional, representation r of LG, we may
introduce the L-function

(2) L(s, π, r) =
∏
p

1
det

(
1 − r(A(πp))/Nps

) .

The usual difficulties at a finite number of places are present.
In principle, and in practice so far, the functions (2) are easier to deal with than

(1). Nevertheless, the initial and fundamental question of analytic continuation
is still unresolved in any kind of generality. One general principle, referred to as
functoriality and inspired by Artin’s reciprocity law, would deal with the analytic
continuation for (2). Functoriality is the core notion of what is frequently referred
to as the Langlands program.
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Suppose G and G′ are two groups over F and φ is a homomorphism from LG to
LG′. Then if π is an automorphic representation of G there is expected to be an
automorphic representation π′ of G′ such that for each p the class {A(π′

p)} attached
to π′ is the image under φ of {A(πp)}. To establish this will be hard and certainly
not for the immediate future. I have, however, argued in [L] that it is a problem
that we can begin to attack.

It is then natural to suppose, once again influenced by Artin’s proof of the ana-
lytic continuation of abelian L-functions, that each of the Euler products L(s, M)
into which (1) factors is equal to one of the Euler products (2). This would of
course certainly deal with the problem of its analytic continuation. Better, in [L] it
is suggested that we should not only prove functoriality using the trace formula but
simultaneously establish that each automorphic representation π on G is attached
to a subgroup λHπ of LG, even to several such subgroups, but the need for this
multiplicity is something that can be readily understood. So we are encouraged
to believe that the fundamental correspondence is not that between L-functions
but that between M and µGM and π and λHπ. In particular µGM and λHπ are
to be isomorphic, and the Frobenius-Hecke conjugacy classes in µGM attached to
M are to be equal to the Frobenius-Hecke conjugacy classes λHπ attached to π.
Apart from the difficulty that there is little to suggest that λHπ is defined over
any field but C, it is reasonable to hope that in the long run some correspondence
of this nature will be established. The λ in the notation is inherited from [L] and
emphasizes that H is a subgroup of LG and not of G.

The Tannakian formalism for motives – when available – suggests that if there
is a homomorphism µGM ⊂ µG′, then M is also carried by µG′. If functoriality is
available, as is implicit in the constructions, and λHπ ⊂ λH ′, then, in some sense,
π is also carried by λH ′, but in the form of an automorphic representation π′ of a
group G′ with λH ′ ⊂ LG′. So if µG′ and λH ′ are isomorphic, the couples {M, µG′}
and {π, λH ′} also correspond.

An example, in spite of appearances not trivial, for which the necessary functo-
riality is available is the unique automorphic representation π of the group G = {1}
with LG = λHπ = Gal(L/F ), where Gal(L/F ) is solvable, together with the mo-
tive M(σ) of rank 2 and degree 0 attached to a faithful two-dimensional repre-
sentation σ of Gal(L/F ). They clearly correspond. Moreover λHπ = µGM is
imbedded diagonally in GL(2, C) × Gal(L/F ). The representation π′ is given by
solvable base-change, and the correspondence between {π′, GL(2, C) × Gal(L/F )}
and {M(σ), GL(2, C) × Gal(L/F )} is one of the starting points for the proof of
Fermat’s Last Theorem.

Although functoriality and its proof are expected to function uniformly for all
automorphic representations, when comparisons with motives are undertaken not
all automorphic representations are pertinent. The representation π has local fac-
tors πv at each place. At an infinite place v the classification of the irreducible
representations πv of G(Fv) is by homomorphisms of the Weil group at v into LG.
This Weil group is, I recall, a group that contains C× as a subgroup of index 1 or
2. We say ([Ti]) that the automorphic representation π is arithmetic (or algebraic
or motivic) if for each place π∞ is parametrized by a homomorphism whose restric-
tion to C×, considered as an algebraic group over R, is itself algebraic. Thus it is
expressible in terms of characters z ∈ C× → zmzn, m, n ∈ Z.
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Only arithmetic automorphic representations should correspond to motives.
Thus the second element of our nexus is to be the collection A of automorphic
representations π for F , each attached to a group λH. Because of functoriality, in
the stronger form described, π is no longer bound to any particular group G.

A central problem is to establish a bijective correspondence between the two
elements introduced. Major progress was made by Wiles in his proof of the con-
jecture of Taniyama and Shimura. Since he had – and still would have – only
an extremely limited form of functoriality to work with, his arguments do not ap-
pear in exactly the form just suggested. Moreover, there are two further extremely
important elements in the nexus in which he works to which we have not yet come.

To each motive M and each prime p is attached a p-adic representation of the
Galois group Gal(Q/F ) of dimension equal to the rank of the motive. The third
element of the nexus is not, however, the collection of p-adic Galois representations
– subject to whatever constraints are necessary and appropriate. Rather it is a
foliated space in which the leaves are parametrized by p and in which there are
passages from one leaf to another, permitted so far as each p-adic representation
is contained in a compatible family of representations, one for each prime. We
are allowed to move from one leaf to another provided we move from one element
of a compatible family to another element of the same family. The arguments of
Wiles and others, those who preceded and those who followed him, rely on an often
very deep analysis of the connectivity properties of the third element, either by
p-adic deformation within a fixed leaf, in which often little more is demanded than
congruence modulo p, or by passage from one leaf to another in the way described
(cf. [Kh]) and their comparison with analogous properties of yet a fourth element
whose general definition appears to be somewhat elusive.

For some purposes, but not for all, it can be taken to consist of representations
of a suitably defined Hecke algebra. For automorphic representations attached to
the group G over F , the Hecke algebra is defined in terms of smooth, compactly
supported functions f on G(Af

F ), A
f
F being the adeles whose components at infinity

are 0. They act by integration on the space of any representation π of G(AF ), in
particular on the space of an automorphic representation or on automorphic forms.

