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MR0086071 (19,119a) 18.0X

Serre, Jean-Pierre
Sur la dimension homologique des anneaux et des modules noethériens.
(French)
Proceedings of the international symposium on algebraic number theory, Tokyo &
Nikko, 1955, pp. 175–189. Science Council of Japan, Tokyo, 1956.

The author gives an exposition of the results of M. Auslander and the reviewer
[Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 36–38; MR0075190 (17,705b)] and
completes these results, notably by giving a homological characterization of regular
local rings.

All the rings A considered in the paper are commutative noetherian rings with
identity element, and all A-modules E are assumed finitely generated and unitary.
If A is a local ring with unique maximal ideal m, and E is an A-module, a sequence
of elements a1, · · · , aq in m is called an E-sequence if for each i = 1, · · · , q, ai is
not a zero divisor for E/(a1, · · · , ai−1)E. It is shown that every E-sequence can be
extended to a maximal E-sequence, and if a1, · · · , aq is an E-sequence, then

dhA(E/(a1, · · · , aq)E) = dhAE + q,

where dhA(E) is the projective (or homological) dimension of E over A [H. Cartan
and S. Eilenberg, Homological algebra, Princeton, 1956; MR0077480 (17,1040e);
here dhAE is written dimA E]. Moreover, if the global dimension of A is s < ∞,
then every maximal E-sequence has length equal to s−dhA E; and if A is a regular
local ring of dimension n, then the global dimension of A is equal to n.

If A is an arbitrary local ring, and E an A-module, the author shows that any two
maximal E-sequences have the same length. This length is called the codimension of
E and denoted by codhA E. The utility of this concept is illustrated by applications
to coherent algebraic sheaves, fractional divisorial ideals, and unique factorization.

The main original result of this paper is that a local ring of finite global dimension
is regular. The important tool here is the construction of a free resolution of the
residue field k of A which contains in it the exterior algebra complex (loc. cit.,
Chapter VIII) generated over A by a minimal generating set of m. Using this
resolution, the author shows that the (linear) dimension of Torp

A (k, k) is greater

than or equal to
(

n
p

)
where n = dimk (m/m2) (linear dimension) [for a better

estimate of this dimension see the paper reviewed below [ MR0086072 (19,119b)]].
As a result of this characterization of regular local rings, the author proves that
the ring of quotients Ap of a regular local ring A with respect to a prime ideal p is
again regular. Other results, such as the Cohen-Macaulay theorem for regular local
rings, are also proved here.

From MathSciNet, April 2007
D. Buchsbaum
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MR0244243 (39 #5560) 13.95

Buchsbaum, D. A. [Buchsbaum, David A.]
Lectures on regular local rings.
Category Theory, Homology Theory and their Applications, I (Battelle Institute
Conference, Seattle, Wash., 1968, Vol. One), pp. 13–32. Springer, Berlin, 1969.

These lectures are of triple interest, even though most of the results they con-
tain are well known. They introduce the reader to the Koszul complex, and the
way it can be applied to ring theory. They contain some examples—though stan-
dard ones—that help clarify the intimate relation between the homology of the
Koszul complex and some ring properties. Finally, they constitute a brief account
of the theory of local rings. The proofs of the main results generally differ from
the standard ones by the repeated use of the Koszul complex. The complexes
K(x1, · · · , xn) and E(x1, · · · , xn), where x1, · · · , xn are elements in a commutative
ring R and E is an R-module, are introduced in Section 1, and the author dis-
cusses the relations between the homology groups of the complex K(x1, · · · , xn)
and some properties of the elements x1, · · · , xn in the ring for the cases n = 1, 2.
In Section 2 the R/m vector space m/m2 is investigated for a local ring (R, m),
and it is proved that [m/m2 : R/m] ≤ gl. dim R. The Hilbert-Samuel polyno-
mial and the Artin-Rees theorem are used in Section 3 to prove that for the lo-
cal ring (R, m) one has the inequality dim R ≤ [m/m2 : R/m] and the equality
dim E/(x1, · · · , xs)E = dim E − s, whenever x1, · · · , xs is an E-sequence, for the
R-module E. The Hilbert-Samuel polynomial is discussed in a somewhat more gen-
eral setting than usual: Starting with a full abelian subcategory A of the category
of R-modules, for a Noetherian ring R, the author defines the categories As for
s = 0, 1, 2, · · · as the category of finitely generated graded R[X1, · · · , Xs]-modules
E =

