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related to the paper in the previous section by
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MR1414889 (97j:46033 ) 46E35 (42B20 53C23 57N15)

Semmes, S.
Finding curves on general spaces through quantitative topology, with
applications to Sobolev and Poincaré inequalities.
Selecta Math. (N.S.) 2 (1996), no. 2, 155–295.

It is a little appreciated feature of Euclidean n-space, n ≥ 2, that every pair of
points a, b in it can be joined not only by a straight line segment [a, b]—the shortest
curve between the points—but by a large family of curves with length comparable
to the distance between the points. One such family is obtained when we draw
two line segments symmetrically from the points a and b to an (n − 1)-disk of
radius |a − b| that meets the segment [a, b] perpendicularly at its midpoint. From
the existence of this curve family one deduces the important Sobolev and Poincaré
inequalities that are valid in Rn. This deduction is an abstract procedure that only
uses some basic harmonic analysis, and in which the Euclidean structure no longer
plays a role.

In this very interesting paper, the author addresses the issue of finding plentiful
curve families joining pairs of points in a metric space. This study provides im-
portant new examples of metric spaces that support Sobolev-Poincaré inequalities
similar to those in Rn. These spaces need not be smooth in any classical sense of
the word, yet for many analytic problems they are indistinguishable from Euclidean
space.

It is worthwhile to describe more precisely what is meant by plentiful curve
families in a metric space. Let (X, d, µ) be a (complete, separable) metric measure
space; for simplicity, assume here that X has Hausdorff dimension n > 0 and that
µ is the Hausdorff n-measure Hn, finite on bounded sets. A family Γ of curves in X
is said to be ν-controlled, where ν is a Borel measure on X, if there is a probability
measure dγ on Γ such that ν dominates the measure A �→

∫
Γ

length(γ ∩ A) dγ, for
A ⊂ X a Borel set. Ideally, Γ should be a family of curves joining the given points
a and b in X and ν should be absolutely continuous with respect to the background
measure µ = Hn with a nice density. If Γ is the curve family in Rn as described in
the first paragraph, then Γ is ν-controlled with dν ≈ (|a−x|(1−n)+|b−x|(1−n))dHn;
the probability measure on Γ is an appropriately normalized angular measure. The
main result of the paper gives conditions on X that guarantee the existence of a ν-
controlled family Γ of curves from a point a to a point b with all curves contained in
a ball of radius comparable to d(a, b) and with dν ≈ (d(a, x)(1−n)+d(b, x)(1−n))dHn.

One set of sufficient conditions given in the paper is as follows: X is an ori-
entable topological n-manifold whose local covering and contractibility properties
are uniformly controlled. I forgo the precise definitions of the last two conditions
here. The first is satisfied if the Hausdorff n-measure in X is nicely distributed, say
it obeys the Ahlfors regularity condition: Hn(BR) ≈ Rn for all balls BR of radius
R < diamX. The second is satisfied if each ball can be contracted to a point
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inside a concentric ball with radius enlarged by a fixed factor. These conditions
are already quite general (yet more general ones are given in the paper), leading
to significant applications. However, the author is careful in pointing out that his
methods are quite flexible and that there is room for weakening the assumptions
while retaining the same conclusions. It would be a nice task to find such weaker
assumptions in an elegant, concise formulation.

There would have been a good alternative for the (purely qualitative) assump-
tion that X be a manifold, for this property is never really used in the paper. In
all the arguments, one only needs that X has the local (co-)homological properties
of an n-manifold, that is, X is “algebraically” a manifold of correct dimension (cf.
Remark A.35 in the paper). This distinction is important both for conceptual rea-
sons and for applications. Many spaces that naturally arise in mathematics, e.g. in
the classical decomposition space theory or in the theory of transformation groups,
cannot be expected to be manifolds although they often are so-called cohomology
manifolds. These examples are relevant in this analytical context as well. For exam-
ple, the author [Rev. Mat. Iberoamericana 12 (1996), no. 1, 187–275; MR1387590
(97e:57025)] showed recently that many well-known spaces of the classical decom-
position space theory can be realized geometrically so as to satisfy the hypotheses
required by this paper.