Let A∞
F be the product of Fv at the infinite places. When the Lie group G(A∞

F )
defines a bounded symmetric domain – or more precisely when a Shimura variety
is attached to the group G – then there are quotients of the symmetric domain
that are algebraic varieties defined over number fields. There are vector bundles
defined over the same field whose de Rham cohomology groups can be interpreted
as spaces of automorphic forms for the group G on which the Hecke operators will
then act. The images of the Hecke algebra will be finite-dimensional algebras over
some number field L and can often even be given an integral structure and then,
by tensoring with the ring Op of integral elements at a place p of L over p, a p-adic
structure, imparted of course to its spectrum. So far as these rings form the fourth
element of the nexus, the leaves are clear, as is the passage from one leaf to another.
It seems to correspond pretty much to taking two different places p and q without
changing the homomorphism over L.

The four elements form a square: motives on the upper right-hand side of the
diagram, automorphic representations on the upper left, the leaves Gp of the p-
adic representations on the lower right, and the fourth as yet only partly defined
element Hp on the lower left-hand side. The heart of the proof of Fermat’s theorem
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Figure 1.

is to deduce from the existence of one couple {M, µGM} ∈ M and {π, λHπ} ∈ A

of corresponding pairs the existence of other couples. We pass from {M, µGM}
in M to some leaf in the element below, thus to the corresponding p-adic Galois
representation sp ∈ Gp, and from {π, λHπ} to an object hp ∈ Hp, the fourth
element of the nexus. Then the essence of the arguments of Wiles and Taylor-Wiles
is to show that movement in Gp of the prescribed type is faithfully reflected in
permissible movements in Hp and that if in Gp the movement leads to an image
of a pair in M, then the corresponding movement in Hp leads to an element of A.
These two pairs will then necessarily correspond in the sense that the associated
Frobenius-Hecke classes will be the same.

As a summary of the proof of Fermat’s Last Theorem, the preceding paragraph
is far too brief, but it places two features in relief. There has to be an initial seeding
of couples with one term from M and one from A that are known for some reason
or another to correspond, and it has to be possible to compare the local structures
of the two spaces G and H.

The easiest seeds arise for G an algebraic torus, for then an automorphic rep-
resentation π is a character of T (AF ) and if the character is of type A0, thus if
the representation is arithmetic, the process begun in [W] and continued by the
construction of the Taniyama group ([LS]) should construct both the p-adic repre-
sentations and the motive {M, LT} corresponding to {π, LT}. From them others
can be constructed by functoriality, a formality for M .

Although they are somewhat technical, it is useful to say a few words about
the correspondence for tori, partly because it serves as a touchstone when trying
to understand the general lucubrations, partly because the Taniyama group, the
vehicle that establishes the correspondence between arithmetic automorphic forms
on tori and motives, is not familiar to everyone. Most of what we need about it
is formulated either as a theorem or as a conjecture in one of the papers listed in
[LS], but that is clear only on close reading. In particular, it is not stressed in these
papers that the correspondence yields objects with equal L-functions.

The Taniyama group as constructed in the first paper of [LS] is an extension T =
TF = lim←−L

T L
F of the Galois group Gal(F/F ), regarded as a pro-algebraic group, by

a pro-algebraic torus S = lim←−L
SL

F and is defined for all number fields F finite over
Q. One of its distinguishing features is that there is a natural homomorphism ϕF

of the Weil group WF of F into TF (C). This homomorphism exists because there
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is a splitting of the image in SL
f (C) of the lifting to WL/F of the Galois 2-cocycle

in H2(Gal(L/F ),SL
f (Q)) defining T L

F . Thus every algebraic homomorphism over
C of TF into an L-group LG compatible with the projections on the Galois groups
defines a compatible homomorphism of WF into LG(C). In particular if G = T is a
torus, every T -motive over C (if all conjectures are anticipated, this is just another
name for a homomorphism φ from TF to LT ) defines a homomorphism ψ = φ◦ϕ of
the Weil group into LT and thus ([LM]) an automorphic representation π of T (AF ).

The Weil group can be constructed either at the level of finite Galois extensions
L/F as WL/F or as a limit WF taken over all L. The group WL/F maps onto the
Galois group Gal(Lab). The kernel is the closure of the image of the connected
component of the identity in I∞L =

∏
v|∞ L×

v . A key feature of the construction
and, especially, of the definition of the group S that permits the introduction of
ϕF is the possibility of constructing certain elements of the group of ideles IL well-
defined modulo the product of I∞L with the kernel of any given continuous character.
Moreover in the construction an imbedding of Q in C is fixed, so that the collection
of imbeddings of L in C may be identified with Gal(L/Q) or, if the imbedding of F
is fixed, with Gal(L/F ). The automorphic representation π associated with φ will
be arithmetic because of the definition of the group X∗(S) of characters of S and
because of the definition of ϕF .

Conversely every arithmetic automorphic representation π of T arises in this
way. Such a representation is attached (cf. [LM]) to a parameter, perhaps to
several, ψ : WL/F → LT (C). The field L is some sufficiently large but finite Galois
extension of F . If π is arithmetic this parameter factorizes through ϕF . To verify
this, take L so large that all its infinite places are complex and observe first of all
that ψ restricted to the idele class group CL = IL/L× defines a homomorphism
of I∞L ⊂ IL to SL and for any character λ of T , there is a collection of integers
{λτ | τ ∈ Gal(L/F )} such that

λ(ψ(x)) =
∏

τ∈Gal(L/F )

τ (x)λτ .

