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One of the best-known and most beautiful parts of mathematics is the classifi-
cation of the simple Lie groups over the complex numbers. This was achieved in
the late 1880s by Wilhelm Killing, whose work was remodelled by Élie Cartan in
1894, and it is now referred to as the Killing-Cartan classification. A Lie group is
called simple if it has no non-trivial, connected, normal subgroups, and the simple
Lie groups over the complex numbers C are in bijective correspondence with the
Dynkin diagrams in families A through G. Here are these well-known diagrams:
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When one descends from the complex numbers to the real numbers, the clas-
sification of simple Lie groups becomes more complicated. Here is an example.
The complex Lie group SL2(C) is simple (its only normal subgroup is the group of
diagonal matrices, which has order 2 and is not connected), and it has two “real”
forms. One is obtained by restricting the entries of each 2-by-2 matrix to the real
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numbers—this yields SL2(R). The other is obtained as follows. Every complex 2-
by-2 matrix can be written as a linear combination of four matrices in the following
way:

α

[
1 0
0 1

]
+ β

[
i 0
0 −i

]
+ γ

[
0 −1
1 0

]
+ δ

[
0 i
i 0

]
.

The symbols α, β, γ, δ represent complex numbers, and the resulting matrix will lie
in the group SL2(C)—in other words, it will have determinant 1—when α2 + β2 +
γ2 + δ2 = 1. Restricting α, β, γ, δ to the real numbers yields a compact topological
space, namely the 3-sphere. This “real” form of SL2(C)—often known as SU2(C)—
is called the compact form. The other real form—SL2(R)—is called the split form.

This example is part of a general pattern. Each simple Lie group over the
complex numbers has at least two real forms—a split form and a compact form—
and some have more. For example, SL4(C) has three real forms: the split form
SL4(R), the compact form SU4(C), and an “intermediate” form, SL2(H) where H
denotes the quaternions. I say “intermediate” because the compact form and the
split form are extreme cases in a way that will now become apparent.

The Dynkin diagram for SL4(C) is A3, and the real forms are expressed by
circling nodes: all three nodes for the split form, no nodes for the compact form,
and just the middle node for SL2(H).

SL4(R) the split form
SL2(H)
SU4(C) the compact form

The number of circled nodes has been called by Jacques Tits the relative rank
of the group. It is the same as the rank of the building for the group concerned,
and the circled nodes represent the different types of vertices in this building. For
example the building for SL4(R) has vertices of three types: they are the 1-spaces,
2-spaces and 3-spaces in a 4-dimensional vector space and correspond to the three
nodes of the Dynkin diagram. By contrast, the building for SL2(H) comprises
all 1-spaces in a 2-dimensional vector space over the quaternions; these represent
certain 2-spaces in a 4-dimensional vector space and hence belong to the middle
node of the A3 diagram, the one that is circled. Finally, the building for SU4(C) is
vacuous, and this is true for any compact form.

Simple Lie groups over the complex numbers generalize to simple algebraic
groups over an algebraically closed field, and the classification remains the same.
Descending to a subfield k yields k-forms. The split form over the real numbers
has its analogue over any field, but the compact real form does not always have an
analogue. When it does, the form is called anisotropic—but there is, for example,
no anisotropic form of any kind over a finite field. Forty years ago, Tits [3] gave a
classification of the possible k-forms, along with helpful comments as to the types
of fields k over which they could exist. Not all forms occur over the real numbers,
but for those that do, at most one group is possible. This is not true in general; for
example there is only one quaternion division algebra over the reals, but infinitely
many over the rationals.

Rank 2
When the relative rank is 2 there are two circled nodes, and the buildings are

‘Moufang polygons’. A Moufang polygon is an irreducible building of rank 2 that
admits the action of root groups, and in a major book on the topic, Tits and Weiss
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[8] classify them all. An earlier theorem, proved independently by Tits and Weiss
[5], [9], showed that a Moufang polygon must be a generalized 3-gon, 4-gon, 6-gon,
or 8-gon, so the purpose of [8] was to analyze these four cases. As an example I
want to briefly summarize the classification of Moufang 3-gons—these are projective
planes, the points and lines of the plane being the vertices of the building.

To illustrate the main types of Moufang 3-gons it suffices to work with real forms
of Lie groups. In this case the projective plane has a coordinate ring that is a real
division algebra, and there are four of these, having dimensions 1, 2, 4, and 8: the
real numbers, the complex numbers, the quaternions, and the octonions.