The curve family Γ joining the fixed points a and b is constructed from the fibers
of an appropriate Lipschitz map F from the product space X × (0, d(a, b)) to the
n-sphere. The map Ft = F (·, t) should be constant outside a ball B(a, Cd(a, b))
for t near 0, and outside a ball B(b, Cd(a, b)) for t near d(a, b); moreover, none of
the maps Ft should be homotopic to a constant. The required Lipschitz bound is:
Lip F |X×(ε,d(a,b)−ε) ≤ Cε−1. The fibers of F are projected to X, and under the
Lipschitz conditions, the co-area formula essentially guarantees that a desired curve
family Γ can be found inside the image of the projection.

The main task of the paper is to construct the Lipschitz map described above.
This is a beautiful, albeit lengthy, story, and the reader is rewarded by numerous
interesting details and techniques, many important in their own right and certain
to be useful in other contexts. The three assumptions on X mentioned above are
used roughly speaking as follows. The controlled covering function allows one to
reduce the problem to the case where X lies in some large-dimensional Euclidean
space, or to assure that X is well approximated by polyhedra in the spirit of the
classical dimension theory; an embedding theorem of P. Assouad [Bull. Soc. Math.
France 111 (1983), no. 4, 429–448; MR0763553 (86f:54050)] is put to use here in
an interesting manner. After this, the controlled contractibility is used in a familiar
way together with the polyhedral structure of the surrounding or approximating
rectilinear space, for maps from polyhedra into (locally) uniformly contractible
spaces easily allow for quantitative extensions. The local homological conditions
are used to secure a degree theory which then can be used to assure that the
obtained maps are homotopically nontrivial.

Arguments of this type were used earlier by G. David and the author [in Analysis
and partial differential equations, 101–111, Dekker, New York, 1990; MR1044784
(91c:30037)] in the special case of a quasisymmetrically deformed Rn. In a com-
panion paper the author [Publ. Mat. 40 (1996), no. 2, 411–430; MR1425628
(97j:46034); see the following review] discusses anew this important special case,
where a more straightforward approach is possible.
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The analytic inequalities that are derived from these considerations have to be
reinterpreted, for there is no underlying smooth structure on X. One can define a
generalized gradient of a continuous function u in a metric space to be a nonnegative
Borel function g such that |u(x) − u(y)| ≤

∫
γ

g for each pair of points x and y in
X and for each rectifiable curve γ joining these points. Various Poincaré-type
inequalities can be formulated in terms of generalized gradients, and their validity
is implied by the existence of a thick family of curves between pairs of points
as discussed above. The procedure is familiar from Rn: first one averages the
inequality |u(x) − u(y)| ≤

∫
γ

g over all curves in the family, and then over the
points x and y. (I am brushing aside here some interesting technical points related
to weak- versus strong-type estimates for function/gradient pairs; cf. Appendix B
in the paper under review.)

Of late, several authors have isolated the validity of a Poincaré inequality in a
metric space as an important sufficient condition which leads to nontrivial analytic
statements without a priori smoothness. The assumptions usually are accompanied
by certain mass bounds or minor topological stipulations. For example, Poincaré
inequalities without smooth structure play an important role in the theory of qua-
siconformal mappings, in potential theory on manifolds, and in the study of limit
spaces of Riemannian manifolds with curvature bounds. The paper by Semmes
is necessary reading for anyone interested in this type of geometric analysis. The
reader should not fear the daunting length of the paper, much of which is caused
by extremely careful exposition.