The function λ → λτ is a character of SL and it defines the homomorphism φ
from SL to the connected component of LT , a torus T̂ . To extend it to φ :
T L → LT all we need do is split the image in T̂ (Lab) under φ of the cocycle
in H2(Gal(Lab/F ),SL) defining T L with the help of ψ. If w ∈ WL/F maps to τ in
Gal(Lab/F ) and to τ in Gal(L/F ), and a(τ ) the representative of τ in Gal(Lab/F )
used in the first paper of [LS] to define T L

F , then φ(a(τ )) = φ−1(a(τ )−1ϕF (w))ψ(w).
The right side is well-defined because of the definition of the groups SL and T L.

As emphasized in the first paper of [LS], for each finite place v of F there is a
splitting Gal(F v/Fv) → T L(Fv), thus a v-adic representation of Gal(F v/Fv) in T L,
in particular a p-adic representation if F = Q and v = p. At the moment, I do not
understand how or under what circumstances this representation can be deformed,
and I certainly do not know which, if any, of the general conjectures about L-values
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and mixed motives to be described in the following pages are easy for it, which are
difficult, or which have been proved (cf. [MW], [R]).

The toroidal seeds themselves will be, almost without a doubt, essential factors
of any complete theory of the correspondence between motives and arithmetic au-
tomorphic forms. There are two conceivable routes: either attempt to establish and
use functoriality in general or, as a second possibility, attempt to use only the very
little that is known about functoriality at present and to strengthen the other, less
analytical and more Galois-theoretic or geometric parts of the argument. Although
functoriality in general is not just around the corner, it is a problem for which
concerted effort now promises more than in the past. So there is something to be
said for reflecting on whether it will permit the correspondence between A and M

to be established in general. I stress, once again, that up until now only simple
seeds have been used, perhaps only those for which the group T is the trivial group
{1}.

The principal merit of the second route is perhaps that it quickly confronts us
with a difficulty carefully skirted in the above presentation, an adequate definition
of the fourth element H. In addition, starting with known couples, the method can
also arrive at other couples, of which the first element, thus the element in A, can,
because of the element in M with which it is paired, be identified with the functorial
image of a representation of a second group. Such examples are a feature of the work
of Richard Taylor and his collaborators ([Ta], but see also [Ki]) on odd icosahedral
representations or on the Sato-Tate conjecture. Although their present forms were
suggested by functoriality, these problems are of great independent interest and can
be presented with no reference to it – and sometimes are. Nevertheless, functoriality
is expected to be valid for all automorphic representations, not just for arithmetic
automorphic representations, and is indispensable for analytic purposes such as the
Selberg conjecture. So proofs of it that function only in the context of arithmetic
automorphic representations are not enough.

I have so far stressed the correspondence between the four elements M, A, G and
H partly because the research of the most popular appeal as well as much of the
wave that arose in the wake of the proof of Fermat’s Last Theorem involves them
all. There is nevertheless a good deal to be said about the relation between the
deformations in Gp and those in Hp that bear more on the structure of the elements
of M and on the problematic definition of H than on the relation between M and G.
The notion of a deformation in H or Hp remains imprecise, and it is not at first clear
when two elements of H or G are potentially in the same connected component. By
definition there is attached to each arithmetic automorphic representation a family
{ϕv}, v running over the infinite places, of homomorphisms of the Weil group WC/R

into an L-group LG. The restriction of ϕv to C× can be assumed to have an image
in any preassigned Cartan subgroup T̂ of the connected component Ĝ of LG and
will be of the form z → zλzµ, where λ, µ ∈ X∗(T̂ ) are cocharacters of T̂ . The
homomorphism ϕv is then determined by a choice of w in the normalizer of T̂
in LG of order two modulo T itself whose image in the Galois group is complex
conjugation at v and which satisfies w2 = eπi(λ−µ), wλ = µ. Since ϕv is determined
only up to conjugation, there are equivalence relations on the triples {w, λ, µ}, but
the essential thing is that for each v the homomorphisms fall into families, defined
by w and the linear space in which λ lies. These spaces may intersect, and in the
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intersection there is ambiguity. For example, if the ground field is Q, G = GL(2),
LG = GL(2, C) and

T = {t(a, b)} =
{(

a 0
0 b

)}
,

then the action of w on T is either trivial or it takes t(a, b) to t(b, a). Moreover

zλzµ = t(zkzl, zmzn)

with k = l, m = n if the action is trivial and k = n, l = m if it is not. In the first
case, w2 = 1, so that w can be taken as t(±1,±1). In the second, at least if k �= l,
w can be taken in the form

(3) w =
(

0 1
α 0

)
, α = eπi(k−l).

This is a possibility even if k = l. It is equivalent to the particular choice w =
±t(1,−1). Thus, even though the parameters λ and µ are discrete and not contin-
uous, it is natural to distinguish two components in the space of parameters. In
each λ is arbitrary and µ = wλ, but in the first w = ±t(1, 1) and in the second
w is given by (3). These two families reappear in G as even and odd Galois rep-
resentations, the odd being apparently readily deformable, while the even seem to
admit at best trivial deformations, as happens for reducible representations. There
are similar families for other groups. Formally the number of parameters will be
the dimension of the space of λ, thus the rank of the group G.

Although deformation in these parameters is not possible in A or M, the de-
formations in Gp or Hp appear in some sense as deformations within families like
those just described. Nevertheless the most important step in the proof of Wiles is
a comparison of the local structure of Hp and Gp that does not involve a variation
of the parameter, which we should think of as a Hodge type, or rather as the source
of the Hodge type, motives being objects that are realized by a linear representa-
tion of the associated group, and the Hodge type being affected by the realization.
The parameter maps to the L-group LG, so that representations r of LG are an
important source of realizations.

