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Non-relativistic quantum mechanics is now about eighty years old and is one of
the most successful theories in physics. But it is conceptually difficult, and in early
times it was already clear that progress in quantum mechanics depends crucially
upon mathematics and also upon progress in very different fields of mathemat-
ics. It also happened several times and will continue to happen that problems in
quantum mechanics initiate some mathematics which then become a field of great
activity in pure or applied mathematics. Take for instance the spectral theory of
Schrödinger operators or the large number of activities in pure mathematics related
to “Quantum Chaos”.

Understanding the properties of matter is one of the central problems in quantum
mechanics, and therefore one usually has to investigate the quantum-mechanical
many-body problem.

The book under review, LSSY, written by leading experts in the field, deals with
a very interesting problem of many-body quantum mechanics, namely the Bose gas
and one striking related phenomenon, the Bose-Einstein condensation.

First a few remarks about bosons and fermions seem appropriate. Consider a
many-body non-relativistic Schrödinger operator describing a system of N inter-
acting d-dimensional particles.

(1) HN = −
N∑

i=1

µi∆i +
∑

1≤i<j≤N

v(xi, xj)

defined on L2(RdN ). Here xi denotes the position of the i-th particle and ∆i

is the associated Laplacian. The µi are usually related to the mass mi of the
i-th particle, (µi = �

2/2mi). The potential v(xi, xj) : R
2d �→ R describes the

interaction between pairs of particles. If one considers Coulombic systems, then
v(xi, xj) = αiαj |xi −xj |−1 where αi is the charge of the i-th particle; the system is
then neutral if

∑
αi = 0. If v is sufficiently well behaved, then HN is well defined

and bounded from below if viewed as a quadratic form. The form domain is implied
by the physics of the problem. The infimum of the spectrum is denoted by E0(N)
and depends of course on the chosen domain.

Roughly speaking, bosons and fermions can be described as follows: Assume
for simplicity that we have two kinds of particles and that a wave function
ψ(x1, . . . , xk, xk+1, . . . , xN ) describes the k bosons with positions x1, . . . , xk and
the remaining N − k fermions with positions xk+1, . . . , xN . Then ψ is symmetric
with respect to permutation of any of the first k coordinates and antisymmetric,
i.e., changes sign, if we interchange any two coordinates of the remaining particles.
There is no rule concerning interchange of coordinates of the first k particles and
the remaining ones.

If v is the Coulomb potential, then E0(N) ∼ −N for N → ∞ for usual matter
(nuclei and fermionic electrons). This has been shown in the celebrated papers by
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Dyson and Lenard [3] and Lieb and Thirring [5]. If the electrons would also be
bosons, E0(N) ∼ −N7/5, a deep result of Dyson [4] (upper bound) and Conlon,
Lieb, Yau [2].

Real matter consists of positively charged nuclei and negatively charged fermionic
electrons. The N7/5 behaviour fortunately does not occur in everyday life; otherwise
there would be a big collapse.

But there are particles or composite particles which are bosons. In particular
some atomic gases can be modeled by a Hamiltonian like (1), but with v(x) not
Coulombic. The particles are neutral atoms, and the corresponding system of N
interacting d-dimensional particles is modeled by the N -particle Hamiltonian

(2) HN = −µ
N∑

i=1

∆i +
∑

1≤i<j≤N

v(|xi − xj |)

on L2(ΛN ). Here Λ is a d-dimensional cube with side length L in which each
particle lives. The boundary conditions are then periodic or Neumann conditions
in ΛN . The potential is some non-negative function v(|x|) which decays sufficiently
fast and µ = �

2/2m where m is the mass of the atom.
In experiments the atoms are usually in a trap, and this is modeled by the

Hamiltonian

(3) Htrap
N =

N∑
i=1

(−∆i + V (|xi|)) +
∑

1≤i<j≤N

v(|xi − xj |)

on L2(RdN ). The confining potential V (|x|) tends to +∞ as |x| tends to ∞. For
certain problems one can replace the −∆j by (i∇j + A(xj))2 with A a vector
potential in order to describe rotating Bose gases and superfluidity.

Estimates related to these operators are investigated in detail in LSSY. This
book comes in time, since in the last few years there has been tremendous activity
in theoretical and mathematical physics related to these operators. This is not
surprising, since Bose-Einstein condensation was verified by impressive experiments
in the mid-nineties.

The starting point of LSSY are estimates of the bosonic groundstate energy
E0(N) of the Hamiltonian (2). Thereby the thermodynamic limit (recall that L is
the side length of the cube Λ),

e0(ρ) = lim
L→∞

E0(N, L)
N

, ρ = N/Ld fixed,

is the physically interesting one. For d = 3 and d = 2 upper and lower bounds to
e0(ρ) are obtained, and the differences between the three- and the two-dimensional
case are explained in detail. Here the scattering length a associated to the potential
v plays a crucial role.