(From MathSciNet, November 2006)
Juha Heinonen

MR1699320 (2000d:53065) 53C23 (53-02)

Gromov, Misha
Metric structures for Riemannian and non-Riemannian spaces.
(English summary)
Based on the 1981 French original [MR0682063 (85e:53051)].
With appendices by M. Katz, P. Pansu and S. Semmes.
Translated from the French by Sean Michael Bates.
Progress in Mathematics, 152.
Birkhäuser Boston, Inc., Boston, MA, 1999. xx+585 pp. $89.95.
ISBN 0-8176-3898-9

The first edition of this book, published in French [Structures métriques pour
les variétés riemanniennes, Edited by J. Lafontaine and P. Pansu, CEDIC, Paris,
1981; MR0682063 (85e:53051)], is considered one of the most influential books
in geometry in the last twenty years. Since then the boundary of the field has
dramatically exploded. Reflecting this growth, the new English edition has almost
quadrupled in size.

Among the most substantial additions, each taking over a hundred pages, there
is a chapter on convergence of metric spaces with measures, and an appendix on
analysis on metric spaces written by Semmes. In addition, numerous remarks, ex-
amples, proofs, and open problems are inserted throughout the book. The original
text is mostly preserved with new items conveniently indicated by a subscript +.
We now describe the contents in more detail.
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The first chapter contains general results on path metric spaces with numer-
ous examples that often go beyond the Riemannian category. Chapter 2 discusses
invariants of maps, such as degree and dilation. Chapter 3 is devoted to conver-
gence of metric spaces, starting from Lipschitz and Hausdorff convergence and their
generalizations, such as ultraproducts and convergence with control.

The next chapter, labeled 3.5, is entirely new. It is devoted to convergence
of metric spaces with measures and the Lévy-Milman concentration phenomenon.
Chapter 4 deals with norms on homology and systoles and contains two new sections
on unstable systolic inequalities, filling, and systoles of universal spaces. This theme
is continued in the appendix on systolically free manifolds written by Katz.

Chapter 5 discusses manifolds with lower Ricci curvature bound. This area has
seen a remarkable growth in the last few years. Accordingly, five new sections
are added dealing with, among other things, packing inequalities, simplicial norms,
L2-Betti numbers, and entropy. Chapter 6 is about isoperimetric inequalities with
a new section on Varopoulos’ isoperimetric inequality. Chapter 7 discusses Morse
theory, minimal models, and bounds on dilation.

Chapter 8 contains a discussion of pinching and collapse. This chapter has
been rewritten entirely even though some of the material (e.g. the Cheeger-Gromov
compactness theorem) is borrowed from the French original. References are given
to more recent work on collapse under lower curvature bounds.

There are four appendices: on “quasiconvex” domains written by Pansu, on
systolic freedom by Katz, and on Lévy’s isoperimetric inequality by Gromov. Fi-
nally, an appendix written by Semmes is devoted to analysis on metric spaces with
doubling measures (such as Heisenberg group or Sierpiński gasket). In Gromov’s
words: “here, the reader can painlessly learn several key ideas of real analysis made
accessible to us geometers by the masterful exposition of Stephen Semmes, who has
adapted his material to our non-analytic minds”.

This book is certain to be a source of inspiration for many researchers as well as
the required reading for students entering the subject.

(From MathSciNet, November 2006)
Igor Belegradek
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Cheeger, J.
Differentiability of Lipschitz functions on metric measure spaces.
Geom. Funct. Anal. 9 (1999), no. 3, 428–517.

This paper extends fundamental notions from the calculus of first derivatives
to very general classes of metric measure spaces. A notable example is a general-
ization of Rademacher’s classical theorem on almost everywhere differentiability of
Lipschitz functions. This work has already had a major impact on the subject, and
these results, as well as the arguments developed to prove them, will surely have
significant applications.