It is the deformations within Hp and their structure that are central to much
of Hida’s efforts over the past two decades. His early work on the infinitesimal
structure of Hp for modular forms or for Hilbert modular forms appears to my
untutored eye to have been a serious influence, but of course by no means the only
one, on developments that ultimately led to a proof of Fermat’s theorem.

As the notation indicates, the spaces Hp are related to Hecke algebras, but these
algebras cannot be exactly those that are defined by the algebra of compactly sup-
ported functions on G(Af ) acting on automorphic forms, thus on complex-valued
functions on G(F )\G(AF ), because the algebras defining Hp must be algebras over
a number field or, at least, over an extension of Qp.

For classical automorphic forms or representations the difficulty is not so egre-
gious, since from the subject’s very beginning the modular curves were present.
The forms appeared as sections of line bundles on them, so that a structure of
vector space over Q or some other number field or of module over Z was implicit
in their very definition. In general, however, an adequate definition of Hp remains
problematic.
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Suggestions can be made. It is natural to look for actions of the Hecke operators
on cohomology groups, for these can be taken either in the Betti form so that they
have a Q-structure or, if the group G defines a Shimura variety, in the de Rham form
so that they are defined over a number field. Not only can both, or at least their
tensor products by R or C, be calculated in representation-theoretic terms ([BW],
[GS]) but there are general theorems to compare the two, of which I suppose the
Eichler-Shimura map favored by Hida is a particular manifestation. Although he
intimates both possibilities before finally favoring a presentation in the de Rham
form, Hida does not undertake a description of the general background. A brief but
thorough account of it would have been of great benefit to the reader, the reviewer,
and perhaps to the author as well.

To continue, I take, by restriction of scalars if necessary, the group G to be
defined for simplicity over Q. Suppose, as in [GS], that B is a Borel subgroup of G
over C and that B(C)∩G(R) is a Cartan subgroup T (R) of G(R) whose projection
on the derived group is compact. Then B(C)\G(C) is a projective variety and
the complex manifold F = T (R)\G(R) is imbedded in it as an open subset. If
K∞ is a maximal compact subgroup of G(R) containing T (R), then T (R)\G(R)
is a fiber space over D = K∞\G(R). Sometimes it can be realized as a bounded
symmetric domain, and then for any open compact subgroup Kf of G(Af ) the
complex manifold D × G(Af )/Kf can carry the structure of a Shimura variety,
whose exact definition demands a little additional data that it is not useful to
describe here. Of paramount importance, however, is that the variety is defined
over a specific number field, the reflex field, and that if Kf is sufficiently small it is
smooth, although not necessarily complete.

In particular, if the adjoint group of G(R) is compact, then D is a point and
trivially a bounded symmetric domain. This is perhaps significant because the ar-
guments of, for example, [T], [Ki], [Kh], not to speak of those in §4.3 of the book
under review, often appeal to the JL-correspondence, at least in the special case
of GL(2), but because of the recent work by Laumon and Ngo on the fundamental
lemma, a proof of the correspondence, a special, comparatively easy case of func-
toriality, is – with time and effort because difficulties will arise ([B]) – within reach
for many groups. The correctly formulated correspondence relates automorphic
representations on a group and an inner twisting of it, and any group over R with
a compact Cartan subgroup has an inner twisting that is compact.

Any character of T defines a line bundle on F , but also a cocharacter of type A0

of a Cartan subgroup of the connected component Ĝ of LG. The cocharacter can be
extended to a homomorphism of the Weil group W (C/R), and this homomorphism
defines a parameter φ∞ and an L-packet of representations in the discrete series of
G(R); moreover, according to [GS] a substantial part of the cohomology of the line
bundle is yielded by the automorphic forms associated with these L-packets. For a
given group, just as for the example of GL(2), it appears that all these parameters
are expected to define the same connected component of Hp or Gp.

Although Hida recognizes clearly the need for general definitions of Hp, he con-
centrates on groups G that define a Shimura variety. As their designation suggests
these varieties were introduced and studied by Shimura in a long series of papers.
Although their importance was quickly recognized, these papers were formulated in
the algebro-geometric language created by Weil, not in the more supple and incisive
language of Grothendieck that is especially suited to moduli problems, and were
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not easily read. An influential Bourbaki report by Deligne in 1971 clarified both
the basic definitions and the proofs, although he like Shimura only treated those
varieties, a very large class, which are essentially solutions of moduli problems.
The remaining varieties were eventually treated in papers of Borovoi and of Milne
([BM]) by different methods. Neither their papers nor the investigations that pre-
ceded them are mentioned by Hida, and the reader of his book is strongly advised
to turn elsewhere for an introduction to the modern theory of Shimura varieties, for
example to the lectures of Milne ([BM]). For the purposes of the book, only special
Shimura varieties are invoked, but that is presumably a reflection of the limitations
of current methods.

At present, to give any definition whatsoever of Hp, one has either to work with
groups with G(R) compact modulo its center or with groups for which the associated
Shimura varieties can be defined over the ring of integers in some finite extension
of Q. The first possibility has not, so far as I know, been examined, except in some
low-dimensional cases, and the second requires, for the moment, that the variety
be the solution of a moduli problem. Then Hp is the algebra of Hecke operators
acting on p-adic automorphic forms. Classically these automorphic forms had been
investigated by others earlier (cf. [KS]), but Hida discovered even for classical forms
some remarkable features that seem to appear for general groups as well.

The present book is an account of that part of the theory developed by him
for several important types of Shimura varieties: modular curves, Hilbert modular
varieties, and Siegel modular varieties. The publishers recommend it as a text
for graduate students, but that is irresponsible. Although many of Hida’s early
papers and a number of his books are very well written, neither expository flair
nor a pedagogical conscience are evident in the present text. The style is that of
rough lecture notes, cramped pages replete with formulas and assertions that run
one into the other, largely obscuring the threads of the argument, and with an
unchecked flood of notation. The meaning of essential symbols is variable and not
always transparent so that the reader is occasionally overcome by a disconcerting
uncertainty.

