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“If the area of a membrane be given, there must evidently be some form of
boundary for which the pitch (of the principal tone) is the gravest possible, and
this form can be no other than the circle,” wrote Lord Rayleigh in his book The
Theory of Sound ([R], vol. 1, §210). A membrane is a planar domain Ω, and its
principal tone is

√
λ1, with λ1 being the smallest number for which the problem

(1) ∆u + λu = 0, u(x) = 0 when x ∈ ∂Ω,

has a non-trivial solution u = u(x, y). Here, of course, ∆ is the Laplace operator, ∂Ω
is the boundary of Ω. Eigenvalues of the problem (1), enumerated in the increasing
order, are usually denoted by λk(Ω). For mathematicians, it took close to 50 years
to actually prove that, out of all domains Ω ⊂ R

n of given volume, λ1(Ω) is the
smallest for the ball (the Farber–Krahn theorem). Another sentence from the same
book, “when the edges [of a plate] are clamped, the form of the gravest pitch is
doubtless the circle,” became a theorem after more than 100 years. Nadirashvili
proved that out of all planar domains of given area, the smallest eigenvalue of
the bi-Laplacian ∆2 with the Dirichlet boundary conditions is minimal for the
circle. Ashbaugh and Benguria extended the theorem to domains in R

3; for higher
dimensions it is still an open problem.

Another problem is to study possible values for the gravest tone of a free mem-
brane. This is the square root of µ1(Ω), the smallest positive eigenvalue of the
Neumann Laplacian in Ω. The equation is the same as in (1), but the boundary
condition is different: the normal derivative of u vanishes on ∂Ω. For a rectangle,
µ1(Ω) = π2/l2 where l is its longest side, so in the class of domains of given area, µ1

can be made arbitrarily close to 0: take a long, thin rectangle. The relevant ques-
tion is how big µ1(Ω) can be. Szegö proved that out of all simply connected planar
domains of given area, µ1 is the largest for a circle. Later, Weinberger extended
the theorem to arbitrary domains in R

n.
The number of eigenvalues is infinite, so there is an infinite number of questions

to be asked. What is the smallest possible value of λk(Ω)? What is the largest
possible value of µk(Ω)? Then one can study different combinations of eigenvalues.
One can impose different constraints: fix, say, the diameter, not the area. One
can impose different boundary conditions. One can take different operators. One
can consider smaller classes of domains, or one can study domains on manifolds.
Not all the questions are equally interesting, but almost all of them are difficult.
A naive conjecture would be that, out of all domains of given volume, λk is the
smallest for the ball. This is already wrong when k = 2: the answer is the disjoint
union of two identical balls. If one insists on a domain to be connected, then there
is no minimizer. Bucur and Henrot proved that a minimizer exists for λ3. It is not
known what the shape of the minimizer is; a conjecture is the ball in dimensions 2
and 3, the disjoint union of two identical balls in higher dimensions. It is still not
known whether a minimizer for λk, k ≥ 4, exists. Going in a different direction,
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one can ask what N -gon of given area has the smallest value for λ1. The answer
is almost obvious – of course, the regular N -gon. However, for N ≥ 5, it is still an
open problem.

The variational formulation of the eigenvalue problem in terms of the Rayleigh
quotient R[u] =

∫
|∇u|2dx/

∫
|u|2dx lies at the center of the whole business. In

particular, λ1(Ω) is the minimal value of the Rayleigh quotient over all functions
that are equal to 0 on the boundary of Ω. Let me quote Rayleigh one more time:
“... much stress was laid upon the establishment of general theorems by means of
Lagrange’s method, and I am more than ever impressed with the advantages of this
procedure.” To prove the Farber–Krahn theorem, for example, what one needs to
do is construct for every function u(x) in Ω that vanishes on ∂Ω another function
u∗(x) in the ball B of the same volume, vanishing on ∂B, for which R[u∗] ≤ R[u].
This can be done by using spherical rearrangement: u∗(x) is a decreasing function
of the distance to the center of B such that the sets {x ∈ Ω : |u(x)| > t} and
{x ∈ B : u∗(x) > t} have the same measure for all values of t. The denominators
in the Rayleigh quotients for u and u∗ are the same, and for the numerators there
is Pólya’s inequality

∫
B

|∇u∗(x)|2dx ≤
∫

Ω

|∇u(x)|2dx.

One does not have to worry whether or not the function u(x) is positive: replacing
u(x) by |u(x)| does not result in any change in the Rayleigh quotient. For the
clamped plate problem, the situation is radically different. The numerator in the
Rayleigh quotient for that problem is

∫
|∆u|2dx, and for a typical function u(x) that

changes sign, ∆|u| is a distribution, not a square integrable function. For the proof
of the Farber–Krahn theorem one can actually make the spherical rearrangement
of the first eigenfunction only, and the first eigenfunction of the fixed membrane
problem does not change its sign. However, the first eigenfunction of the clamped
plate problem may well be of variable sign; this is what makes the problem more
difficult.