In recent years, there has been a great deal of progress on “low regularity” ideas
in various contexts (many people have made contributions [cf., e.g., R. R. Coif-
man and G. Weiss, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645; MR0447954
(56 #6264); G. David and S. W. Semmes, Analysis of and on uniformly rectifi-
able sets, Amer. Math. Soc., Providence, RI, 1993; MR1251061 (94i:28003); S. W.
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Semmes, in Proceedings of the International Congress of Mathematicians, Vol. 1,
2 (Zürich, 1994), 875–885, Birkhäuser, Basel, 1995; MR1403987 (97j:28010); J.
Heinonen and P. Koskela, Acta Math. 181 (1998), no. 1, 1–61; MR1654771 (99j:30025);
and references therein]). These spaces also arise naturally in classical geomet-
ric contexts; for instance, as the (measured) Gromov-Hausdorff limits studied by
K. Fukaya in [Invent. Math. 87 (1987), no. 3, 517–547; MR0874035 (88d:58125)]
and Cheeger and T. H. Colding in [C. R. Acad. Sci. Paris Sér. I Math. 320 (1995),
no. 3, 353–357; MR1320384 (96f:53047)] and the papers announced therein.

A function f on a metric space Z is Lipschitz (with norm C) if |f(z1)− f(z2)| ≤
C distZ(z1, z2) for all z1, z2 ∈ Z. Specifying a measure µ on Z, we can define the
Lp spaces. The natural questions are then: What are tangent spaces to z ∈ Z?
Derivatives? Sobolev spaces H1,p?

After a preliminary definition, we will survey some of the results of the paper.
Heinonen and Koskela say that g is an upper gradient for f if, for all z1, z2 ∈ Z
and rectifiable curves c : [0, l] → Z (parametrized by arclength) from z1 to z2,

|f(z1) − f(z2)| ≤
∫ l

0

g(c(s)) ds.

Clearly, the Lipschitz norm is an upper gradient. If f ∈ Lp has a (generalized)
upper gradient g ∈ Lp, then f ∈ H1,p. Section 2 then develops the basic theory;
e.g., §2.10 shows the existence of a minimal generalized upper gradient gf . f ∈ H1,p

is then p-harmonic if it minimizes the Lp norm for its gf ; it is asymptotically
p-harmonic at z if this is true on average over balls of radius r → 0 about z. In
§3.5, f is defined to be asymptotically generalized linear (or “agl”) with respect
to gf at z ∈ Z if f is asymptotically p-harmonic at z and z is a Lebesgue point
of gp

f . Since linear functions on Rn are p-harmonic (any p), it follows easily that
f ∈ C1(Rn) is agl everywhere. Theorem 3.7 then states: If Z, µ satisfies the Vitali
covering theorem and f is Lipschitz, then f is agl µ-a.e. This generalizes half of
Rademacher’s theorem; it remains to get some uniqueness of the agl structure on
different scales (this is done in later sections).

Many of the results from Section 4 on assume that µ is doubling (which implies
the Vitali covering theorem) and that Z, µ has certain Poincaré inequalities. For
simplicity, we assume this for the remainder of this review; unfortunately, this
means that some things will be oversimplified below.

In Section 4, the author obtains a uniqueness result for his generalized Rade-
macher theorems (4.38). This has strong consequences, including existence and
uniqueness of strong derivatives (4.47), reflexivity of the H1,p spaces (4.48), and
the construction of a finite-dimensional generalized cotangent bundle for Z; this
basic structure plays a key role in Sections 5 and 6. Those sections characterize
the minimal upper gradient gf (in terms of a local Lipschitz constant; §6.1). In
Section 7, the author studies p-harmonic functions, proving a maximum principle
and solving the Dirichlet problem in this general setting.