On the other hand, Hida’s goals, both those realized in the book and those still
unrealized, are cogently formulated in his introduction and, so far as I can ap-
preciate, of considerable interest. Experts or even experienced mathematicians in
neighboring domains, for example the reviewer, will, I believe, be eager to under-
stand his conclusions, but they, and the author as well, might have been better
served either by a series of normal research papers or by a frankly pedagogical
monograph that assumed much less facility with the technical apparatus of classi-
cal and contemporary algebraic geometry. The material is difficult, and in the book
the definitions and arguments come at the reader thick and fast in an unmitigated
torrent in which I, at least, finally lost my footing.

Although as I have emphasized, the parameters φ∞ of the discrete series or of the
Hodge structure seem to lie in the same connected component, we cannot expect
to pass continuously from one to another. Indeed, for Shimura varieties, fixing
the parameter corresponds approximately to fixing the weight of the form. The
dimension of the space of automorphic forms being, according to either the trace
formula or the Riemann-Roch formula, pretty much a polynomial in λ, we cannot
expect it to be constant and independent of λ. For p-adic forms, however, there
are large families of constant dimension that interpolate, in a space with p-adic
parameters, a certain class of arithmetic automorphic forms.
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The Hecke algebra and its actions are just another expression of the automorphic
representations or of the automorphic forms. Fixing imbeddings of Q into C and
into Qp and taking all fields F to be subfields of Q, at a finite place p we replace the
collection of local parameters φ∞ = {φv}, v|∞, by a collection of homomorphisms
of the local Weil groups WFv

into the L-group over C. For those representations
π = ⊗πv that are associated with motives, these parameters will presumably be
given by homomorphisms σv, v|p, of the Galois groups Gal(F v/Fv), v|p, into the
L-group over Ql, where l may or may not be equal to p.

If l �= p, such a homomorphism will be tamely ramified and the restriction
to the decomposition group is strongly limited and does not offer much room for
deformation. It may as well be fixed, so that the deformations will take place over
the image of the Frobenius which there seems to be no attempt to constrain. If,
however, p = l, the possibilities for the σv are at first manifold, but when the
representations σv, v|p, arise from a motive they are constrained in an important
way first discovered by Tate. They can be assigned a Hodge-Tate type whose basic
description in terms of parameters λ subject to an integrality condition is much
like that attached to the Hodge structures at infinity. Since Tate’s paper [T] a very
great deal has been learned about the restrictions of the p-adic representations
associated with motives to the decomposition groups at places v dividing p [FI]
that appears to be indispensable for the study of the spaces Hp or Gp, but what
the reader of the present book will discover is that at p the Hodge type seems to
control the possible deformations just as it did at infinity in combination with the
elements w of order two. In the much studied case of the group GL(2), a w with
the two eigenvalues +1 and −1 can allow many deformations but a w with equal
eigenvalues does not appear to do so. At p the analogous dichotomy seems to be
between ordinary and extraordinary or – more colloquially expressed – nonordinary,
although I suppose that there will ultimately be a whole spectrum of possibilities,
each permitting some kinds of deformation and forbidding others. The ordinary
case is presumably the optimal case and is the one on which Hida concentrates.

For the types at ∞ there was no possibility of real deformation because λ was
constrained by an integrality condition. At p it is possible to abandon the integrality
condition because the Galois group of the infinite cyclotomic extension Qµp∞ is Z×

p ,
which is isomorphic to the product of the group F×

p with 1 + pZp, and the second
factor admits a continuous family of characters x → xa, a ∈ Zp, interpolating the
characters given by integral a. This allows for deformation or interpolation in the
space Gp, which is, it turns out, accompanied by possible deformations in the space
Hp. The new parameter is usually not just an open subset of Z×

p but, as for abelian
G, of some subspace of X∗(T )⊗Zp, X∗(T ) being the character module of a Cartan
subgroup of G.

This discovery by Serre (cf. [KS]), whose work was followed by that of Katz and
preceded by that of Swinnerton-Dyer, can perhaps be regarded as a second point
where Ramanujan influenced the course of the general theory of automorphic forms
in a major way, for Swinnerton-Dyer was dealing with congruences conjectured
by him. The first point was of course the Ramanujan conjecture itself, which led,
through Mordell and Hecke, to the general theory of automorphic L-functions. Hida
appreciated that in the p-adic theory, where the weight was no longer integral, there
was a possibility of the uniform deformation of whole families of modular forms, the
ordinary forms, to a rigid-analytic parameter space, thus to an open subset of Zn

p for
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some integer n. It would be surprising if this possibility were limited to GL(2), and
Hida has devoted a great deal of time, energy and space to the admirable design
of creating a general theory. To read his books and papers grows increasingly
difficult; to read them alone without consulting those of other authors, Katz or
Fontaine for example, or, in a different optic, Taylor or Khare, is ill-advised, even
impossible for some of us. Nevertheless, although no-one, neither Hida nor anyone
else, appears to have broken through to a clear and comprehensive conception of
the ultimate theory, there is a great deal to be learnt from his writings, both about
goals and about techniques. In spite of Hida’s often trying idiosyncrasies, to follow
his struggles for a deep and personal understanding of the resistant material is,
as Tilouine observed in a briefer review, not only edifying but also challenging,
although it appears to be easier to begin with the earlier papers, for they are often
more concrete and in them some key ideas are less obscured by technical difficulties
and general definitions.

