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Self-similarity, or fractalness, is an important phenomenon in nature that is
reflected in many aspects of modern civilization. It appears in physics, chemistry,
biology, the medical sciences, computer science, as well as in art. Self-similarity
appears in various topics of mathematics and mathematical modeling, involving
dynamical systems and chaos, random processes and statistical physics, topology
and fractal geometry. It deals with systems covered by patterns, or tiles, which
appear indefinitely in different scales of magnitude. The use of self-similarity in
mathematics is mostly based on the re-scaling or renormalization principle and
is formulated in terms of the renorm group. The idea of scale invariance is old
in mathematics and physics. Scaling arguments were known to the Pythagorean
school, Euclid and Galileo. The renormalization (or shortly renorm) group has
made its appearance in different places and refers to a set of techniques and concepts
related to the change of a physical or mathematical model depending on the change
of the observation scale.

The renorm group in the classical case is a cyclic group or a continuous one-
parameter group (isomorphic to the additive group of reals), such as the group
generated by the adding machine (or odometer) or a group of specific transforma-
tions of a partial solution of a mathematical/physical problem. Indeed, in practice
it is a semigroup (cyclic or one-parametric), as very often the transformations do
not have an inverse [Wik06, Shi00].

However, in more modern times, new self-similar structures have been discovered
having non-commuting renorm group transformations, with complicated algebraic
properties, reflecting the properties of the model itself. This transition from cyclic
renormalization to non-commutative renormalization can be compared to the tran-
sition from classical geometry to non-commutative geometry [Con94].

Non-commutative geometry uses the methods and techniques of operator al-
gebras. Recent developments show that non-cyclic renormalization also involves
consideration of C∗-algebras.

The class of groups that lies behind non-cyclic renormalization is that of self-
similar groups (self-similar semigroups arise naturally as well). This is a new,
quickly developing area of modern group theory related to many topics in geomet-
ric group theory, asymptotic group theory, and Galois theory and is also closely
related to the theory of automaton groups or groups generated by finite automata.
Automata here are understood in the sense of finite input-output Turing machines
or Mealy automata and not in the sense of recognition automata, as in the auto-
matic groups [ECH92].
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There are many ways to define self-similar groups. One way is, as was just men-
tioned, to define them as groups generated by Mealy type automata. This makes
self-similar groups suitable for needs of computer science. Another way to define
them is via actions on the space of sequences over a finite alphabet, which brings
them close to various topics in dynamical systems. It is well known that rooted
trees and dynamics on rooted trees in the form of adding machines (or odometers)
appear in various situations in dynamical systems and chaos. See, for instance,
the books [BOERT96] and [Bue97], which describe this situation comprehensively.
However, the variety of examples of such links and relations is much broader.

Let us give a hint as to the notion of a self-similar group. In general terms, if a
group G acts on a self-similar set Y and Z is a subset similar to Y , then it is required
that the stabilizer of Z in G induces on Z a group isomorphic (or geometrically
similar) to G. A rigorous definition will be given later, but now let us explain the
role of self-similar groups and self-similar actions in group theory. This requires a
few words about actions on rooted trees, as they play a fundamental role in the
theory.

A rooted d-regular tree Td is perhaps the most self-similar object, since, for every
vertex u, the rooted subtree of Td with root at u is canonically isomorphic to Td.
Note that the rooted d-regular tree Td is a subtree of the homogeneous (d + 1)-tree
in the well-known Bass-Serre-Tits theory. An important difference is that in Bass-
Serre-Tits theory a common assumption is the smallness (in various senses) of the
stabilizers of vertices (see [Ser80]), while in the case of actions on rooted trees the
whole group stabilizes the root vertex.