Fix 1 < p < ∞ and Z, µ (with the doubling and Poincaré). A Lipschitz l is
generalized linear (“gl”) if (1) either l ≡ 0 or its range is (−∞,∞), (2) l is p-
harmonic, and (3) gl is constant. The author obtains a representation theorem for
these and a generalized splitting theorem (8.5 and 8.11) [cf. J. Cheeger and D. Gro-
moll, J. Differential Geometry 6 (1971/72), 119–128; MR0303460 (46 #2597)]. If
Z = Rn and µ = Hn, then l is linear by 8.11. Section 9 shows that the doubling
and Poincaré persist under suitable limits [cf. K. Fukaya, op. cit.; MR0874035
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(88d:58125); J. Cheeger and T. H. Colding, op. cit.; MR1320384 (96f:53047)].
Section 10 strengthens the uniqueness statement and completes the proof of the
generalized Rademacher theorem (in 10.2); this uses much of the theory developed
in earlier sections. Section 11 focuses on small-scale and infinitesimal regularity of
Z, µ and, in particular, obtains almost everywhere “regularity” for some tangent
cones (11.7). Section 12 investigates the structure of the generalized cotangent
bundle of Z, µ (and the natural norm on it), and Section 13 continues this, bringing
in Hausdorff measures (one consequence relates the tangent cones to the tangent
space, i.e., the dual space of the cotangent bundle; see 13.4).

Section 14 asks when Z, µ admits a bi-Lipschitz imbedding into RN , and the
main result (14.3) gives a necessary condition (roughly, almost everywhere, tangent
cones must be bi-Lipschitz to a Euclidean space of dimension determined by 4.38).
This implies that Carnot-Carathéodory spaces, Laakso spaces, and boundaries of
two-dimensional hyperbolic buildings all do not admit bi-Lipschitz imbeddings into
RN . The first two of these were previously known, the first due independently to
Assouad and Semmes (relying on P. Pansu’s differentiability theorem), the second
due to T. Laakso. It is clear that this approach will yield more answers.

Z, µ satisfies an (ε, δ)-inequality (15.4) if there exists C = Cε,δ so that given
z1, z2 ∈ Z there exist z′1, z

′
2 with |zi − z′i| ≤ δ |z1 − z2| and

inf
c

∫
c

g(c(s)) ds ≤ C |z1 − z2|
∫

B(1+2δ)(1+ε)|z1−z2|(z1)

g dµ,

where c is a curve from z1 to z2 whose length is at most
(1 + ε) |z1 − z2|. Section 15 shows that a “thickly minimally connected” length
space has such inequalities. This very general class of spaces covers all the earlier
examples. These results are exploited in Section 16 to obtain some quantitative
analogs of the earlier results on a small (but definite) scale. These quantitative re-
sults have significant applications in the context of [J. Cheeger and T. H. Colding,
“On the structure of spaces with Ricci curvature bounded below. III”, Preprint;
per bibl.; J. Cheeger, T. H. Colding and W. P. Minicozzi, II, Geom. Funct. Anal.
5 (1995), no. 6, 948–954; MR1361516 (96j:53038)]. One consequence (of 16.32) is
then that on Rn agl functions converge to linear functions as r → 0.

(From MathSciNet, November 2006)
William P. Minicozzi, II

MR1930885 (2004k:53057) 53C24 (30C65 51F99 57M99)

Bonk, Mario; Kleiner, Bruce
Quasisymmetric parametrizations of two-dimensional metric spheres.
Invent. Math. 150 (2002), no. 1, 127–183.

This long and thoughtfully-written paper considers a “uniformization problem”
in the context of two-dimensional compact metric spaces. The classical uniformiza-
tion theorem implies (among other things) that a Riemann surface homeomorphic
to the 2-sphere S

2 is conformally equivalent to it. Since conformality cannot be
an issue in general metric spaces, the authors transfer the problem to a situation
to which the machinery of geometric metric space analysis (standard reference:
[J. Heinonen, Lectures on analysis on metric spaces, Springer, New York, 2001;
MR1800917 (2002c:30028)]) may be applied in a very natural way. In particular, a
reader will obtain as dividend an insight into the impact and methodology of this
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type of analysis. At the end of the introduction, the authors present a strategy for
the reader less familiar with these techniques to see the main directions, in partic-
ular the intricate arguments using the modulus of curve families; the modulus is
the key analytic weapon used here.