∑
ν≥0 Eν such that (i) if s = 0, Eν is in A for all ν; and (ii) if s > 0, Eν is

in A for all ν and the graded R[X1, · · · , Xs−1] modules ker (
∑

Eν1

Xs→
∑

Eν) and
coker(

∑
Eν

Xs→
∑

Eν) are in As−1.
Every function f0 from the objects of A into an abelian group G that factors

through the Grothendieck group of A, induces a function fE from the positive inte-
gers into G, setting fE(ν) > f0(Eν), for every object E in As. It is proved that fE is
a polynomial function of degree less than or equal to s−1. Relations between codi-
mension and homological dimension are the subject of Section 4, where it is proved
that if hdRE < ∞, then codimR = hdRE + codim E. Also the chain of inequal-
ities f.gl.dim R = codim R ≤ dim R ≤ [m/m2 : R/m] ≤ gl.dimR is established.
Of significant importance is the following theorem: Let R be a Noetherian ring,
E an R-module, and A an ideal of R generated by elements x1, · · · , xn such that
E/AE �= 0. Let y1, · · · , ys be a maximal E-sequence in A. Then s+q = n, where q is
the dimension of the highest non-vanishing homology of the complex E(x1, · · · , xn).
Furthermore, Hq(E(x1, · · · , xn)) ≈ (y1, · · · , ys)E : A/(y1, · · · , ys)E.

The main properties of regular local rings are sketched in Section 5.
REVISED (January, 2007)

From MathSciNet, April 2007
A. Zaks
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MR0463157 (57 #3116) 14-01

Hartshorne, Robin
Algebraic geometry.
Graduate Texts in Mathematics, No. 52.
Springer-Verlag , New York-Heidelberg , 1977. xvi+496 pp. $24.50.
ISBN 0-387-90244-9

This text is intended to introduce graduate students to the methods and results
of abstract algebraic geometry as practised today. No such exposition can succeed
unless it enables the reader to make the drastic transition between the basic, intu-
itive questions about affine and projective varieties with which the subject begins,
and the elaborate general methodology of schemes and cohomology employed cur-
rently to answer (or attempt to answer) these questions. The present text, notable
for generality and depth, is also notable for its author’s concern, throughout, to
keep the important issues about varieties clearly in the foreground.

Varieties. An opening chapter (57 pp.) introduces affine and projective varieties,
as embedded point sets. Morphisms and regular functions lead to the function
field; then smooth and singular points, dimension, basic facts about smooth curves,
intersections in Pn follow. (Examples abound. In the first 6 pages, for instance,
there are 11, with 6 more in the exercises.) The chapter ends with a survey entitled
“What is algebraic geometry?”, aimed at motivating the subsequent developments.
Here we have a discussion of several unsolved (or partly solved) problems which have
motivated current as well as past research. Classification questions, both discrete
and continuous, receive strong emphasis, especially moduli problems, birational
classification of surfaces, and classification of singularities. (This discussion makes
good expository sense, because the reader has already looked at models of one-
dimensional function fields, has encountered monoidal transformations, and has
blown up some embedded multiple points.) Sufficient motivation is provided by
arithmetic questions to justify working over arbitrary ground fields, while reducible
loci and multiple components urge acceptance of the most general coordinate rings.
(This leads, in the next chapter, directly to the definition of schemes.)

Granting the value of posing the key motivating questions early, it is still obvious
that no introductory text, alone, can do full justice to the work done, and being
done, toward their solution. Nonetheless, there should be clear connecting links
between the abstract methods to be presented and the specific questions they are
intended to answer. Given the logical need to lay down general foundations first, the
burden here falls largely (though not exclusively) upon the two concluding chapters,
about curves and surfaces, where the generalities are systematically applied. Hence
it may be best to examine these later chapters first.

Curves (62 pp.). The Riemann-Roch theorem, Hurwitz’s formula and Clifford’s
theorem are proved via sheaf cohomology. The canonical linear system is examined
carefully, accompanied by a brief survey of moduli of curves, with examples. (Ex-
ercises include explicit deformations for curves of low genus, and Hurwitz’s bound
for the number of automorphisms when finite.) Elliptic curves are classified by
j-invariant, using the Riemann-Roch theorem. The group structure is treated geo-
metrically first, then using the bijection with Pic0. Over C, there is a good sketch
of the connection with elliptic functions, including (with proof) a characterization
of the curves with complex multiplication, in terms of the lattice structure. In char-
acteristic p, the Hasse invariant is defined via Frobenius on H1(O), and the curves
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with Hasse = 0 are classified. There follows a short aside on rationality questions.
The chapter concludes with a rigorous classification of all smooth complete curves
of degree ≤ 7 in P3. Main theorems here are those of Halphen (a curve in Pn of
genus g ≥ 2 has a non-special very ample divisor of degree d if and only if d ≥ g+3)
and Castelnuovo (a curve of degree d in P3, not contained in any plane, has d ≥ 3,
and, for the genus g, we have g ≤ 1

