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SELECTED MATHEMATICAL REVIEWS

related to the paper in the previous section by

IGOR DOLGACHEV

MR0072877 (17,345d) 20.0X

Chevalley, Claude
Invariants of finite groups generated by reflections.
Amer. J. Math. 77 (1955), 778–782.

Soit G un group fini de transformations linéaires d’un espace vectoriel V sur un
corps K de caractéristique 0. On suppose G engendré par des réflexions (involutions
dont les éléments invariants forment un hyperplan). Présant le théorème classique
des invariants pour les groupes finis, l’auteur montre que l’algèbre J sur K des
invariants de G est engendré par l’unité et par un nombre d’invariants homogènes,
algébriquement indépendants, égal à la dimension n de V . En outre, si I1, · · · , In

est un tel système de générateurs, mi (1 ≤ i ≤ n) le degré de Ii, le produit∏n
i=1(1 − tmi) est égal au produit de (1 − t)n par un polynôme où le coefficient

de tk est la dimension des éléments homogènes de degre k dans l’algèbre S/F , S
étant l’algèbre des polynômes sur V et F l’idéal homogène de S engendré par les
invariants (polynômes) de G. Il en résulte que le produit m1m2 · · ·mn est égal à
l’ordre du groupe G; enfin l’auteur prouve que la représentation linéaire naturelle
de G dans l’espace vectoriel S/F est équivalente à la représentation régulière de G.

From MathSciNet, October 2007
J. Dieudonné

MR0106428 (21 #5160) 50.00 (10.00)

Steinberg, Robert
Finite reflection groups.
Trans. Amer. Math. Soc. 91 (1959), 493–504.

The author considers, in Euclidean n-space, a finite set of hyperplanes which
is symmetrical by reflection in each one. The reflecting hyperplanes decompose
the space into congruent angular regions called chambers, any one of which will
serve as a fundamental region for the group G generated by all the reflections. A
sufficient set of generators consists of the reflections Ri in the n walls Wi of the
fundamental region (i = 1, 2, · · · , n). The group G is said to be irreducible if the
walls do not fall into two sets, all those in the first set being orthogonal to all those
in the second. The products of the n reflections taken in various orders are all
conjugate [Coxeter, Ann. of Math. (2) 35 (1934), 588–621; p. 602]; the period
of such a product is denoted by h. It is possible to name the n walls in such an
order that, for some s, the first s of them are mutually orthogonal, and likewise
the remaining n− s. This clever trick enables the author to give general proofs for
several theorems which had previously been observed by the reviewer and verified
laboriously by separate consideration of individual cases. For instance, the total
number of reflecting hyperplanes is nh/2; and if G contains the central inversion I
then h is even and I = (R1R2 · · ·Rn)h/2 [Coxeter, loc. cit., pp. 606, 610].
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Letting R1W2 denote the image of W2 by reflection in W1, and making the
conventions Wk = Wj and Rk = Rj if k ≡ j (modn), the author expresses the
nh/2 reflecting hyperplanes in the form

R1R2 · · ·Rk−1Wk (k = 1, 2, · · · , nh/2).

He finds that the reflecting hyperplanes, in this order, contain sets of n−1 consecu-
tive vertices of a certain skew nh-gon, namely a “modified Petrie polygon” [Coxeter,
Regular polytopes, Methuen, London, 1948; MR0027148 (10,261e); pp. 228–231].

The group G is said to be crystallographic if all the dihedral angles between
adjacent walls are multiples of either π/4 or π/6. In this case it is possible to
choose nh vectors ±ρ, orthogonal to the reflecting hyperplanes, of such lengths
that the adjunction of the translations 2ρ to G yields an infinite discrete group.
Because of their application to the theory of simple Lie groups, these vectors are
called roots, and those along inward normals to the n walls Wi, say αi, are called
fundamental roots (Freudenthal’s “primary roots”). Every root is expressible in the
form ±

∑
xiαi, where the coefficients xi are positive integers or zero. In particular,

there is a so-called dominant root µ =
∑

yiαi whose coefficients are maximal.
These vectors αi and µ are 1

2ti and 1
2z in the notation of the reviewer’s Extreme

forms [Canad. J. Math. 3 (1951), 391–441; MR0044580 (13,443c); pp. 404, 410].
The coefficients of αi in the expression for the dominant root are related to h
(and thence to the number of roots) by the simple formula

∑
yi = h − 1 [Regular

polytopes, p. 234; Extreme forms, p. 413].

From MathSciNet, October 2007
H. S. M. Coxeter

MR0437798 (55 #10720) 32C40 (14B05 20G20)

Brieskorn, E.
Singular elements of semi-simple algebraic groups.
Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2,
pp. 279–284, Gauthier-Villars, Paris, 1971.