The object of study is a metric space (Z, d) which is assumed to be homeomorphic
to S

2. The problem is to determine necessary and sufficient (intrinsic) conditions
on (Z, d) so that there will exist a quasisymmetric homeomorphism f : Z → S

2;
recall that a homeomorphism f : X → Y between metric spaces X and Y is qua-
sisymmetric (qs) if there is an orientation-preserving homeomorphism η of (0,∞)
such that

dY (f(x1), f(x2))
dY (f(x1), f(x3))

≤ η

(
dX(x1, x2)
dX(x1, x3)

)

for every triple {xi} ∈ X.
The statement of the precise equivalent conditions is deferred to §11, since these

depend on technical notions introduced in the proof, and seem unwieldy to verify
in practice. However, the authors present simpler (but nearly equivalent) versions
which give sufficient conditions for Z to be qs equivalent to S

2.
If (Z, d) is qs equivalent to S

2, then it is immediate that Z itself must be linearly
locally connected (llc) and a metric doubling space; we call these the elementary
properties. However, these alone cannot be sufficient; for example one could impose
a metric dl on S

2 where dl = σl, with σ spherical distance and l �= 1. The most
appealing answer, presented as Theorem 1.1, is that Z must in addition be Ahlfors
Q-regular with Q = 2, so that the Hausdorff 2-measure of each B(x, r) is comparable
to r2. This also provides an affirmative answer to a question from [J. Heinonen
and S. Semmes, Conform. Geom. Dyn. 1 (1997), 1–12 (electronic); MR1452413
(99h:28012)].

The proof that, for example, Ahlfors 2-regularity, together with the elementary
conditions, is sufficient, requires construction of the desired qs map f . The starting
point is to mine elementary consequences of Z fulfilling these elementary proper-
ties. In particular, for each r > 0 the fact that Z is llc and doubling allows the
authors to embed a graph G into Z so that G shares properties analogous to those
of the standard tilings of the plane and the sphere into cells of sidelength com-
parable to r. The 1-skeleton of G may be used to provide a triangulation of Z,
and then the Andreev-Koebe-Thurston theorem automatically transfers this trian-
gulation to one on S

2, with an associated circle packing. Thus the first concrete
step toward obtaining f is the map which sends vertices of G to the centers of the
circle packing on S

2. The authors introduce finer “graph approximations” G to Z.
In order to obtain mappings which converge to the desired qs map f , the authors
move back and forth from G to Z, transferring these maps defined on the graph
approximations to maps from Z to S

2. To show that the process converges to a
qs map as r → 0, the modulus must be exploited. For Z, the modulus is always
available since Z is Q-Loewner (this works for any Q ≥ 1), but for G the modulus
is introduced and developed in §7. The 2-regularity of Z is needed in §9 to show
that the approximating maps Z → S

2 satisfy uniform modulus estimates. While
the details are intricate, they are presented well.

These results are decidedly two-dimensional; even in the introduction the authors
discuss counterexamples for n > 2, and note that qs, rather than bi-Lipschitz,
seems to be the appropriate category of maps to consider (an open question about
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bi-Lipschitz maps is posed at the end of the paper, which is connected to the
“Jacobian problem” for maps on S

2).
The orientation of this paper is similar to that of several others, in particular

[J. W. Cannon, Acta Math. 173 (1994), no. 2, 155–234; MR1301392 (95k:30046)].
Cannon’s focus is on a topological space Z (rather than a metric space), but his
reliance on a combinatorial version of the modulus is considered by the authors
to be “similar in spirit” to the analysis used here. Some questions concerning
the boundary ∂∞G of Gromov hyperbolic groups G are proposed, in particular
whether ∂∞G can be taken qs equivalent to spaces with simple analytic properties,
for example to spaces for which Poincaré inequalities hold. The authors also note
that Theorem 1.1 may be rephrased to provide a condition for a complete 2-regular
metric space to be qs equivalent to R

2. The paper concludes with an example of a
metric space of Hausdorff dimension greater than two which is qs-equivalent to S

2.

(From MathSciNet, November 2006)
D. Drasin
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