Hida has also been preoccupied with two problems parallel to that of construct-
ing deformations of p-adic forms: parametrized families of p-adic Galois represen-
tations; p-adic L-functions. Although the theory of parametrized families of Galois
representations is not developed in the book under review and, indeed, so far as I
know, unless very recently, has hardly been developed beyond GL(2), it is adum-
brated in the introduction as one of the ultimate goals of the author. In earlier
papers of Hida ([Hi]), the elaborate “infinitesimal” structure, whose appearance in
Hp is for GL(2) a manifestation of congruences between the Fourier expansions of
automorphic forms and whose coupled appearance in Hp and Gp is a key feature
of the proof of Fermat’s theorem, appears and is investigated not only for fixed
weight and central character but also for entire parametrized families. There is
much more number-theoretical information in these investigations than I have been
able to digest.

The elements of A or of Hp are attached to automorphic representations or
forms, thus to a particular group G and to a particular L-group LG, but to the
extent that functoriality is available the group G can be replaced by others G′

and the representation π of G(AF ) by another π′ of G′(AF ). The p-adic Galois
representations can be modified in the same way and without any ado. It might be
worth reflecting on how the passage to the primed objects should be interpreted in
Hp.

A final, major goal described briefly in the introduction to the book and of
concern to many people (cf. [Gr]) is the construction of p-adic L-functions. They
seem to me of such importance both to Hida’s project and to all mathematicians
with an interest in number theory that I cannot end this review without a very
brief and even more superficial description of the attendant questions. I have no
clear idea of their current state. I believe that we can safely assume that they are
largely unanswered.

The complex L-functions attached to π ∈ A or to a motive M ∈ M are specified
only when in addition a finite-dimensional complex representation r of LG is given,
π being an automorphic representation of G and M a motive of type LG. It is of
the form L(s, π, r) or L(s, M, r), although both can be – in principle! – written as
L(s, π′) or L(s, M ′), π′ = πr an automorphic representation of GL(n), M ′ = Mr

a motive of rank d, d = dim r. Of course, if M is attached to π, then L(s, π, r) =
L(s, M, r). These somewhat speculative remarks are meant only to emphasize that



BOOK REVIEWS 303

all problems related to the p-adic L-functions will have to incorporate r. They will
also have to incorporate the parameter space of the deformations, which appears to
be, the elaborate local structure aside, at its largest an open subset A of X∗(T )⊗Zp,
T being a Cartan subgroup of G over the chosen ground field F , but it is of this size
only in unusual situations. As we noticed for tori, there are important constraints
on the subspace in which A is to be open. Of course X∗(T ) ⊗ Zp has a Galois
action.

The functions are to be p-adic analytic functions Lp(s, r) on the parameter space,
thus on a subset of Hp or Gp identified with the set A in X∗(T ) ⊗ Zp. Elements
s = µ×z of A define equivariant homomorphisms of open subgroups of K⊗Zp into
T̂ (Qp) in the form a →

∏
ϕ|p ϕ(a)zϕ(µ). Moreover at points in λ ∈ X∗(T ) ∩ A (or

at least at a large subset of this space, perhaps defined by a congruence condition)
the element of Gp is to be the image of a motive M(λ). So M ′(λ) = Mr(λ)
is defined. The p-adic function Lp(s, r) is to interpolate in an appropriate form
values R(M ′(λ)) of the complex L-functions L(z, M ′(λ)) at z = 0.

There are many important conjectures pertinent to the definition of R(M ′(λ)).
Unfortunately we do not have the space to describe them fully ([Mo], [Ha]), but
something must be said. For this it is best to simplify the notation and to suppose
M = M ′(λ). When discussing the L-function L(z, M) it is also best to suppose that
M is pure, thus that all its weights are equal, for otherwise there is no well-defined
critical strip and no well-defined center. Since every motive will have to be a sum
of pure motives, this in principle presents no difficulty.

Motives are defined (so far as they are well-defined) by projections constructed
from linear combinations of algebraic correspondences with coefficients from a field
K of characteristic zero. It is customary to take K to be a finite extension of Q.
The field K is not the field over which the correspondences are defined. That field
is F , the base field, or, more generally, a finite-dimensional extension L of it. It is
probably best, for the sake of simplicity, to take at this point K and F both to be
Q. Once the ideas are clear, it is easy enough to transfer them to general F and
K, but not necessary to do so in a review.

The expectation is that the order n = n(k, M) of the zero of L(z, M) at z =
k, k an integer, will be expressible directly in terms of geometric and arithmetic
properties of M , and so will

(4) R(M) = lim
z→k

L(z, M)
(z − k)n

.

These geometric and arithmetic properties are defined by the mixed motives at-
tached to the pure motive M . Mixed motives appear in the theory of L-functions
as extensions of powers T(m) of the Tate motive by M and in the simplest cases
are determined by, say, divisors over the ground field F (for example, Q) on a curve
or, indeed, on any smooth projective variety over F . The most familiar examples
are rational points on elliptic curves. Of importance are the extensions N of the
form

(5) 0 → M → N → T(−k) → 0,

as well as similar extensions in related categories defined by various cohomology
theories for varieties, motives and mixed motives, by de Rham theories, by the
Betti theory for varieties over the real and complex fields, and by p-adic theories
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that attach to the motive M a p-adic Galois representation of dimension equal to
the rank of M .

