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This book is devoted to the study of two problems concerning general automor-
phic L-functions together with some of their applications to number theory. One
problem is to find non-vanishing theorems for the L-function at the edge of the crit-
ical strip; the other is to describe explicit formulas which express prime numbers
in terms of functions summed over the set of all the zeros of the L-function. These
problems were first considered for Riemann’s zeta function and then more generally
for certain Langlands automorphic L-functions.

SOME HISTORY

The Riemann zeta-function is defined by
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n=1
with
Re(s) > 1.
In his 1859 memoir, On the Number of Prime Numbers Less Than a Given Quantity,
Riemann proved that ((s) had a meromorphic continuation to all complex s and
satisfied the functional equation
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One way he found to establish this was to express 7~ 2I'($)((s) as the Mellin
transform of the theta function

i eﬂ'iTLQZ — 9(2)
n=1

studied by Jacobi. By exhibiting 772I'($)((s) as the Mellin transform of 6(z),
Riemann became the father of the theory of automorphic forms. This was about
fifty years before Hecke and others realized how important this Mellin transform
was. But Riemann went on to open many more questions in number theory using
this zeta function. First of all, he derived (or really outlined the proof of) the first
“explicit formula” for the zeta-function:

(z) = Li(z) = Y {Li(2*) + Li(z'~")}
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where I(z) =3, -, m(z 1/”) m(z) = the number of primes less than = (with the

7r(a:+0)+7r(:r:70) )

proviso that when x is prime, we put 7 (x) = , p runs through the

complex zeros of ((s), and Li(z®) (almost equals) fo log“u

This explicit formula equates the prime numbers (the left side of the equation)
with the complex zeros p of the zeta function (the right-hand side of the equation).
Its depth is profound. It comes from Riemann’s combining the Euler product
representation

1
1—ps

((s) =
P
with the (1859 unproved) Hadamard identity
§(s) = e [Ta—2)erlr.
p

p

Riemann’s work took almost thirty-five years before it was exactly proved, thanks
to Hadamard, von Mangoldt, and others. In 1893, von Mangoldt actually proved a
more transparent formula that implied Riemann’s: if

[ logp ifn=pF
Aln) = { 0  otherwise,

then
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With this formula the prime number theorem was proved in 1896 by Hadamard
and (independently) by de la Vallée Poussin:

T .
m(x) ~ @ ~ Li(x)

as = approaches co; in fact, this was just equivalent to proving that

Re(s) =1=((s) #0.
Three years later, de la Vallée Poussin extended his method to proving there exists

a positive constant ¢ such that {(s) has no zeroes in the region of s = ¢ + it such

that
c

log(] +2)°
Riemann, in his investigations, came to suspect that
Re(s) =1/2
for any complex s such that ¢(s) = 0; in fact, he had numerically computed the first

few zeros. This hypothesis of course remains unproved today. The prime number
theorem, i.e., that Re(s) =1 = ((s) # 0, implies

Y(x) =z + o(x);
the Riemann Hypothesis, i.e., that Re(s) > % = ((s) # 0, implies
)(x) =+ O/?+)

oc>1-—

for all € > 0.
From the turn of the century after Riemann to the 1950’s came a wide sampling
of results that began to give a more modern approach to number theory, all of it
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under the future cloak of automorphic forms & la Langlands. Especially impor-
tant was the development of class field theory, building on the work of Fermat,
Euler, Gauss, etc. On one side, E. Artin introduced his (not necessarily abelian)
L-functions using polynomials of degrees equal to the dimension of representations
of the Galois group (the abelian ones he equated with Hecke’s, which were - like Rie-
mann’s - a transform of some theta function), and Chebotarev also demonstrated
the importance of non-vanishing theorems for these L-functions for the study of
the distribution of Frobenius conjugacy classes in the Galois group. On another
(slightly later) date, Hecke introduced the space of “automorphic forms”. “Auto-
morphic forms” were connected again with Dirichlet series, but now their Euler
product had factors of degree 2 instead of 1. For example, in place of {(s) we have
F(s) =[[,(1 = 7(p)p~® +p"'72*)7", where 7 is the Ramanujan function. In 1927
Hardy had observed that the localization of the zeros of F'(s) gives rise to problems
similar to those of {(s); in particular, a prime number theorem for the Ramanujan

function

> 7(p)logp = o(z'*?)

p<z
would follow if F'(s) # 0 in the right edge of the “critical strip” 11/2 < o < 13/2;
i.e., Re(s) = 13/2, exactly what Rankin showed in 1939. One of the problems left
open (until its proof by Deligne) was Ramanujan’s Conjecture:

[r(p)| < 2%
Of course, another was a greater “Riemann’s Hypothesis”; i.e., Re(s) > 6 implied
F(s) #0.