Coordinatizing ring Simple Lie group Diagram
real or complex numbers SL3(R) or SL3(C)

quaternions SL3(H)—a real form of A5

octonions a real form of E6

In the first diagram the circled nodes represent 1-spaces and 2-spaces in a three-
dimensional vector space. In the second diagram the circled nodes represent 1-
spaces and 2-spaces in a 3-dimensional vector space over the quaternions, which
in turn represent certain 2-spaces and 4-spaces in a 6-dimensional complex vector
space, as expressed by the circled nodes in the A5 diagram. The fourth case—a
form of E6—is exceptional, and its analogue for Moufang 4-gons is a major feature
of Weiss’s book.

Going from the real numbers to an arbitrary field, Moufang 3-gons can be divided
into three cases as above. The split case in the first diagram exists over any field.
The second case extends to all associative, non-commutative division algebras; over
the reals these are limited to the algebra of quaternions, which has degree 2 (and
dimension 4), but some fields admit central division algebras of other degrees. The
third case involves ‘alternative’ division algebras (which satisfy a weakened form of
the associative law), and a theorem of Bruck and Kleinfeld [1], [2] shows that these
are Cayley-Dickson algebras. This concludes the discussion of Moufang 3-gons.

Moufang 8-gons were classified by Tits in [7], where he showed they all arise from
Lie groups of type F4. A classification of Moufang 6-gons was stated by Tits in [4],
though the details remained unproven until the joint work with Weiss on Moufang
Polygons [8]. The classification of Moufang 4-gons was the hardest of all, and when
Tits and Weiss started to write it up, a hitherto unnoticed type came into being,
arising from groups of type F4.

Quadrangular algebras

Turning to this classification and the term quadrangular algebra, one should be
aware that Moufang 4-gons are also called Moufang quadrangles. They can be
divided into three classes:

(i) Those arising from classical groups.
(ii) Those arising from “mixed groups” (in which there are two imperfect fields

of characteristic 2, K and L, with K2 ⊂ L ⊂ K).
(iii) Those arising from quadrangular algebras.
There is some overlap here, in the sense that some classical groups arising from

pseudo-quadratic spaces can be obtained from quadrangular algebras (which Weiss
calls special), but I shall concentrate on the other, non-special ones. The most
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important of these arise from algebraic groups of types E6, E7, and E8. They are
k-forms of algebraic groups belonging to the following diagrams:

E6

E7

E8

The E6 one exists over the real numbers, though the E7 and E8 ones do not.
The quadrangular algebras in all these cases Weiss calls regular (but not special).
There is a further type that he calls defective arising from groups of type F4.
These are the most exotic of all—they involve purely inseparable field extensions
in characteristic 2—and Weiss only discovered them during the joint work with
Tits on the classification of Moufang 4-gons by investigating a strange lacuna that
shouldn’t have existed but did.

The classification of Moufang 4-gons by Tits and Weiss is related to this intrigu-
ing monograph in two ways. One is that the use of quadrangular algebras short-cuts
some of the methods in [8]. The other is that the concept is an analogue to the
octonion algebras, and quadratic Jordan division algebras of degree 3, that give rise
to Moufang 3-gons and 6-gons. In fact all the exceptional Moufang planes, quad-
rangles, and hexagons that do not arise from “mixed groups” (of characteristic 2 for
quadrangles or characteristic 3 for hexagons) come from octonions, quadrangular
algebras, or Jordan algebras.

A potential use for quadrangular algebras is to analyze two open questions. One
is the Kneser-Tits conjecture [6] that concerns the full group of ‘linear transfor-
mations’ of a building (e.g. GLn) factored out by the subgroup generated by root
groups (e.g. SLn). The conjecture is proved for all Moufang buildings except the
6-gons and 4-gons of type E8, in which case the group of ‘linear transformations’
is conjectured to be equal to the subgroup generated by root groups. For the E8

hexagons this can be rephrased as a question on quadratic Jordan algebras, and
for the E8 quadrangles it can now be rephrased in terms of quadrangular algebras.
Another open question about the E8 quadrangle concerns fields that are complete
with respect to a discrete valuation: is there, in such cases, an affine building that
yields the quadrangle as its structure ‘at infinity’?

In conclusion, there have been many results on finite generalized quadrangles
that fill a well-needed gap in the mathematical literature, but this monograph is
much deeper and will enable progress to be made in a difficult technical area where
some exotic forms of algebraic groups have hitherto been little understood.
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