The motive M has a weight w(M) that is the degree in which it appears if M is
a piece of the cohomology of a smooth projective variety. So, by the last of the Weil
conjectures, for almost all finite places p of F there are attached to M algebraic
numbers α1(p), . . . , αd(p) of absolute value N pw(M)/2. The integer d is the rank of
M . Thus L(z, M) which is essentially∏

p

1∏d
1(1 − αi(p)/ N pz)

does not vanish for 
z > w(M) + 1.
Suppose that it can be analytically continued with a functional equation of the

expected type, thus

Γ(z, M)L(z, M) = ε(z, M)Γ(1 − z, M̂)L(1 − z, M̂),

where ε(z, M) is a constant times an exponential in z and thus nowhere vanishing,
M̂ a dual motive, which will be of weight −w(M) and of the same rank as M , and
Γ(z, M) a product of Γ-factors. The product is taken over the infinite places v of
the basic field F . If the weights in the Hodge structure of the Betti cohomology
associated with M at v are {(p1, q1), . . . , (pd, qd)} and v is complex, the Γ-factor is∏

i Γ(s − min(pi, qi)); if v is real it is
∏

i Γ(s/2 + εi/2 − min(pi, qi)/2), where εi is
either 0 or 1.

The center of the critical strip is w(M)/2 + 1/2. Suppose w(M) is even; then
for integral k > w(M)/2 + 1, L(k, M) �= 0 and for integral k > −w(M)/2 + 1,
L(k, M̂) �= 0. The functional equation allows us to deduce from this the order of
the zero of L(z, M) at all integral k < w(M)/2. Moreover the order of the pole
of L(k, M) at w(M)/2 + 1 is presumably equal to the multiplicity with which M

contains the Tate motive T(−w(M)/2). Applying this to M̂ we deduce the order
of the zero of L(z, M) at w(M)/2. So there is, in principle, no mystery about the
order of the zero of L(z, M) at any integer when w(M) is even. When w(M) is
odd, the same arguments deal with all integral points except w(M)/2 + 1/2, but
this point is very important, being for example the one appearing in the conjecture
of Birch and Swinnerton-Dyer. So the order of vanishing of L(z, M) at the BSD-
point z = w(M)/2 + 1/2 is related to much more recondite geometric information.
According to the conjectures of Beilinson and Deligne, the irrational factor of (4)
is determined topologically by the motive over the infinite places of the field F (cf.
[Ha], [F]). We first consider k ≥ w(M)/2 + 1, supposing that M does not contain
the Tate motive T(−w(M)/2) as a factor.

The motive has, on the one hand, a Betti cohomology HB(M) over Q that when
tensored with C has a Hodge structure

HB(M) ⊗ C = ⊕p+q=w(M)H
p,q(M)

and, on the other, a de Rham cohomology HdR(M) over Q with a filtration

. . . F p−1(M) ⊃ F p(M) ⊃ F p+1(M) . . .

that terminates above at HdR(M) and below at 0. Moreover the two spaces
HB(M) ⊗ C and HdR(M) ⊗ C, identified with de Rham cohomology over C, are
canonically isomorphic. Under the canonical isomorphism

F p(M) ⊗ C � ⊕p′≥pH
p′,q(M).
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There is an involution ι1 on HB(M) that arises from the complex conjugation of
varieties over Q. It can be extended to HB(M) ⊗ C linearly. There is a second
involution ι2 : x ⊗ z → x ⊗ z on this tensor product. On the other hand, complex
conjugation defines an involution ι of the de Rham cohomology over C. Under the
canonical isomorphism ι1 ◦ ι2 becomes ι. The particular pair HB(M) and HdR(M)
with the auxiliary data described define a structure that we denote MHdR, but
we can also consider the category of all such structures, referred to in [Ha] as the
category of Hodge-de Rham structures and here as HdR-structures. This category
also contains extensions

(6) 0 → MHdR → NHdR → THdR(−k),

in which NHdR may not be associated with a motive. Nevertheless extensions (5) in
the category of mixed motives presumably give rise to extensions (6) in the category
of HdR-structures.

It follows readily from the definition of HdR-structures, mixed or not, that the
sequence (6) splits if k ≤ w(M)/2. Otherwise the group Ext1HdR(THdR(−k), MHdR)
formed by classes of the extensions (6) can be calculated readily. If, as can be
achieved by a simple twisting, we suppose k = 0, then it is

HdR(M) ⊗ R/{HB(M)+ + F 0(M)}.
The vector space HB(M)+ is the plus eigenspace of ι1 in HB(M).

The group in the (hypothetical) category of mixed motives formed by classes of
the extensions in (5) is denoted Ext1(T(−k), M). The functor M → MHdR leads
to

Ext1(T(−0), M)→ Ext1HdR(THdR(−0), MHdR)≡HdR(M)⊗R/{HB(M)++F 0(M)},
in which HB(M)+ is the fixed point set of ι1. The combined conjectures of Beilinson
and Deligne affirm not only that the resulting map

Ext1(T(−0), M) → HdR(M) ⊗ R/{HB(M)+ + F 0(M)}
is injective but also that it yields an isomorphism of Ext1(T(−0), M) ⊗ R with
the quotient of HdR(M) ⊗ R by (HB(M)+ + F 0(M)) ⊗ R. Thus the product of
the determinant of a basis of Ext1(T(−0), M) with the determinant of a basis of
HB(M)+ can be compared with the determinant of a basis of the rational vector
space HdR(M)/F 0(M), the quotient being an element of R×/Q× ⊂ C×/Q× that is
supposed, as part of the Beilinson-Deligne complex of conjectures, to be the image
of (4).

Although the notion of a mixed motive is somewhat uncertain and little has been
proved, the theory is in fact strongly geometric with, I find, considerable intuitive
appeal. Moreover when developed systematically, it permits a clean description of
the integers n appearing in (4), even when k is the BSD-point, and of the limits
R(M), not simply up to a rational number as in the conjectures of Beilinson-Deligne,
but precisely as in the conjectures of Bloch-Kato. Although clean, the description
is neither brief nor elementary. It is expounded systematically in [FP].

