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1. INTRODUCTION

Stochastic analysis is a thriving area of mathematics initiated by Wiener’s in-
troduction in 1923 [28] of a probability measure on C[0, 0o) providing a trajectorial
description of the Brownian motion introduced in the 1900 thesis of Bachelier and
the celebrated paper of Einstein in 1905. We begin with a thumbnail sketch of the
history of these developments. The early development involved integration with
respect to Wiener measure and the analysis of Wiener functionals. The expansion
of functionals which are L? with respect to Wiener measure in terms of multiple
Wiener integrals was published by Wiener in 1938 [29]. Integration with respect to
Wiener measure and the characterization of measures absolutely continuous with
respect to Wiener measure were developed by Cameron and Martin in the 1940’s
[4]. Another important aspect was the determination of almost sure properties of
the trajectories such as nowhere-differentiability. During the 1940’s It6 [11], [12] de-
veloped his theory of stochastic integration with respect to the Wiener process and
celebrated chain rule. It6 also established the existence and uniqueness of solutions
to nonlinear stochastic differential equations (SDE) with Lipschitz coefficients and
established the relation between multiple Wiener integrals and iterated stochastic
integrals. Ito’s theory of stochastic integration and SDE together with the powerful
tools of martingale theory introduced by Doob were developed into a rich theory of
semimartingales and stochastic analysis based on them by Paul Andre Meyer and
the French school in the 1960’s and 1970’s. Around the mid-1970’s two major new
developments emerged: the theory of stochastic partial differential equations and
the Malliavin calculus. The relation between these two developments is the focus
of the book under review.

The study of infinite dimensional Wiener processes and stochastic partial dif-
ferential equations (SPDEs) began in the 1970’s and has developed into a mature
subject over the past 30 years. It continues to be a challenging and important
research area. SPDEs arise naturally as partial differential equations perturbed
by noise as well as in numerous applications including nonlinear filtering theory,
quantum field theory, population biology, wave propagation in random media, etc.

An important new tool of stochastic analysis, Malliavin calculus, was introduced
by Malliavin in the mid-1970’s; it overcame the difficulty of developing calculus over
C'[0, 00) and produced a number of remarkable results including a probabilistic proof
of Héormander’s theorem on hypoelliptic differential operators. The objective of this
book is to give an exposition of the application of Malliavin calculus to a class of
stochastic partial differential equations which was developed by the author and her
coworkers during the past few years (e.g. [21]).
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2. (GAUSSIAN NOISES AND MARTINGALE MEASURES

We begin by introducing the basic notions of Gaussian noises, It6-Wiener chaos
expansions and martingale measures.

Let H be a real separable Hilbert space and (W (h),h € H) be a random linear
functional on H defined on a probability space (2, G, ). {W(h)} is also assumed
to be a zero mean Gaussian system with covariance (hq, ho)p. Given a separable
Banach space B, injection from ¢ : H — B with dense image and a Gaussian
probability measure on B such that the above linear functionals have the stated
Gaussian distributions, the triple (¢, H, B) is called an abstract Wiener space.

For the present purposes we consider H = L?(A, A, m) where (4,.A,m) is a sep-
arable o-finite atomless measure space. The corresponding Gaussian linear func-
tional, W, is a white noise if W (F), W(G) are independent if F' NG = () where
F,G € A, m(F) < oo,m(G) < oo. In this case we can work with the canonical
probability space (€,G, i) where Q = R®N, G = BEN 1 = u® where y; is a
standard Gaussian measure on R! and B denotes the Borel o-algebra.

A basis for L?(Q,G, ) is obtained as follows. First let {e,} be a complete
orthonormal basis for H and g, the coordinate functions. Then

W(h) = Z(h,en>gn.

Next, let a = (a1, as9,...), a; € Z4, a; =0, a.a. i and
H, = \/aHHai(W(ei))
i=1

where H,(+) is the Hermite function

(_1)" 22 d" 22
" ez d:c”e_T'
Then (H,) is an orthonormal basis for L?(Q,G,u). Let H, denote the closed

subspace generated by (H,, |a] = n) and J, the orthogonal projection onto H,.

H,(z) =

Example 1. Wiener process.

The case A = R with Lebesgue measure A and W; = W(]0,t)), corresponds to
the standard Wiener process.

To obtain a representation of F' € L%(£,G, ) in this case in terms of multiple
Ito-Wiener integrals, we begin with

k
flte, . ty) = Z Ajyojn=114; xxa;, (B, tn)

J1sesdn
where the A;,,..., A;, are pairwise disjoint elements of A and the aj, . ;. = 0if
any pair of ji,...,j, coincide. Then

k
L(f)= D ajju=mtW(A;) . W(A;,).
J Jn

i1,eesd

For any function f on A™ I,(f) = I, (f) where f is the symmetrization of f and
I,, extends to a continuous linear functional on L?(A™) with values in L?(£2). Then
I,,(f) is also given by the iterated It6 integral

0 plp—1 ta
0 0 0
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We then have the Wiener chaos decomposition
F=E(F)+) I(f)
n=1

with f, € L2(A™) symmetric and uniquely determined by F.
The fact that W, and stochastic integrals with respect to W, are continuous
martingales plays a central role in It6’s theory.