The theory of groups acting on rooted trees is closely related to the theory of
iterated wreath products initiated by L. Kaloujnin and P. Hall. At the same time,
this is a geometric version of the theory of residually finite p-groups when d = p
is a prime number. The nicest class of actions on rooted trees is the class of self-
similar actions, which often provide wonderful examples of groups. For instance,
some of the basic examples in the field include: the first examples of groups of
intermediate growth; Gupta-Sidki examples of finitely generated torsion p-groups;
P. Neumann examples of groups with unusual structure of the lattice of subnormal
subgroups; J.S. Wilson examples of groups of exponential but not uniformly expo-
nential growth; Šunić examples of Hanoi groups H(k), related to the Hanoi Tow-
ers game; and Nekrashevych examples of iterated monodromy groups, including
the Basilica and Sierpinski groups. Even well known groups, such as free abelian
groups, non-commutative free groups, the lamplighter group, and many others,
when realized as self-similar groups bring new vision to some classical results (like
the theory of numeration systems and tilings) and sometimes provide a solution to
known problems (as in the case of the lamplighter group and the Atiyah Problem
on L2-Betti numbers).

Each of the above examples represents a famous problem or a direction in math-
ematics. Gupta-Sidki p-groups and other related examples represent an elegant
(and perhaps the shortest) approach to the solution of the General Burnside prob-
lem; groups of intermediate growth solved a question of J. Milnor and opened a
new direction in the study of asymptotic properties of groups and manifolds; these
groups as well as the Basilica group and many other examples of self-similar groups
prove successful in the study of amenable groups, answering a question of M. Day
and related problems; Hanoi Groups shed new light on the classical Hanoi Towers
Problem involving more than three pegs; and this list goes on and on.
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Self-similar groups find applications in Galois Theory (for instance when one
considers towers of field extensions attached to the roots of polynomials that are
iterations of a single polynomial). Another set of examples of applications comes
from holomorphic dynamics and the theory of covering manifolds, where self-similar
groups and some associated geometric objects such as Schreier graphs and limit
spaces are related to Julia sets.

It was clearly time to have a book that describes these and other topics involving
self-similar groups. The only previous book that touched a bit on this field is that
of P. de la Harpe [dlH00], but only one chapter is devoted to the present topic. In
reality, the book of Volodymyr Nekrashevych is the first monograph on the subject
of self-similar groups and their applications. It is mostly based on original results
of the author, who has made fundamental contributions to the area.

The book starts with a preliminary chapter that contains the basic definitions
and examples and also gives a quick overview of the subject. Here the basic no-
tions and tools of the theory appear: rooted trees and actions on rooted trees,
finite automata and Moore diagrams, wreath actions and branch groups, adding
machines and bi-reversible automata, and the main definition of self-similar actions
and self-similar groups. Many examples, including the cyclic groups realized by the
adding machine, examples of torsion groups of intermediate growth, the groups of
exponential but non-uniformly exponential growth, and sophisticated realizations
of free groups and some free products by means of bi-reversible automata, are also
presented.

An object that perhaps best of all reflects self-similarity (as was already men-
tioned) is the d-regular rooted tree T = Td, for d ≥ 2. For any vertex u the subtree
Tu rooted at u is isomorphic to the whole tree. The tree T2 is a tree-like model
of the classical middle third Cantor set C. Let X = {x1, . . . , xd} be an alphabet
consisting of d letters, and let X∗ be the set of words over X (which can also be
viewed as a free monoid on d generators). The vertices of Td correspond bijectively
to the elements of X∗, and the boundary ∂Td of the tree consisting of geodesic rays
joining the root vertex with infinity is then in a natural bijection with the space
Xω of infinite sequences of symbols from the alphabet X. We see that any of the
sets T , X∗, C or Xω is a natural candidate for a set on which self-similar actions
can be defined. There is no difference no matter which one is used in the definition
that follows.

Definition. A faithful action of a group G on Xω is said to be self-similar if for
every g ∈ G and x ∈ X there exist h ∈ G and y ∈ X such that

g(xw) = yh(w),

for all w ∈ Xω.

A group is called self-similar if it is represented by a self-similar action. Such a
representation is not unique and is not always possible (among the restrictions is
the solvability of the word problem and residual finiteness).

A crucial feature of self-similar automaton groups is that they are groups gener-
ated by the states of one (non-initial) automaton. The case when the automaton
is finite is of special interest, as the most interesting self-similar groups are usually
groups generated by finite automata. A classification of such groups can be based
on a classification of finite automata. For instance, following S. Sidki, one can define
the notion of growth of a finite automaton (which can be bounded, polynomial or
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exponential) and study the corresponding classes of groups. There is an alternative
approach to the growth of finite automata having roots in Milnor’s notion of growth
in finitely generated groups, which leads to examples of automata (and groups) of
intermediate growth that were already mentioned.