Although Artin and Hecke were at the same university, neither of them sus-
pected that they were actually working towards the same thing. True, Artin had
proved his abelian L-series were the same as special Hecke L-functions generalizing
the Riemann zeta-function. But what about two- (and higher) dimensional Artin
L-series? Do Hecke’s L-functions of modular forms bear the same relation to Artin
L-series of dimensional two as Hecke’s L-functions of degree one bear to Artin’s
abelian L-series? That the answer was “yes” came thirty or so years later. In 1967,
R.P. Langlands predicted that all of Artin’s L-series (associated to irreducible n-
dimensional representations of the Galois group) were “automorphic” as part of a
much more general “Langlands Program” [Lan].

Let us first review the notions of the 1950’s and early 1960’s. By 1950, Hecke’s
grossencharakters were viewed by Tate and also Iwasawa (see his talk at the 1950
ICM) as functions on the idele group of a number field. In fact, Iwasawa influenced
many Japanese mathematicians, such as Shimura, Taniyama, Satake, Tamagawa,
Ono, and others, to extend these adelic ideas to other simple algebraic groups.
(Godement and Kneser did the same in Europe.) However, grossencharakters were
not readily viewed as “automorphic forms on GL(1)”. As far as GL(2) was con-
cerned, by the late 1950’s the eigenvalues of an automorphic form with respect to
the Hecke operators 7T, were being realized as eigenvalues for certain convolution
operators of the p-adic group GL(2, Qp). Most of the Japanese mathematicians just
mentioned understood this (Tamagawa has told me that Taniyama lectured on some
of this in 1958). Then in the early 1960’s, ideas of Langlands, Mautner and others
in the West converged to these facts, and Satake’s report from the 1965 Boulder
Summer Conference spelled out exactly how an automorphic form fixed representa-
tions of GL(2, Qp). Furthermore, Harish-Chandra produced his monumental work
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on general real (and later p-adic) groups, A. Selberg had done his beautiful work
on Eisenstein series and the trace formula, and Gelfand and Piatetski-Shapiro et al.
had begun their study of adele group representations. These historic developments
helped give birth to the Langlands’ Program. See [Arf] for further discussion of
this background.

An “automorphic form on GL(n)” of Langlands is an irreducible subspace of
L?*(GL(n,Q) \ GL(n,A)). Tt is an infinite dimensional (when n > 1) representa-
tion m = @m, of GL(n,A) with corresponding automorphic L-function L(s,7) =
I1L(s,m,). Each m, is a representation of the p-adic group GL(n, Qp). Whenn =1
the notion of automorphic L-function is a generalization of the Riemann zeta func-
tion which appears as the one attached to the trivial representation of GL(1,A) =
AG. When n = 2 an automorphic L-function generalizes the Ramanujan-Dirichlet
series F'(s).

A similar notation can be introduced for an arbitrary reductive algebraic group.
Actually, automorphic L-functions L(s,II,r) are attached more generally by Lang-
lands to certain representations II of an arbitrary reductive group G and arbitrary
finite dimensional representations r of the (Langlands) “L-group” of G. For exam-
ple, the Langlands-Shahidi L-functions [Sha] belonging to certain reductive groups
G and certain representations r of the L-group of G produce such examples. But so
do Artin’s Galois representations and even elliptic curves! The conjecture known
as “Langlands’ Functoriality” then predicts that the L-functions of all these gen-
eral L(s,II,7)’s should coincide with some product of the L-functions of “standard”
representation m of some GL(n).

For exactly how Artin’s Galois theory and elliptic curves define examples of
Langlands Functoriality (and much more), the reader is referred to the survey
lectures in An Introduction to the Langlands Program, Birkhauser, 2003 (see its
review by M. Harris in the 2004 Bulletin [Harl), and the reviewer’s 1984 Bulletin
article “An elementary introduction to the Langlands program”.

R

THIS BOOK

With this short summary of such historical events, let us look at what Moreno
does with these L-functions. One day, given the functoriality principle of Langlands,
the two problems considered in the opening paragraph of this review for standard
GL(n) L-functions will suffice for all automorphic L-functions.

In Chapter 1, Hecke’s L-functions are treated from the point of view of Tate’s
thesis (1950); more precisely, Moreno gives Weil’s treatment of it using distribution
theory (Sem. Bourbaki, Exp 312). Moreno closes the chapter with a quick discus-
sion of the theory for GL(n), i.e., “standard” Langlands automorphic L-functions
L(s, ) associated to automorphic representations of GL(n). In Chapter 2 is the
background material for Artin-Hecke L-functions through the functoriality princi-
ple of Langlands. The newer parts of Moreno’s theory are saved for the remaining
chapters of this book (roughly half of the text). Chapter 2 also reviews the math-
ematics surrounding Langlands’ important theorem on the decomposition of the
root number into local factors.