The Kleinian groups are the finite subgroups H ⊂ SL(2,C) (or SU(2)); they arise
from the rotation groups of the regular solids (i.e., from finite subgroups of SO(3)).
Klein showed C2/H is a hypersurface in C3 (there are three generating H-invariant
polynomials in C[x, y], with one relation); and P. Duval found that resolving these
hypersurface singularities gives configurations of rational curves whose weighted
dual graph is the Dynkin diagram of the complex Lie group An, Dn, E6, E7 or
E8. These singularities are called the rational double points (or RDP’s). So, the
Kleinian groups somehow correspond to simple Lie algebras of type Ak, Dk or Ek

(e.g., the binary icosahedral group corresponds to E8).
The author’s main result is that the versal deformation V → S of an RDP

C2/H resolves simultaneously in a family after finite base change S′ → S, where
S′ → S is Galois, with group W = Weyl group of Ak, Dk or Ek. That is, there is
a smooth family X → S′, factoring via f : V × S′ → S′, which resolves fibre-wise
the singularities of f . This result, suggested by the author’s earlier papers [Math.
Ann. 178 (1968), 255–270; MR0233819 (38 #2140)], is here treated in terms of
algebraic groups.

If G is a complex simple algebraic group, T a maximal torus, W = Weyl group,
then there is a map π : G → T/W associating to x ∈ G the conjugacy class of its
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semi-simple part. (If G = SL(n), π sends a matrix to its characteristic polynomial.)
π is smooth exactly for regular x (i.e., dim ZG(x) = rkG). Grothendieck proved
that π has a simultaneous resolution

Y → G
↓ ↓ π
T → T/W,

where W consists of pairs (x, B), where B is a Borel subgroup containing x. This
suggests consideration of the subregular elements of G, i.e., x such that dim ZG(x) =
rkG + 2 (the next lowest dimension). Results of Tits and Steinberg imply that the
unipotent fibre U of π has a family of RDP singularities “along” the subregular
locus V (these are the RDP’s corresponding to G). Since U is locally a product
along V , choose for x ∈ V a smooth subvariety X of G transversal to V . Then
the following theorem is announced. (X, x) → (T/W, e) is a versal deformation
of the RDP. Simultaneous resolution after Galois base change now follows from
Grothendieck’s result.

The author mentions another result on the deformation space S = T/W minus
the discriminant locus; combining this with (later) work of Arnol′d and Deligne,
that space is now known to be a K(π, 1), where π is an extension of the Weyl group
by a generalized braid group. [See, e.g., the author, Séminaire Bourbaki, 24ème
année (1971/1972), Exp. No. 401, pp. 21–44, Lecture Notes in Math., Vol. 317,
Springer, Berlin, 1973; MR0422674 (54 #10660).]

{Reviewer’s remark: The proof of the author’s main result is very briefly sketched
in several sentences; many substantive details are missing, and a complete proof
has never been written up. A number of people are now working to fill in the
steps. However, the main corollary on simultaneous resolution of RDP’s can be
proved without this result on algebraic groups, using the author’s earlier papers [cf.
G. N. Tjurina, Funkcional. Anal. i Priložen. 4 (1970), no. 1, 77–83; MR0267129
(42 #2031)]. For An and Dn, the Weyl groups can be seen from the explicit
construction. In general, one can use “elementary transformations” à la Burns-
Rapoport or E. Horikawa to get a Weyl group action on the versal simultaneous
resolution.}

{For the entire collection see MR0411875 (54 #4).}
From MathSciNet, October 2007

Jonathan M. Wahl

MR1066460 (92h:20002) 20-02 (20F32 20F55 20G15 20H15)

Humphreys, James E.
Reflection groups and Coxeter groups.
Cambridge Studies in Advanced Mathematics, 29.
Cambridge University Press, Cambridge, 1990. xii+204 pp. ISBN 0-521-37510-X

The symmetry groups of the regular polyhedra in Rn may be generated by
reflections s1, · · · , sn and have a presentation with defining relations of the form
s2

i = (sisj)kij = 1. In 1935, H. S. M. Coxeter enumerated all finite groups W gener-
ated by reflections and found that they are precisely the groups with presentations
of this type, now called (finite) Coxeter groups. These groups and their infinite gen-
eralizations, some of which arise in elementary contexts as the symmetry groups
of regular tesselations of Euclidean space, are the subject of this book. They have



160 SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS

had extraordinary influence on geometry, Lie theory, finite groups, combinatorics
and more distant parts of mathematics, for example singularity theory.

This is a useful book. The style is informal and the arguments are clear. The
publisher describes it as a “graduate textbook” accessible to a reader with “a good
knowledge of algebra” which “attempts to be both an introduction to Bourbaki and
an updating of the coverage”. This is fair billing. In its 200 pages it gives a readable
introduction to Coxeter groups. It is the unique graduate level text on this subject
and most of what it does is important for various aspects of Lie theory. The author
keeps prerequisites to a minimum: the Euler characteristic of the Coxeter complex is
computed without any topology and the section on invariants is written without any
technicalities from commutative algebra or character theory. Occasional remarks
hint at deeper connections with Lie theory. The book is more ambitious than the
undergraduate text Finite reflection groups [second edition, Springer, New York,
1985; MR0777684 (85m:20001)] by L. C. Grove and C. T. Benson and is, of course,
not as formidable as Bourbaki. It may attract browsers, but it does not convey
the excitement of the geometry in Coxeter’s Regular polytopes [Methuen, London,
1948; MR0027148 (10,261e)]. To do this would require, at a minimum, a leisurely
historical introduction and more pictures to illustrate the remarkable amalgam of
algebra and geometry in the theory of Coxeter groups; see, for example, the proof
in Grove and Benson’s book [op. cit.] that a finite reflection group has a Coxeter
presentation.