One of the major goals of the book is to understand the Bose-Einstein conden-
sation, BEC. This phenomenon was predicted by Einstein even before quantum
mechanics in its present form existed. He extended Bose’s observations concerning
the statistics of photons to massive particles, i.e., cold dilute gases which he mod-
eled by non-interacting bosons. Then, roughly speaking, BEC means that the one
particle groundstate is macroscopically occupied. For interacting systems this does
not generalize directly, but there is an intriguing definition of BEC. Assume that a
bosonic system described by a Hamiltonian H(N) such as given in (2) or (3) has a
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normalized groundstate ψ0 with groundstate energy E0(N) so that

H(N)ψ0(x1, x2, . . . , xN ) = E0(N)ψ0(x1, x2, . . . , xN ).

Without loss we might assume ψ to be real valued. One defines BEC or says in
other words that there is condensation if the one particle density matrix γN (x, x′),1

γN (x, x′) = N

∫
R3(N−1)

ψ0(x, x2, . . . , xN )ψ0(x′, x2, . . . , xn)dx2 . . . dxN ,

viewed as an integral operator, has the property that its largest eigenvalue satisfies
λ(N) ≥ cN for some c > 0 as N tends to infinity. Of course

tr(γN (x, x)) =
∫

R3N

|ψ0|2dx1 . . . dxN = N.

The proof of BEC according to this definition has not been achieved yet for the ther-
modynamic limit. But for an important special case BEC was verified as explained
in LSSY.

It can be shown under specific assumptions for v that the Schrödinger equation
associated to Htrap

N tends as N → ∞ in a suitable sense to a non-linear effective
one-particle equation, the Gross-Pitaevskii equation. The corresponding functional
reads

E{Φ} =
∫

R3

(
|∇Φ|2 + V |Φ|2 + 4πa|Φ|4

)
dx,

∫
R3

|Φ|2dx = N,

where a is again the scattering length associated to v. This functional is closely
related to BEC and also to its definition via the largest eigenvalue of the density
matrix γN .

The last few paragraphs clearly show that LSSY concentrates on some questions
which are of great relevance in theoretical physics. Most of the results are rather
recent. In fact the book grew out of a course given in Oberwolfach in 2004 and is an
extended pedagogical version of 7 papers written by the authors since 1998. Just
a few words about the other topics considered in LSSY. There is a very interesting
chapter on bosonic one- and two-component dense Coulomb systems in which some
old conjectures from the sixties are resolved. There is also a chapter on condensation
for a lattice Bose gas which is described by a discrete model.

The authors take great pains to motivate and explain the different scalings and
the underlying physical principles. This is very helpful and absolutely necessary,
since they explain a field which is growing fast and where some conceptual questions
are still being discussed. It is also not easy to keep track of all the different scaling
limits: the thermodynamic limit, the low and the high density limits, the Thomas-
Fermi limit (which has nothing to do with the Thomas-Fermi theory for atoms),
and the Gross-Pitaevsky limit and some of these limits for different dimensions, i.e.,
d = 3, 2 and sometimes d = 1. But these complications are inevitable and make
LSSY so interesting, since the modeling and the mathematical physics happen
partly simultaneously.

There are also other activities related to this field, demonstrating that the the-
oretical questions related to BEC already have some mathematical spin-off. For
instance a version of the Gross-Pitaevskii equation describes rotating Bose gases
where vortices occur, perhaps similar to the superconducting systems described by

1 The factor N in the definitions is the usual convention.
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the Ginzburg-Landau equation. A recent book is entirely devoted to this subject
[1].

On the other hand there are the ideas and insights related to Bogoliubov’s work
dating back to 1947, which play a big motivating role in the field, but there are only
a few cases where these insights have been rigorously verified. Those are discussed
in LSSY; in addition some non-rigorous ideas are used to give many problems an
attractive basis in physics. See Appendix A and some discussions at the ends
of the chapters, where very interesting partly non-rigorous theoretical physics are
presented. This is also reflected by the references. About two thirds of the cited
papers are clearly papers in theoretical and experimental physics, and the rest are
mathematical physics.

The mathematics which is presented is very concrete hard analysis. For many
of the estimates some physical insight is crucial. This makes the reading not easy,
but this is inevitable.

LSSY addresses primarily mathematical physicists. The book could be the basis
of mathematical physics seminars. Furthermore one finds there many intriguing
mathematical problems of independent interest as well as mathematical techniques
which are either new or difficult to find in the literature. This will be of interest
for mathematical analysts. LSSY definitely will play an important role in research
related to this dynamic topic in mathematical physics.

References

[1] A. Aftalion. Vortices in Bose-Einstein Condensates. Birkhäuser, Boston, 2006. MR2228356
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