4d2 − d + 1 (d even), g ≤ 1
4 (d2 − 1) − d + 1 (d

odd), with equality if and only if the curve lies on a quadric).
Surfaces (67 pp.). In the first 10 pages we find basic facts about linear equivalence

and intersections of curves on a smooth projective surface, and then the following
results: the Riemann-Roch theorem in its classical form, the adjunction formula,
the Hodge index theorem, and the Nakai-Moǐsezon criterion for ample curves. (As
corollaries, the inequality of Castelnuovo-Severi and its application to the Riemann
hypothesis for curves are given as exercises!) There follows a thorough study of
ruled surfaces, viewed as projective bundles P(E), for E locally free of rank 2 on
a smooth curve. Rational and elliptic ruled surfaces classified via normal forms
for E, and criteria for ample and very ample curves are deduced. A section on
monoidal transformations culminates in a proof of embedded resolution for curves
on a smooth projective surface. Then the nonsingular cubic surfaces in P3 are
treated via the system of plane cubics through 6 general points; symmetries of the
27 lines yield a criterion for ample and very ample curves. There follows another
10-page section of generalities, this time on birational maps: factorization, invari-
ance of pa, Castelnuovo’s criterion for contractible curves, existence of relatively
minimal models. A survey of Enriques’s classification, with references, concludes
the exposition. (This chapter, far more than that on curves, requires the full power
of schemes and cohomology: semicontinuity and base change, for example, unlock
the ruled surfaces, while the theorem on formal functions verifies, in Castelnuovo’s
criterion, that the contracted surface is smooth.)

The two middle chapters on schemes (140 pp.) and cohomology (91 pp.) give a
very good introduction to the essential ideas. Care has been taken to avoid setting
up excessively elaborate machinery, without (the reviewer feels) unduly weaken-
ing the important theorems. Duality for projective varieties is neatly streamlined;
coherence of direct images, Zariski’s theorem on formal functions, and the semi-
continuity and base-change theorems are given for projective, rather than proper,
morphisms. The resulting exposition, although less general than that of EGA and
its satellites, is much shorter, while still sufficient for the author’s purposes. The
abstract development itself is interwoven with some applications, for example to
proving several versions of Bertini’s theorem.

The text concludes with three appendices, sketching further developments (in-
tersection theory and the Grothendieck Riemann-Roch theorem, algebraic varieties
versus complex manifolds, the Weil conjectures) with references to the literature.

A course along the lines of this text, according to the introduction, ran for five
quarters at Berkeley. Knowledge of basic commutative and homological algebra (or
a willingness to learn it) is assumed; some familiarity with complex analysis might
also help. A further necessary commitment is that of working and (as needed)
discussing a sizable portion of the book’s 464 exercises. (These exercises include
important theorems, additional examples, alternate treatments of some topics, as
well as historical and technical asides. The style of the exposition seems to draw
the reader into the problems, so the experience of reading this book may be more
active than is usual at this level.)
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Granting these necessary commitments, the present text succeeds admirably, in
the reviewer’s opinion, in introducing its difficult subject at a level appropriate for
preparing future workers in the field.

From MathSciNet, April 2007
Robert Speiser

MR1730819 (2001d:14002) 14A15 (14-01 14C05 14H50 14N05)

Eisenbud, David; Harris, Joe [Harris, Joseph Daniel]
The geometry of schemes. (English summary)
Graduate Texts in Mathematics, 197.
Springer-Verlag , New York , 2000. x+294 pp. $69.95; $26.95 paperbound.
ISBN 0-387-98638-3; 0-387-98637-5

This book is a wonderful introduction to the way of looking at algebraic geome-
try introduced by Alexandre Grothendieck and his school. The style of this book,
however, differs greatly from that of Bourbaki; it is not formal and systematic, but
friendly and inviting, like the style of David Mumford, whom both authors credit
as being their teacher for the topics covered by this book. Thus this book intro-
duces big ideas with seemingly simple, concrete examples, generalizes from them
to an appropriate abstract formulation, and then applies the concept to interesting
classical problems in a meaningful way. It is a pleasure to read.

