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MR0173993 (30 #4200) 53.04

Nitsche, Johannes C. C.
On new results in the theory of minimal surfaces.
Bull. Amer. Math. Soc. 71 (1965), 195–270.

In this expository article a rather impressive array of evidence is gathered show-
ing that minimal surfaces still furnish a rich source of results and problems, despite
the fact that so many generations of mathematicians have considered them and so
much progress was made in the 1930’s by Douglas, Rado, and others. The account
is sufficiently comprehensive to be of real value to experts in the subject, and at the
same time is sufficiently non-technical and provides enough historical background
to interest a much wider audience.

Among the “new results” surveyed, a considerable number concern nonparamet-
ric minimal surfaces, i.e., surfaces of the type z = z(x, y) satisfying the minimal
surface equation. Among the topics included are the following: nonsolvability of the
minimal surface equation over a nonconvex domain with arbitrary Dirichlet bound-
ary data, removability of singularities, Bernstein’s theorem for complete minimal
surfaces, and a priori estimates for first order partial derivatives and for the Gauss
curvature.

Among the topics covered about minimal surfaces given parametrically are the
question of branch points, analyticity of minimal surfaces across analytic boundary
arcs, doubly connected minimal surfaces and complete minimal surfaces. A list of
50 research problems is included.

Up to now comparatively few results about minimal k-dimensional surfaces have
been proved when k > 2. Nevertheless, it would have been desirable in such a
comprehensive survey to have a better account of the recent important work in this
direction of Reifenberg [Acta Math. 104 (1960), 1–92; MR0114145 (22 #4972);
Ann. of Math. (2) 80 (1964), 1–14; MR0171197 (30 #1428); ibid. (2) 80 (1964),
15–21; MR0171198 (30 #1429)] and of De Giorgi [“Frontiere orientate di misura
minima”, Sem. Mat. Scuola Norm. Sup. Pisa, 1961]. It must also be pointed
out that in its strongest form the Plateau problem is to find a minimal surface S
spanning a given boundary curve C such that S is without singular points (i.e.,
branch points). In this form, the problem was never solved until Reifenberg’s Acta
Math. paper [loc. cit.].

From MathSciNet, January 2008
W. H. Fleming

MR0428181 (55 #1208a) 49F22 (58A99)

Taylor, Jean E.
The structure of singularities in soap-bubble-like and soap-film-like
minimal surfaces.
Ann. of Math. (2) 103 (1976), no. 3, 489–539.
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MR0428182 (55 #1208b) 49F22 (58A99)

Taylor, Jean E.
The structure of singularities in solutions to ellipsoidal variational
problems with constraints in R3.
Ann. of Math. (2) 103 (1976), no. 3, 541–546.

More than 100 years ago Plateau, in his experimental study of compound soap
films and soap bubbles, recorded the following “laws” governing their geometric
structure: A compound soap-film-like surface always consists of smooth interfaces
which are joined together along “singular arcs” where three interfaces meet at equal
angles and at “singular vertices” where six interfaces and four singular arcs are
brought together at equal angles. Using a mathematical model for surfaces which
is sufficiently general to cover (the mathematical idealizations of) many actual com-
pound surfaces governed by surface tension and additional forces the author proves
for the first time that the branching types described by Plateau are indeed the only
ones which can occur (and, in fact, do occur in the mathematical model). More-
over, the local structure of the model surfaces near their singular set is completely
analyzed with the result that, near a singular point, every surface can be obtained
from its tangent cone at that point by a Hölder continuously differentiable diffeo-
morphism of the ambient space. The results of these papers are certainly among
the most significant contributions to the mathematical theory of soap films in this
century. (They had been announced previously [Bull. Amer. Math. Soc. 81
(1975), no. 6, 1093–1095; MR0388223 (52 #9060)].)