One of the main problems related to self-similar groups is to determine which
groups can have faithful self-similar actions and to find suitable self-similar realiza-
tions.

There are other important notions that play a crucial role in the theory of self-
similar groups. Among them let us list spherical transitivity (or level transitivity) of
the action, recurrence (not in the probabilistic sense; self-replication would perhaps
be a better term), boundedness, branching, and contraction. We refer the reader
to the book for these notions, but give some hints regarding them.

Level transitivity means transitivity of the action on all levels of the tree. It
is equivalent to ergodicity of the induced action on the boundary ∂T of the tree
supplied with the uniform Bernoulli measure. Being recurrent (“self-replicating”)
means that for any vertex u of the tree the restriction of the action of the stabilizer
of u in G onto the subtree Tu is equal to the whole group, as long as we identify the
tree Tu with the whole tree T by the natural identification (in general, the stabilizer
of u in the case of a self-similar action is just a subgroup of G). Boundedness is
a condition on the number of non-trivial actions on the subtrees growing from the
vertices on a given level. Branch (or more generally weakly branch) groups are
groups acting faithfully and level-transitively on a spherically homogeneous rooted
tree in such a way that the structure of the lattice of subnormal subgroups mimics
the structure of the tree. This is a very rough hint to the actual definition (for more
details see [BGŠ03]). Finally, a group G is contracting if it is finitely generated and
its projections gu have strictly smaller length (with respect to the chosen system of
generators) for all sufficiently long g ∈ G.

We have spent some time outlining the basic notions concerning self-similar
groups, and now we are ready to review some of the most important topics presented
in the book.

The first chapter contains the basic definitions and examples including the
multidimensional adding machines, a torsion 2-group of intermediate growth (which
we denote here by G), Gupta-Sidki p-groups, groups of P. Neumann type, and groups
of J.S. Wilson type, which have exponential but not uniformly exponential growth.
Also such well known examples in group theory as the wreath product of the infi-
nite cyclic group and the group of order two (the lamplighter group), free groups
and free products of groups of order 2, realized as self-similar groups, appear in
Chapter 1. Besides that, important classes of automata such as bounded automata
and bi-reversible automata are considered here and are used in the construction of
the corresponding groups. The variety of examples gives the reader an impression
of the richness of the theory of self-similar groups and provides a quick entrance
into the subject.

In the second chapter the basics of the algebraic theory of self-similar groups are
explored. The chapter starts with the definition of a permutational bimodule and
association of such a bimodule to a self-similar action. This notion was introduced
by the author and happens to be quite successful, as it allows one to describe in
categorical language many of the notions and ideas involving self-similar groups.
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In particular, it is useful in the study of limit spaces, representations, orbifolds,
C∗-algebras and many other objects associated to self-similar groups.

The author also considers tensor products of bimodules and uses them to study
the tensor powers of self-similar actions. Tensor products play an essential role in
many places in the book.

The next important objects of study in the book are the virtual endomorphisms
of self-similar groups and related objects (such as associated covering bimodules).
Virtual endomorphisms already appeared in M. Shub’s thesis of 1969. This notion
is related to the abstract commensurator of a group (which is a group of virtual
automorphisms). For many self-similar groups it is an extremely interesting object.
For instance, as was observed by C. Roever in the case of the torsion 2-group of
intermediate growth G, it is a finitely presented simple group S, generated by G
and another subgroup of S, which is isomorphic to the very famous R. Thompson
group F defined earlier in logic in the study of associativity logic.

Chapter 2 contains a complete description of level-transitive self-similar actions
of free abelian groups of finite rank, which is based on joint results of the author
with S. Sidki. It is shown that all such actions can be interpreted as “A-adic”
groups, i.e., as generalizations of the adding machine.

An important notion that appears in Section 2.10 is the rigidity of self-similar
actions and its variations based on a joint work with Y. Lavrenyuk. The rigidity is
applied to show uniqueness of the action of groups of branch type (under certain
conditions).