The general form of the Main Conjecture of Iwasawa can also be profitably
formulated in the context of mixed objects. Recall that part of Hida’s program is to
attach to π a p-adic representation in LG and thus to each representation r a p-adic
family of representations σr. The principal objective of the book is the algebro-
geometrical constructions that enable him to transfer to Siegel varieties, thus to
the Shimura varieties associated with symplectic groups in higher dimensions, the
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techniques developed by him earlier for GL(2) over Q and over totally real fields
and to construct for them a theory of p-adic automorphic forms, from which a
construction of p-adic L-functions might be deduced. This is a well-established
tradition. The p-adic L-functions are constructed either directly as interpolating
functions or indirectly from the Fourier expansions of p-adic automorphic forms.
Then the main conjecture affirms that they are equal to the characteristic function
of a Selmer group defined by a parametrized family of p-adic Galois representations,
essentially, if I am not mistaken, by showing that this characteristic function does
interpolate the modified values of the complex automorphic L-function. The first,
easiest, yet extremely difficult cases of the Riemann zeta-function and Dirichlet
L-functions are in [MW].

The main conjecture could therefore be formulated directly in terms of the com-
plex L-function and the p-adic representation were it not that, at present, the only
way to construct the parametrized Galois representations is often, as in Hida’s
books and papers, through the mediating family of p-adic automorphic forms.

The p-adic space A on which the p-adic L-function was to be defined could –
since we agreed to take both fields K and F to be Q – be the continuous Qp-valued
spectrum of a commutative ring R over Zp, thus the continuous homomorphisms
of R into Qp. The ring R will be chosen such that these homomorphisms all have
image in Zp. The ring R could be a power series ring in finitely many variables. For
example, the extension of Q generated by all pnth roots of unity contains a subfield
Q∞ over which it is of finite index and for which Γ = Gal(Q∞/Q) is isomorphic to
Zp ≡ 1 + pZp. Let Λ = lim Zp[Γ′] be the limit over finite quotients of Γ. Of course
1 + pZp ⊂ Z×

p . The ring Λ is a common choice of R and is isomorphic to a power
series ring Zp[[T ]]. Its continuous Qp-valued spectrum may be identified with the
continuous homomorphisms of Γ into Q×

p .
Certain isolated points λ in the spectrum of R are to correspond to motives

M(λ). If the primary object is not the p-adic L-function but a family {σs} of
p-adic representations parametrized by A = SpecR and given by representations
into GL(d, R), then at s = λ the representation σM(λ) = λ◦σ is to be that attached
to M(λ), thus that on the p-adic étale cohomology Hp(M(λ)).

The p-adic representation σM of Gal(Q/Q) on the étale cohomology Hp(M) of
a motive M over Q or perhaps better the restriction of σM to Gal(Qp/Qp) is an
object whose theory ([FI]) I do not yet understand and do not try to describe.
Perhaps the most important thing to recall is that its Hodge type, which describes
the action on the tensor product of Hp(M) with the completion Cp of Qp, is a
sequence of integers h1, . . . , hd, with d equal to the dimension of M , supposed pure.

In [Gr] very tentative, yet very appealing conjectures are formulated. They
are difficult to understand, but are a benchmark with which to compare the aims
and results of Hida. First of all, the representation σ is supposed to take values
in GL(d, R). Then the parametrized representations arise on taking a continuous
homomorphism φ = φs : R → Zp, s ∈ A and composing it with σ.

Denote the space of the representation σ by V = Rd. The appropriate analogue
for p-adic representations of the mixed objects (6) would appear at first to be
extensions

(7) 0 → V → W → T → 0,

in which T = T (0) is the one-dimensional trivial representation, so that W stands
for a representation of Gal(Q/Q) of degree d + 1. Thus k in (7) has been taken



BOOK REVIEWS 307

to be 0, a formal matter because the sequence can be twisted. If we write the
representation on W in block form, the first diagonal block d × d and the second
1 × 1, only the upper-diagonal d × 1 block is not determined and it defines an
element of H1(Gal(Q/Q), V ).

Not this group appears in [Gr] but the group

(8) H1(Gal(Q/Q), Ṽ ), Ṽ = V ⊗ HomR(R, Qp/Zp).

More precisely, it is a subgroup of this group, the Selmer group S, that is pertinent.
It is defined as an intersection over primes q of subgroups defined by local conditions.
If q �= p the subgroup is the kernel of the restriction to the decomposition group.
To define the subgroup at q = p, Greenberg imposes a condition that he calls the
Panchishkin condition, a condition that I do not understand, although the notion
of an ordinary form or Galois representation seems to be an expression of it.

Thus the group S is defined by extensions that are a reflection at the p-adic level
of extensions of motives. The ring R acts on it and on its dual Ŝ = Hom(S, Qp/Zp).
The general form of the main conjecture would be that the characteristic ideal of Ŝ,
an element in the free abelian group on the prime ideals of R of height one, is – apart
from some complications related to those that arose at k = w(M)/2 + ε, ε = 0, 1, 2
– essentially the interpolating p-adic L-function. This is vaguely expressed both by
Hida and Greenberg and even more vaguely by me, because I understand so little,
but, as a general form of the Main Conjecture of Iwasawa, it is, in concert with
the Fontaine/Perrin-Riou form of the Beilinson-Deligne-Bloch-Kato conjectures, of
tremendous appeal.

As a valediction I confess that I have learned a great deal about automorphic
forms while preparing this review, but not enough. It is a deeper subject than I
appreciated and, I begin to suspect, deeper than anyone yet appreciates. To see
it whole is certainly a daunting, for the moment even impossible, task. Obtaining
proofs of serious results is another, even more difficult, matter, and each success
demands an enormous concentration of forces.
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