The simplest expressions that involve more than one eigenvalue are probably the
ratio of the second and the first eigenvalues and the difference between them. In
the case of the fixed membrane problem (1), these are λ2/λ1 and λ2 − λ1. The
advantage of the ratio is that it is scale invariant, and one does not have to impose
any additional constraints for a minimization/maximization problem. This is part
of a broader question: what is the range of the mapping Ω �→ {λk(Ω)}? Finding
the complete answer is probably hopeless, but we know that λ1 < λ2 (the ground
state of a connected domain cannot be multiple), we know that λk ∼ Ck2/n (Weyl’s
law), and the range of values of λ2/λ1 is one additional constraint on the sequence
{λk}. By taking long, thin rectangles, one can make λ2/λ1 arbitrarily close to 1.
Ashbaugh and Benguria proved that λ2(Ω)/λ1(Ω) is the largest when Ω is, not
surprisingly, a ball. For the difference λ2(Ω) − λ1(Ω) (it is called the fundamental
gap), the problem is to find its best possible lower bound for convex domains of
given diameter d. The conjecture is that the bound is 3π2/d2, and it is attained
on a sequence of thin rectangles (rectangular parallelepipeds) with the longest side
approaching d.
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One can study expressions that incorporate several eigenvalues or even all of
them. One of the most popular functions is the heat trace

hΩ(t) =
∞∑

k=1

e−tλk(Ω).

Luttinger proved that if B is the ball of the same volume as Ω, then hΩ(t) ≤ hB(t)
for all positive values of t. In the proof he used spherical rearrangement and the
Feynmann–Kac formula. Actually, he made the comparison between the heat trace
for a Schrödinger operator with a non-negative potential V (x) that grows at infinity
sufficiently fast and the heat trace for the Schrödinger operator −∆+V ∗(x), where
V ∗(x) is the increasing spherical rearrangement of V (x). Then one takes V (x) = 0
in Ω and V (x) = ∞ outside Ω. The second popular function is the ζ-function,

(2) ζΩ(z) =
∞∑

j=1

λj(Ω)−z.

The series (2) converges absolutely when �z > d/2, so ζΩ(z) is holomorphic in that
half-plane. The heat trace and the zeta function are related:

ζΩ(z) =
1

Γ(z)

∫ ∞

0

tz−1hΩ(t)dt.

In particular, this implies that ζΩ(s) ≤ ζB(s) when s is a real number and s > n/2.
In other words, the sums of powers of reciprocals of λk(Ω) are smaller than similar
sums for the ball of the same volume.

Conformal methods play an important role in the study of two-dimensional prob-
lems. Szegö used them to prove that the disc minimizes µ1(Ω)−1 + µ2(Ω)−1 in the
class of simply connected planar domains of given area (recall that µj ’s are positive
eigenvalues of the Neumann Laplacian). Hersch proved that the smallest positive
eigenvalue of the Laplace-Beltrami operator on a two-sphere cannot exceed that of
the operator for the round metric of the same area. The crucial observation is that
the numerator in the Rayleigh quotient,

∫
|∇u|2dx, is conformally invariant when

the dimension equals 2. Another, somewhat more sophisticated, problem where
the conformal methods are used is the study of the determinant. It is a classical
theorem due to Seeley that the zeta-function (2) extends to a meromorphic function
in the whole complex plane; moreover, z = 0 is its regular point. The determinant
of the Laplacian on a Riemannian manifold is defined as exp(−ζ ′(0)). Osgood,
Phillips, and Sarnak proved in [OPS] that in a given conformal class of metrics on
a surface, the metric of constant curvature has maximal determinant. In particular,
this gives a proof of the uniformization theorem.

There are several books on isoperimetric inequalities that touch on spectral prob-
lems. First the famous book [PS] by Pólya and Szegö, then a book [B] by C. Bandle.
Both books treat variational problems for different physical quantities associated
to a domain: natural frequencies is an important example, but it is not the only
example. The book under review is probably the first book with an exclusive em-
phasis on variational problems for eigenvalues of elliptic operator. The literature
on the subject is extensive, and there has been significant progress made in the last
25 years, so the idea of writing a book was more than justified.

The book covers many variational problems, though it is not encyclopedic. The
author formulates 30 open problems; some of them are well known, some of them are
more obscure. It is a pity that conformal methods are mentioned only in passing,
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but this is one of the choices that the author had to make. Unfortunately, the
author chose to omit proofs of many important facts. Even Pólya’s inequality that
lies at the heart of the whole business is given without proof. In many cases, the
proofs are just sketched. Sometimes they are a bit murky. One can find incorrect
statements in the book. It is easy to construct a counterexample to the statement of
Remark 2.3.5. In the “proof”, the author mixes pointwise convergence with uniform
convergence. Theorem 6.3.1 claims that the disk minimizes the sum of reciprocals
of λj(Ω) over all planar domains Ω of given area. This sum is always infinite. The
theorem is attributed to Luttinger. There is nothing like that in [L]. Some of
the terminology, like “a basis of a triangle”, “a mediator of a side of a triangle”,
or “derivable function”, is unorthodox. Strong convergence of operators is called
“simple convergence”, and convergence in norm is called “strong convergence”.

I think that the book will be useful for the experts. It is convenient to have
many facts and open problems collected in one place. I would be very cautious in
recommending the book to somebody who wants to learn the material. For that
purpose, I would still recommend [PS], [B], and the original papers.
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