The chapter ends with two sections devoted to the study of contracting self-
similar actions and related notions. Contracting actions and contracting self-similar
groups comprise the most studied subclass of self-similar groups and have many
applications within group theory and in other areas of mathematics. The rate of
contraction is characterized by the contraction coefficient (which for contracting
groups is less than 1). Self-similar finite-state actions of abelian groups are con-
tracting. The first implication of the contraction property is the solvability of the
word problem by a very efficient algorithm of branch type. Another consequence
is polynomial growth degree of the orbits of the action of the group on the bound-
ary of the tree or, equivalently, polynomial growth of the corresponding Schreier
graphs. Let us stop for a moment on the notion of Schreier graphs, as they play a
crucial role in many considerations.

The Schreier graph of an action on a set Ω of a group G generated by a finite
symmetric system of generators S is the graph Γ with the set of vertices V (Γ) = Ω
and the set of edges E(Γ) = {(x, sx) : x ∈ Ω, s ∈ S}. In the case of a transitive
action this graph is naturally isomorphic to the graph ˜Γ = Γ(G, H, S), where H is
the stabilizer of a point of Ω, V (˜Γ) = {gH, g ∈ G} is the set of cosets and E(˜Γ) =
{(gH, sgH) : g ∈ G, s ∈ S}. Schreier graphs are generalizations of Cayley graphs
(which correspond to a free transitive action on Ω, i.e., to H being trivial). Schreier
graphs did not play a large role in mathematics until recently. The development of
the theory of self-similar groups showed the extreme importance of this notion in
various topics, and the book of V. Nekrashevych perfectly demonstrates this.

We will return to Schreier graphs later in this review, but let us first move on
to Chapter 3 and Chapter 5, which can be considered as the main chapters of the
book. In Chapter 3 the author shows how a topological dynamical system called the
limit dynamical system can be associated to every contracting self-similar action.
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This construction is a bridge between self-similar groups and self-similar topolog-
ical spaces. The converse construction, called the iterated monodromy group, is
described and studied in Chapter 5.

Having a group G acting self-similarly on a rooted tree, one can draw the Schreier
graphs Γn for n = 1, 2, . . . of the action of G at the n-th level. What often happens
is that the sequences of these graphs converge in a natural sense to some limit
object which usually looks like a fractal set. In such a way one can get examples
of the Sierpiński gasket, the Apolonnian gasket and many other complicated pic-
tures. This is a heuristic hint to Nekrashevych’s notion of the limit space JG of
a contracting self-similar action. The rigorous definition consists of factorization
of the space X−ω of left infinite sequences of letters over the alphabet X by the
equivalence relation ∼ that can be described in terms of the Moore diagram of the
corresponding automaton. The limit space JG is metrizable and has finite topo-
logical dimension. It has an orbispace structure that comes from a presentation of
JG as a space of orbits of a proper action of G on the limit G-space XG, which is
defined as well. The equivalence relation used in the definition of the limit space
is invariant under the shift . . . x2x1 �→ . . . x3x2 on the space X−ω. Hence the shift
defines a continuous map s : JG −→ JG, and the dynamical system (JG, s) is called
the limit dynamical system of the self-similar action. The theory of the limit spaces
becomes even richer by providing them with the structure of an orbispace and re-
alizing them as boundaries of a Gromov-hyperbolic “self-similarity graph”. Other
important limit objects, namely limit solenoids and inverse limits of self-coverings,
appear later in Chapter 5.

One of the origins of limit spaces is the connection between self-similar groups
and numeration systems on Z

n and on R
n. This allows interpretation of some of

the classical results on numeration systems and the related digital tilings of R
n,

such as the “twin dragon”, in terms of self-similar groups. In the non-commutative
case the tiles related to the limit space of self-similar groups usually have a com-
plicated fractal nature. In many cases though they have nice properties, such as
connectedness and representability by subdivision rules. A rich source of examples
of groups, limit spaces and tiles comes from the class of bounded automata.