The mathematical model for compound surfaces used are the (ξ, δ) minimal sets
of F. J. Almgren, Jr. [Mem. Amer. Math. Soc. 4 (1976), no. 165 (1976);
MR0420406 (54 #8420)]. Here δ is a positive constant, ξ : R+ → R+ ∪ {0} is a
function of type ξ(r) = Crα with C ≥ 0, α > 0, and a set S ⊂ R3 is (ξ, δ) minimal
with respect to a closed “boundary” (or “obstacle”) B ⊂ R3 if S satisfies some
technical conditions (e.g., S is (H2, 2) rectifiable and equals the closure relative to
B of its H2-essential points) and has the following property: Whenever ϕ : R3 → R3

is Lipschitz and equals the identity outside some ball W in R3 ∼ B of radius r < δ,
then H2(S ∩ W ) ≤ (1 + ξ(r))H2(ϕ(S ∩ W )). Here, H2 denotes two-dimensional
Hausdorff measure on R3. Thus, inside balls of sufficiently small radius r the
surface S is “nearly area-minimizing” in the sense that passing to the image of
S by a Lipschitz map ϕ as above cannot decrease area by a factor larger than
1 + ξ(r). The property of being (ξ, δ) minimizing is considerably weaker than
any local area-minimizing property of S. On the other hand, it is not true, in
general, that the image of a mapping from some planar domain into R3 which locally
minimizes the area integral is (ξ, δ) minimal for some ξ and δ; hence the results of
the papers under review do not apply to such “classical minimal surfaces”. (Indeed,
the image of an area-integral-minimizing mapping which is not an embedding always
has transversal self-intersections, a kind of singularity that cannot occur in actual
compound soap-films.) Almgren [op. cit.] has shown that the solutions to a
variety of geometric and physical variational problems for surfaces of arbitrary
dimension and codimension are (ξ, δ) minimal with suitable ξ and δ and he has
proved regularity almost everywhere of (ξ, δ) minimal sets. His theory includes the
description, by variational conditions, of compound soap films subject to exterior
forces like gravity and to additional conditions such as maintaining the volume
enclosed by certain interfaces.



SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS 305

The results of the first paper completely clarify the local structure of two-
dimensional (ξ, δ) minimal sets in R3. To state them precisely, let D denote
the closed unit disc in R2 × {0} ⊂ R3, denote by Y the union of the half-disc
D∩{(x1, x2, x3) : x2 ≥ 0} with its rotations about the x1-axis by 120◦ and by 240◦

and define T as the intersection of the closed unit ball in R3 with the infinite cone
from the origin of R3 through the one-skeleton of a regular tetrahedron centered
at the origin. Main result: If S is (ξ, δ) minimal with respect to B and p ∈ S, then
there exists a Hölder continuously differentiable diffeomorphism f from the closed
unit ball in R3 onto a closed neighborhood N of p in R3 ∼ B such that either
S ∩ N = f(D) or S ∩ N = f(Y ) or S ∩ N = f(T ); in the latter cases f can be
chosen to be conformal on the singular set of Y [T ].

The first step in the proof is the classification of possible tangent cones to S. It
is shown that rectifiable tangent cones exist at every point p ∈ S (not necessarily
unique, a priori). From (ξ, δ) minimality of S one infers that tangent cones are
area-minimizing with respect to their intersection with the unit sphere in R3. (All
tangent cones are translated to the origin and intersected with the closed unit
ball.) This fact, in turn, implies that the intersection of a tangent cone with the
unit sphere is a “120◦-net”, i.e., a union of great circle segments intersecting three
at a time at a finite number of points and with angles 120◦ to each other at the
intersection points. The 120◦-nets on the unit sphere have been classified; up to
isometry they are (1) a single great circle, (2) three half great circles having common
end points, (3) the one-skeleton of a regular spherical tetrahedron, (4) [(5)] the
one-skeleton of a spherical cube [regular dodecahedron] (6) [(7)] the one-skeleton
of a spherical prism over a 120◦ triangle [regular pentagon], (8), (9), (10) three
“irregular” ones having quadrangles and non-equilateral pentagons. {The history
of this classification is quite interesting. The first attempt was made by Lamarle in
connection with investigations of the shape of soap films as early as 1864; however,
the tenth net eluded Lamarle. The correct classification was given by Heppes in
1964 who was apparently unaware of its relation to the geometry of soap films.}
It turns out that only the cones corresponding to the first three nets can be area-
minimizing, i.e., only rotations of D, Y and T can occur as tangent cones. At the
end of the first paper it is shown that T must indeed occur as a tangent cone to
some (ξ, δ) minimal set and is hence area-minimizing. The corresponding fact for
Y has been proved earlier by the author and is obvious for D.