In Chapter 3 the author focuses on Riemann’s work and proves the product for-
mula for the zeta function without appealing to the standard theory of Hadamard.
Moreno applies this proof to a much broader class of L-functions, which he uses later
in Chapter 5. The author next describes Rademacher’s theorem giving a bound for
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the Hecke L-function in a vertical strip, a useful result for the study of the dis-
tribution of zeros within the critical strip. Moreno also states the basic analogous
estimates for Artin-Hecke L-functions (which generalize Rademacher’s Theorem)
and for standard automorphic cuspidal L-functions for GL(n). Such theorems are
refinements of weaker statements. First of all, we have in mind the classical “con-
vexity bound” for GL(n) type automorphic L-functions which generalizes the one
for ((s); i.e., for € > 0,

1
C(5+it) < |s|3Te.
For GL(n) (see [IwK], Chapter 5, or [Mic], Lecture 1), it reads as follows: for

e >0, L(s,m) < q(s, 71')%*‘€ for (the analytic conductor) ¢(s, ) the product of the
conductor of 7 times the analytic conductor at infinity. Its proof still remains so
eloquent for GL(n) that I quote its steps here: (1) for Re(s) > 1 use the absolute
convergence of L(s,n) (which is a main conclusion of Jacquet and Shalika [JSh]),
(2) apply the functional equation of L(s,w), (3) use Stirling’s estimate for the
gamma functions, and (4) apply the Phragman-Lindelof principle (with Re(s) =
3). Secondly, this Rademacher result obviously implies that L(s,7) is bounded in
vertical strips. So, as the author points out, the recent work [GeS|] of Shahidi and
the reviewer extending this boundedness to L(s,II,r) of Langlands-Shahidi type
is relevant, though we don’t know much about the analyticity of L(s,II,r) to the
right of s = 1.

Chapter 4 is called “Explicit Formulas”. After first reviewing the formulas of
Riemann and von Mangoldt already mentioned, the author discusses the formula
of Delsarte as a forerunner to the work of Andre Weil. Each of Weil’s formulas,
like its predecessors, equates two distributions: one associated to the zeros of an
L-function, the other to its Fourier dual associated to the primes. This identity
of distributions is still an “explicit” formula like Riemann’s (or the more transpar-
ent one of von Mangoldt). However, unlike Riemann’s, this smooth version deals
with series which are absolutely convergent. Weil goes on to use it for L-series
attached to n-dimensional Artin-Hecke representations. In describing the formula
for automorphic cuspidal representations m of GL(n), Moreno uses the Langlands
correspondence to identify each local representation m, as a ¢,. There is an over-
sight here: the word “irreducible” should not appear (twice) in the second sentence
on page 175. A simple proof is given by Proposition 2.1 of Rudnick-Sarnak [RuS].

Chapter 5 includes the work of Stark and Odlyzko on finding lower bounds for
the discriminant of a number field using explicit formulas, namely Weil’s. Looking
at the explicit formula as an equality of distributions, the approach is to apply the
formula to well-chosen test functions; here the presentation follows that of G. Poitou
and J.-P. Mestre.

In Chapter 6, the author shows us (among other things) two detailed methods
for proving L(s,m) # 1 for Re(s) = 1. They are: the generalized method of
Hadamard and de la Vallée Poussin, and the method of Eisenstein series. For the
first, Moreno follows Deligne’s arguments, mixed with some representation theory;
for the second, he uses arguments due to Jacquet and Shalika [JSh|. There are
also applications to Langlands’ ideas concerning Ramanujan’s Conjecture ([Lanl]).
What surprises me is that the author does not go on to discuss lower bounds for
L(s,m) in a neighborhood of the line Re(s) = 1 (roughly the generalization of
de le Vallée Poissin’s 1899 work cited above). Indeed, this generalization is one
part of the author’s most famous works; cf. [Morl] and his GL(n) paper [Mor2)].
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Relevant recent papers include Brumely [Bru|, Bump-Friedberg-Hoffstein [BFH],
the reviewer with Lapid and Sarnak [GLS|, R. and M. Murty [Mur], Sarnak [Sar],
Selberg [Sell, Ye (see [LWY]) and many others.

Let me mention some tiny mistakes which make the reading of this book less
pleasant. First is the fact that typographical errors abound. Names are often
misspelled (“Kashdan” on page 59, “Jaquet” on page 134, etc.), and there are
many other typographical mistakes. Secondly, a notational guide is missing, and a
fuller and more thorough index would have been much more useful than the single
page index that is provided.

For over thirty years, Moreno has been thinking about L-functions as general
as L(s,II,r), not just ((s) or abelian L-functions. Although it is now popular for
students of number theory to do so, it definitely was not true for other number
theorists in the mid 1970’s. Moreno worked virtually alone. I regret that I was not
more familiar with his work then. As Iwaniec and Kowalski point out on page 135
of their broad survey book [IwK], the first general result for modular forms beyond
the classical content of Dirichlet characters is a “prime number theorem” due to
Moreno in 1972. In addition to discussing the fundamental basics of L-functions
from Riemann to Langlands, this book gives glimpses of the mathematical work
that Moreno has developed over the last thirty-odd years.
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