Example 2. Spatially homogeneous Gaussian noise

In the formulation of SPDE in R? it is natural to consider noises on A = R, x R¢
whose law is invariant under spatial translation but not necessarily white in space.
To make this precise let I' be a non-negative definite tempered measure and define
the covariance functional

Hew) = [ s [ T@nes) <))

where ¢, ¥ € S(R?), 12(5, x) = (s, —z) and * denotes convolution. In the spectral
domain there then exists a non-negative tempered measure ; on R? such that

Ty = [ as [ waeFes)©FIHE
where F denotes the Fourier transform
f¢(§)=/ e 2 o(z)da.
R4

Consider the pre-Hilbert space with inner product

(p.vle = [ Tdn)(e0) )
and let H denote the completion of £. Then we set
Hy = L*([0, T]; H).

If T'(dx) = const - dp(dx), then the resulting Gaussian noise is space-time white
noise. Otherwise, it is said to be coloured noise.

For any t > 0 and A € By(R?) let M;(A) = W([0,t] x A) and G; the o-field
generated by M(A), 0 < s <t A€ By(RY). Then (M;(A), t >0, A€ By(R%))
is a martingale measure as introduced by Walsh (cf. [26]). Walsh also developed
stochastic integration with respect to martingale measures that is used to provide
a precise formulation of the SPDE considered in the book under review.

3. MALLIAVIN CALCULUS

A major development in stochastic analysis was initiated by Malliavin in a series
of papers around 1976 (see [17] and [I8] for a systematic exposition of the theory). A
number of alternate approaches and extensions were developed during the following
decade due to Kusuoka and Stroock [I4], [15], Bismut [3] [16], Watanabe [27] and
others. Several other books on the subject have appeared, including [22] and [2].

We briefly sketch the elements of Malliavin calculus along the lines developed in
the book under review. Let S be the class of random variables of the form

F=f(W(hi),...,W(ha))
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where f € C°°(R") with polynomial growth and h; € H. § is dense in L?(Q, G, p).
Let D*P be the completion of S with respect to the norm || - ||, defined by
k
1Elkp = (T = L)2 Flp.

Here || - ||, denotes the LP norm and L is the infinitesimal generator of the Ornstein-
Uhlenbeck semigroup P,F =Y 02 e "], (F), that is,

LF =Y (-n)Ju(F).

Let
D> := Np>1 Nk>0 DkP.
Given F' € S the Malliavin derivative is defined by

n
DF = Zaif(w(fh), ooy W(hp))hi
i=1
The adjoint of D is the Skorohod integral §(-) with domain Dom(§) given by the
set of u € L%(Q; H) such that for any F € D2
|[EADF,u)m)| < c|Fll2.
For u in the domain, §(u) is characterized through the integration by parts formula
E(Fé(u)) = E(DF,u)g)V F € D2,

For adapted processes, the Skorohod integral coincides with the It6 integral. If
u € L2(Q x A) has Wiener chaos decomposition

u(t) = Z In(fa(:,1))
n=0

where f, € L?*(A"*!) is a symmetric function in the first n variables, then u €
Dom(9) if and only if

Z InJrl(fn)
n=0

converges in L%(Q). For u € Dom(6),
S(u) =Y In1(fn)
n=0

where fn denotes the symmetrization of f,, in its n 4 1 variables.
In the case H = L*([0,71],B([0,T]),\), DF is a function of ¢, and we can repre-
sent it by

DF = annfl(fn("t))'

One of the key results of Malliavin calculus is the following representation of
Wiener functionals, F' € D12, due to Clark [6] and Ocone [23] (and generalized to
It6 processes by Haussmann):

T
F = B(F) +/ E(D,F|F,)dw,
0

where E(-|F;) denotes conditional expectation and F; is the canonical filtration.
The Clark-Ocone formula has applications in mathematical finance, in particular,
to obtain replicating hedging strategies for options (see [22]).
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A central result of Malliavin calculus provides criteria for the existence of a
density for the law of a functional on Gaussian spaces as well as for the regularity of
the density. Malliavin’s original work [I7] used this criteria to give a probabilistic
proof of Hormander’s theorem on the hypoellipticity of second order differential
operators. This criterion, which is also essential for the analysis of the above class
of SPDE, is based on the Malliavin matrix, which is defined as follows.

Given F : Q — R", with F7 € DY2, the Malliavin matriz is given by

v=(7)ij = (DF',DF)y.
The result is the following.

Theorem 3. Let F : Q — R™ with F7 € D>,

(a) If F7 € D*>* and v is invertible a.s., then the law of F has a density with
respect to Lebesgue measure.

(b) If det v~ € Npep1,00) LP (), then the density in (a) is infinitely differentiable.

4. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

As in the case of PDE the structural properties of an SPDE depend on the type
of differential operator (parabolic, hyperbolic or elliptic) as well as on the nature
of the noise (white Gaussian noise, coloured Gaussian noise, Lévy noise, etc.). The
study of different classes of SPDE has been developing over the past 30 years (see
e.g. [8], [20], [26]). An overview of results on some of these different classes is given
in Carmona and Rozovskii [5].

The class of SPDE under consideration in the book under review has the form

(1) Lu(t,z) = o(u(t,z))W(t,x) + b(u(t,z))
where L is a differential operator of the form
L1 = 8t - Ad, or L2 = 8t2t - Ad

where A, is the d-dimensional Laplacian and W is the space-time white noise or
spatially homogeneous coloured noise process.

A precise formulation of ([I}) in terms of the corresponding martingale measure
M (dt,dx) is given by

u(t,:c):/o g A(t—s,m—y)o(u(s,x))M(ds,dy)—l—/o y b(u(t—s,z—y))A(s, dy)

where A(t,dx) is the fundamental solution for Lu = 0.

The stochastic heat equation, that is, L = Ly, driven by space-time white noise
has function-valued solutions in one dimension but in higher dimensions has solu-
tions only as random (Schwartz) distributions, and there is a fundamental problem
in formulating nonlinear equations in these dimensions. Some natural nonlinear
SPDE have solutions that are singular random measures (cf. [9]). Some nonlinear
equations can be reformulated in terms of generalized functionals such as Wick
powers on ) extending L?(Q) based on Wiener chaos expansions (see e.g. [13],
[10)).

The approach followed in this book is to restrict consideration to coloured noises
with associated spectral measure p such that function-valued solutions exist and to
analyse these using Ito-Wiener expansions and Malliavin calculus.
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5. APPLICATION OF MALLIAVIN CALCULUS TO SPDE

The last part of the book under review is devoted to the regularity properties
of solutions of nonlinear stochastic wave and heat equations driven by coloured
noises using the tools of Malliavin calculus. Another approach to the study of
these equations is developed in the work of Peszat and Zabczyk [24]. Bally and
Pardoux [I] also obtained regularity results using Malliavin calculus for a nonlinear
stochastic heat equation in one dimension driven by space-time noise.

The main results of the last three chapters establish the existence of densities
for the laws of solutions to the SPDE as well as the regularity of the densities. A
typical result is the following.

Theorem 4. Assume that L = L1, (t,x) is a fized point in (0,T] x R? and

(a) the coefficients o,b are C* functions with bounded derivatives of any order
greater than or equal to one,

(b) there exists o9 > 0 such that

inf{|o(2)],z € R} > oy,

(c) there exists n € (0, %) such that the spectral measure p satisfies

3
p(dg)
— e <0
/Rd (L+1¢[2)
Then the law of the solution of (), u(t,z), has an infinitely differentiable density
with respect to Lebesque measure on R.

A similar result for the stochastic wave equation, L = Lo, is stated and proved in
dimensions d = 1,2. The key technical ingredient in the proof is the verification of
Malliavin’s criterion for the associated Malliavin matrices. Intuitively, the condition
(¢) on the spectral measure p is imposed to control the high spatial frequency
behavior of the coloured noise.

The theory of the wave equation in d = 3 is technically more challenging because
in this case the fundamental solution is no longer a function but is a (nonnegative)
Schwartz distribution. An extension of Walsh’s stochastic integration with respect
to martingale measures to cover this case and the solution of the nonlinear wave
equation in dimension 3 was developed by Dalang [7]. Using Dalang’s results, we
also obtain an analogue of Theorem [l

A natural question is the extension of the above results to the joint law of
(u(t,z1),...,u(t,z,)) where z1,...,x, are distinct points. Some partial results are
presented in the last section of Chapter 8, but the completion of this program is
left as an open problem.

6. STRUCTURE OF THE BOOK

The book by Sanz provides an introduction to the essentials of Malliavin calculus
and to stochastic partial differential equations driven by coloured noise. The main
objective of the book is to bring the reader up-to-date on recent developments due
to the author and coworkers on the application of Malliavin calculus to establish the
Malliavin regularity of solutions to a class of SPDE. The book begins with the finite
dimensional Malliavin calculus which introduces some basic concepts such as the
Ornstein-Uhlenbeck operator in a simple setting. The basic elements of Malliavin
calculus are then developed in Chapters 3-5. Stochastic partial differential equations
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driven by spatially homogeneous Gaussian noises are introduced in Chapter 6 and
then an in-depth analysis of the Malliavin regularity and analysis of the Malliavin
matrix of solutions is given in Chapters 7 and 8.

In spite of the specialized nature of the subject, the book is remarkably readable
and fully succeeds in achieving these objectives. The book is highly recommended
for readers interested in Malliavin calculus, SPDE, or both. For readers interested
in other applications of Malliavin calculus such as those in mathematical finance,
it would be necessary to supplement this with other books such as [19], [22].
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