Chapter 4 is concerned with orbispaces and also presents the main definitions
and properties of pseudogroups of local homeomorphisms and étale groupoids. Here
the author explores well known material, but from the point of view that is suitable
for use in the study of self-similar actions.

Chapter 5 contains the most conceptual notion of an iterated monodromy group.
Having a d-fold covering f : M1 −→ M of a “good” topological space M by its
open subset M1, one can take a point t ∈ M and construct a d-regular rooted tree
T with a root at t and n-th level Ln consisting of the pre-images f−n(t) of t with
incidence relation determined by the rule that each vertex u ∈ f−n(t) is connected
by an edge to f(u) ∈ f−(n−1)(t). The fundamental group π1(M, t) acts naturally
on each of the levels Ln by the classical monodromy action. All these actions viewed
together determine an action of π1(M, t) on T by automorphisms, and the iterated
monodromy group IMG(f) is the quotient of π1(M, t) by the kernel of this action.
It is surprising that this natural definition appeared just a few years ago in the
papers of the author of the book and not in the articles at the end of the 19th
century (for instance in the works of Riemann or Poincaré). It is also remarkable
that the iterated monodromy group has a natural self-similarity structure. Thus,
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the whole machinery developed in the book for the study of self-similar actions on
rooted trees can be used for the study of dynamical systems related to covering
maps. First of all, this has a very strong connection to holomorphic dynamics and
its main objects of study, such as Julia sets. Here the solenoids, leaves, and tiles
start to play their role, and the Julia set is homeomorphic to the limit space of the
corresponding iterated monodromy group.

Already the simplest maps considered in holomorphic dynamics such as the maps
of the complex plane given by the quadratic polynomials z2 − 1, z2 + i, etc., show
that the corresponding iterated monodromy groups can be extremely complicated
but also amenable to study by using methods already known to researchers dealing
with group actions on rooted trees.

Iterated monodromy groups may be torsion free, may have exponential, poly-
nomial or intermediate growth, may be “classical” groups, such as Z, or may be
of branch type. It is an interesting phenomenon that many of them are amenable
in the von Neumann sense (i.e., have an invariant mean), but are not elementary
amenable in M. Day’s sense. Thus iterated monodromy groups provide a large
number of extremely interesting groups (with associated objects and notions some-
times having sophisticated names, such as the Basilica group, Hanoi Towers group,
Bellaterra automaton, Münchhausen trick, etc.).

The power of the iterated monodromy group machinery is confirmed by the
fact that some difficult questions (such as Hubbard’s “twisted rabbit problem”,
solved by L. Bartholdi and V. Nekrashevych) were solved by their use. The last
chapter of the book contains a summary of examples and applications of iterated
monodromy groups to dynamics of post-critically finite polynomials and rational
functions. It contains interesting discussions and links to combinatorial equivalences
of self-coverings of the Riemann sphere and the corresponding Thurston’s theorem.
Kneading invariants of dynamical systems are generalized by V. Nekrashevych to
kneading automata. Belyi polynomials naturally appear among the examples.

Self-similar groups appeared for the first time as a class about 25 years ago
and were studied in the works of this reviewer, as well as by N. Gupta, S. Sidki,
P. Neumann, A. Machi, V. Sushchansky, J.S. Wilson, P. de la Harpe, L. Bartholdi
and other mathematicians. The field passed the first stage of its development
remarkably both in its ability to answer various questions in group theory and by
its wider applications. In addition to applications that were already mentioned,
let us mention that the E. Zelmanov problem on groups of finite width and the
J. Rosenblatt problem on superamenable groups were also solved by using self-
similar groups. The interest in this class of groups is growing not only among
the specialists in group theory but also specialists in dynamical systems, operator
algebras, random walks, geometry (especially fractal geometry), computer science,
Galois theory, etc. The recent conferences in Oberwolfach (on Galois theory),
in Palo Alto (on self-similar groups) and in Berkeley (on P vs. NP), and the
initiation of a new journal Groups, Geometry and Dynamics (with the European
Mathematical Society as the publisher) in which the area of self-similar groups will
be among those dominating, confirm the growing interest in self-similar groups.

The book is well written, excellently structured, and can be easily read by
beginners. I recommend this wonderful book to readers without hesitation.
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