The classification of tangent cones clarifies the infinitesimal structure of S near a
singular point p. The main result of the first paper is, however, the determination of
the local structure of S near p. This amounts to a proof of regularity of S near the
singular set and requires deep methods which can only be touched upon here. The
idea is to show that Almgren’s estimates [op. cit.] for the Hölder norm of the deriva-
tives of suitable non-parametric representations of S near a regular point q (i.e., the
tangent cone at q is a disc) hold uniformly as q approaches the singular point p. The
basic ingredient one needs for this purpose is an estimate of type ep(r) ≤ crµ with
positive c and µ for the “excess” ep(r) = r−2H2(S∩B(p, r))−dp, where B(p, r) is the
ball of radius r centered at p and dp = limr→0+[H2(D∩B(0, r))]−1H2(S∩B(p, r)).
The uniqueness of tangent cones follows immediately from such an inequality. The
estimate for the excess is derived from the “epiperimetric inequality” which is sim-
ilar to previous inequalities by E. Reifenberg [Ann. of Math. (2) 80 (1964), 1–
14; MR0171197 (30 #1428)] and the author [Invent. Math. 22 (1973), 119–139;
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MR0333903 (48 #12225)]. The epiperimetric inequality is proved by an intricate
contradiction argument. Therefore, one can only conclude the existence of some
positive µ and c such that ep(r) ≤ crµ and, as a consequence, one cannot give an
explicit lower bound for the Hölder exponent of the derivative of the diffeomorphism
f in the main result.

In the second paper it is shown that the results of the first paper extend to ellip-
soidal integrands on R3, i.e., to the area integrand corresponding to an arbitrary
Hölder continuous Riemannian metric on R3.

{The fact that the cones corresponding to the 120◦-nets (4)-(10) are not area-
minimizing can also be verified experimentally by dipping wire models of the nets
into a soap solution. Only for nets (1), (2) and (3) will the resulting compound
soap film be a cone. The configurations one obtains in the other cases are indicated
by figures in the first paper. Beautiful illustrations and photographs of soap films,
in particular of the ten 120◦-nets and the soap films corresponding to them, can be
found in the article by F. J. Almgren, Jr. and the author [Scientific American 235
(1976), no. 1, 82–93]. The most striking soap film configurations the reviewer has
ever seen arise when one blows a soap bubble into one of the 120◦-wire-nets, such
that the net comes to lie on the surface of the bubble, and then extracts the air
slowly; the configuration will, to a certain degree, approach the cone corresponding
to the net and, in case this cone is not area-minimizing, it will switch to a quite
different shape as soon as the remaining enclosed volume drops below a certain
critical value.}
From MathSciNet, January 2008

Klaus Steffen
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Giusti, Enrico
Minimal surfaces and functions of bounded variation.
Monographs in Mathematics, 80.
Birkhäuser Verlag , Basel , 1984. xii+240 pp. ISBN 0-8176-3153-4

This book deals with Plateau’s problem, which is to find a hypersurface of least
area spanning a given boundary. It was only in 1930/31 that a solution of this old
problem was found by Douglas and Radó for surfaces in R3, and it took another 30
years until the higher-dimensional case was attacked by means of measure-theoretic
methods. Pioneers of these new methods were De Giorgi, Reifenberg, Fleming,
Almgren and Federer.