The authors assume the reader is familiar with classical algebraic geometry and
with some of the ideas of several complex manifolds. They also assume a compe-
tence in commutative algebra. Although they seem to start at the beginning in
the study of schemes, apparently they expect the beginning reader not to attempt
to fill in every detail, but to appreciate the general flavor of the subject and to go
to other sources for details or help. Especially important resources in this regard
are [D. Eisenbud, Commutative algebra, Springer, New York, 1995; MR1322960
(97a:13001)] and [R. Hartshorne, Algebraic geometry, Springer, New York, 1977;
MR0463157 (57 #3116)]. This book is informal, breezy, and refreshing. Many of
the grubby details are left to the reader in the form of exercises or just left out.
The classical ideas behind the definitions and constructions are brought in and
used throughout. Notably missing from a complete introduction to schemes is any
mention of cohomology, although finite free resolutions are used on occasion.

There are six chapters to the book. The first gives the definition of affine
schemes with a brief, appropriate interlude on sheaf theory. Then schemes are
pieced together from affine schemes. Similarities to and differences from differ-
entiable manifolds are emphasized. Grothendieck’s basic construction of fibered
product is treated at length, although the details of the proof are not dwelt on;
these are left to the reader as exercises. Also, the functor of points is introduced
and used here to make sense of, among other things, the “points” of the fibered
product.

The second chapter begins with the study of reduced affine schemes over an
algebraically closed field; such schemes are essentially classical affine varieties. Then
the authors relax the condition on the base field, and finally remove the reduced
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condition too. In each case they emphasize the advantages of considering the more
general situations. They present, for example, the flat family of three lines through
the origin in 3-space consisting of the union of the x-axis, the y-axis, and the pencil
of lines through the origin in the plane defined by x = y. The limiting scheme as the
pencil goes to the line in the xy-plane is the three lines with an embedded point at
the origin. They thus make the use of schemes seem worth the effort. The book is
liberally interspersed with such useful, concrete examples. They also emphasize the
usefulness, and not just in number theory, of schemes over the ring of integers Z.

The third chapter treats projective schemes. The authors work from the premise
that having understood affine schemes, there is not so much more that is new; the
differences between projective schemes and projective varieties are like those al-
ready treated between affine schemes and affine varieties. They start with the
construction of Proj of a graded ring rather than with Pn, although they discuss
the advantages and disadvantages of both approaches. They discuss thoroughly the
characterization of morphisms into projective n-space Pn in terms of 1-quotients
of On+1

P . They construct the Grassmannian in two ways, both locally and us-
ing Plücker coordinates. They use Hilbert’s original approach to show that the
Hilbert function H(ν) coincides with a polynomial for large ν. They prove Be-
zout’s theorem for complete intersections of hypersurfaces in Pn over a field using
the Koszul complex. This leads to more general formulations of intersection the-
ory, and, eventually, after some examples, to a reference to W. Fulton [Intersection
theory, Springer, Berlin, 1984; MR0732620 (85k:14004)].

The fourth chapter discusses the classical notions of the flexes of plane curves and
blow-ups in great detail. The authors define flexes for curves even with multiple
components, all the while emphasizing with examples what their results mean.
They define blow-ups inefficiently, but with motivation. They begin by blowing up a
point in the plane. Then they construct the blow-up as the closure of a graph when
the base is affine. Next they characterize the blow-up by its universal property.
Finally they construct the blow-up in the general case of a closed subscheme in
an arbitrary scheme as Proj of a Rees algebra. Once again they illustrate with
many examples. They end the chapter with a discussion of Fano schemes of linear
subspaces in projective varieties, especially lines on quadric and cubic surfaces, and
a discussion of forms.

The fifth chapter explains several attempts to define the image of a morphism,
why one cannot do so, and what mathematical gems have come from the attempts,
including resultants and discriminants. The sixth and final chapter returns to
the functor of points. The authors describe the notion of a Zariski sheaf, and
use it to show that many constructions in algebraic geometry turn out to be better
described as representations of such sheaves. As an example they discuss the Hilbert
polynomial and the Hilbert scheme at length, with some examples to show how
these concepts help answer some old questions and introduce new ones in a natural
way. They describe the tangent space to a Zariski sheaf, and use the dimension of
this tangent space to bound the dimension of the corresponding component of the
Hilbert scheme. They end with a mention of moduli spaces and algebraic stacks.

Every algebraic geometer will want this book. While the level of difficulty is
uneven, the book is full of insights and useful tidbits. The authors have succeeded
in their goals of showing schemes at work in a number of important areas of clas-
sical algebraic geometry, and showing how the language of schemes can be used to
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resolve problems that were awkward and even intractable in the older, more lim-
ited language. On the other hand, they retain the vital spirit of classical algebraic
geometry alive for modern workers in the field.

From MathSciNet, April 2007
Allen B. Altman