Here are the chapter headings followed by parenthetical comments. (1) Finite
reflection groups. (Bourbaki introduced root systems, assumed crystallographic, in
Chapter 6, while Coxeter groups were introduced in Chapter 4. This goes against
intuition. The author introduces the root system, without crystallographic restric-
tion, at the start. Thus, by contrast with Bourbaki, one may introduce the set of
positive roots made negative by an element of W and discuss parabolic subgroups
and other basic facts with some reference to geometry. This chapter contains Stein-
berg’s proof of the alternating sum formula for the Coxeter complex. Take care with
the definition of inversion in Exercise 1.6.2.) (2) Classification of finite reflection
groups. (Here are the classification of positive definite and semidefinite Coxeter
graphs, a description of the irreducible root systems, and a brief description of
the Coxeter groups of type E6, E7, E8 with reference to the Atlas of finite groups
[J. H. Conway et al., Oxford Univ. Press, Eynsham, 1985; MR0827219 (88g:20025)]
concerning isomorphisms with classical groups over “small” fields.) (3) Polynomial
invariants of finite reflection groups. (The exposition here is by now standard.
The subtle two-dimensional argument concerning the action of a Coxeter element
on the intersection of a plane with the fundamental domain is well written.) (4)
Affine reflection groups. (Affine Weyl groups, the exchange condition, alcove and
fundamental domain, a proof of the formula |W | = n!c1 · · · cnf , where the ci are
the coefficients of the highest root of an irreducible group and f is the index of con-
nection.) (5) Coxeter groups. (This is in part a selection of topics from Bourbaki’s
Chapters 4 and 5 beginning with the definition of Coxeter system and including the
Tits cone, fundamental domain, and faithful canonical representation. Some topics
not in Bourbaki include roots, following Deodhar, and the Bruhat order (with no
attempt at algebro-geometric motivation, although a brief discussion of the facts in
GL3 would surely whet a beginner’s appetite for this otherwise dry serving which is
needed in Chapter 7).) (6) Special cases. (This covers finite Coxeter groups as finite
reflection groups, crystallographic Coxeter groups, hyperbolic Coxeter groups and
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their classification by computer (three and one-half pages of diagrams) correcting
the misprints in Bourbaki.) (7) Hecke algebras and Kazhdan-Lusztig polynomials.
(The author writes that “the Hecke algebra is a sort of deformation of the group
algebra of the related Weyl group. . . .In any case, what we do is hard to motivate
strictly in terms of Coxeter groups”. True, but one page spent on Iwahori’s theory
for GL2(Fq) would have been better than nothing at all and three or so pages on
GLn(Fq) would say a lot, without assuming any prerequisites. The treatment of
the “generic algebra” following Couillens is surely an improvement on Bourbaki’s
infamous exercise. The aim of this chapter is proof of the existence and uniqueness
of the Kazhdan-Lusztig polynomials. It does this quite clearly with full details
in thirteen pages, but a beginner might not realize, from what is said here, that
these polynomials are probably the most important development in the subject in
the last 10–15 years.) (8) Complements. (This is a series of one-page introduc-
tions, without proofs, to various topics: the word problem; reflection subgroups;
involutions; Coxeter elements and their eigenvalues; Möbius function of the Bruhat
order: intervals and Bruhat graphs; shellability; automorphisms of the Bruhat or-
der; Poincaré series of affine Weyl groups; representations of finite Coxeter groups;
Schur multipliers; and (sound of trumpets) Coxeter groups and Lie theory.)

One might think that this highly structured, very well developed, and in a sense
elementary subject has reached its peak and that there are few loose ends. Not so.
Like most aspects of Lie theory it has its fountain of youth. New and extraordinary
connections continue to be found with seemingly unrelated parts of mathematics.
É. Cartan [Enseignment Math. 35 (1936), 177–200; Zbl 15, 204] wrote: “C’est en
quelque sorte une loi historique que les propriétés générales des groupes simples
ont presque toutes été vérifiées d’abord sur les différents groupes et qu’on a ensuite
cherché et trouvé une raison générale dispensant de l’examen des cas particuliers;
je ne connais guère qu’une exception à cette loi.” This “experimental” aspect of
the subject explains a large part of its charm. Anyone can play.

{A list of errata and updated list of references is available from the author. A
second printing is being prepared with corrections and small revisions.}
From MathSciNet, October 2007

Louis Solomon