The first part of this book is devoted to the representation of De Giorgi’s ap-
proach to the parameteric minimal surfaces, while the second part deals with non-
parametric surfaces. De Giorgi defined hypersurfaces admissible for the Plateau
problem as boundaries of Caccioppoli sets. These are Borel sets E in Rn with the
property that the distributional derivative DϕE of the characteristic function ϕE is
a Radon measure of locally bounded total variation. The perimeter of a Caccioppoli
set E in a bounded open set Ω in Rn is defined as the total variation of DϕE on Ω:

P (E, Ω) =
∫

Ω

|DϕE | = sup{
∫

E

div g : g ∈ C1
c (Ω,Rn), |g| ≤ 1}.

With this weakened notion of “surface” the Plateau problem is easy to solve in the
following sense: Theorem (existence of a weak solution): Let a bounded open set
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Ω and a Caccioppoli set L in Rn be given. Then in the class of Caccioppoli sets
{E : E\Ω = L\Ω} there exists a set of least perimeter in Ω, called a minimal set in
Ω.

The proof of the regularity almost everywhere, however, requires rather hard
work. For this the notion of the reduced boundary ∂∗E of a set E is introduced as
the set of points x ∈ Rn for which there exists a generalized unit normal vector ν(x)
as the limit as r → 0 of the vectors νr(x) =

∫
B(x,r)

DϕE/
∫

B(x,r)
|DϕE |. Theorem

(partial regularity): For any minimal set E in Ω the reduced boundary Ω ∩ ∂∗E is
an analytic hypersurface and the singular set Ω∩(∂E\∂∗E) has (n−1)-dimensional
Hausdorff measure 0.

The tools for the proof of these results are provided in the first 8 chapters. In
Chapters 1–4 properties of functions of bounded variation are derived, in partic-
ular compactness, semicontinuity of the total variation, approximation by smooth
functions and traces. The regularity proof covers Chapters 5–8. Chapters 9–11 are
devoted to the investigation of the singular set. For every point x0 ∈ ∂E there
exists the tangent cone C as Lloc

1 -limit of a suitable sequence of the expanding sets
Et = {x ∈ Rn : x0 + t(x − x0) ∈ E} as t → 0. The tangent cone is minimal if E is
minimal in a neighbourhood of x0, and x0 belongs to the reduced boundary if and
only if ∂C is a hyperplane.

Theorem (Almgren, Simons): Let F be a cone in Rn whose boundary is smooth
outside the vertex. If the first and second variations of area of ∂F satisfy δA = 0
and δ2A ≥ 0, then ∂F is a hyperplane for n ≤ 7. n = 7 is optimal (Bombieri,
De Giorgi, Giusti). Therefore, for n ≤ 7 the boundary Ω∩ ∂E of every minimal set
E in Ω ⊂ Rn is analytic. This result is completed by another theorem (Federer):
The s-dimensional Hausdorff measure of the singular set vanishes for any s > n−8.

Part 2 of the book deals with nonparametric minimal surfaces, i.e. graphs of
functions u : Ω ⊂ Rn → R in Rn+1. By minimizing the area integrand on the
space of functions with bounded Lipschitz constant, by using barriers and a gradient
estimate, the following result is obtained (Chapters 12, 13): Theorem (M. Miranda):
If ∂Ω has nonnegative mean curvature, the nonparametric Plateau problem has a
unique solution, which is as smooth as the data allow.

In Chapters 14–16 the nonparametric problem is also attacked by using func-
tions of bounded variation, whereby more general boundaries can be allowed. Fi-
nally Chapter 17 is devoted to the Bernstein problem. Bernstein’s famous theorem
from 1915 for entire minimal surfaces in R3 has the following extension. Theorem
(Fleming): For n ≤ 7 the boundary of every minimal set in Rn is a hyperplane.
Again, n = 7 is optimal.

These remarkable results arise from a most fruitful period in the theory of higher-
dimensional minimal surfaces. This book gives at first a comprehensive and self-
contained representation of this important development. The reading requires only
a “fairly good knowledge of general measure theory and some familiarity with the
theory of elliptic partial differential equations”. It is facilitated by a well-balanced
notation. In its entirety, the book is, in the opinion of the reviewer, a masterpiece
of clear (and aesthetic) representation of highly nontrivial analysis.

From MathSciNet, January 2008
Helmut Kaul


