
BOOK REVIEWS

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 45, Number 3, July 2008, Pages 439–444
S 0273-0979(07)01166-4
Article electronically published on August 3, 2007

Valuations, orderings and Milnor K-theory, by Ido Efrat, Mathematical Surveys
and Monographs, vol. 124, American Mathematical Society, Providence, RI,
2006, xiv+288 pp., US$60.00, ISBN 978-0-8218-4041-2

The book is divided into four parts: Abelian Groups, Valuations and Orderings,
Galois Theory, and K-Rings. In my review I will concentrate on the last part,
where, it seems to me, the essential motivation for writing the book is to be found.
I will of course, at the same time, present my own views as to why this particular
mix of topics is interesting.

In the book one encounters most of the things one might expect to find in an
introductory book on valuation theory, but this is combined and integrated with
the study of orderings (insofar as this is reasonable and convenient), and there is
an emphasis on facets of the subject that have been developed or have taken on
new significance recently, because of their connection to Milnor K-theory (and, by
extension, to quadratic form theory and Galois cohomology). The presentation is
self-contained, making the book easily accessible to students.

The Milnor ring of a field F [Mi] is the graded ring K∗(F ) defined as follows:
K∗(F ) = ⊕∞

r=0Kr(F ) where K0(F ) = Z, K1(F ) = the group F×, but written
additively (i.e., K1(F ) = {�(a) | a ∈ F×} with �(a) + �(b) := �(ab)), and Kr(F ) =
the tensor product over Z of r copies of K1(F ) modulo the subgroup generated by
all �(a1) ⊗ · · · ⊗ �(ar) with 1 = ai + aj for some i �= j, for r ≥ 2. In the book, the
distinguished element ε := �(−1) ∈ K1(F ) is considered to be an integral part of
the structure. Multiplication on K∗(F ) is induced by ⊗. This satisfies{

�(a)2 = ε�(a) = �(a)ε and
�(a)�(b) = −�(b)�(a),

for all a, b ∈ F×. Because of the way K∗(F ) is described, in terms of generators
and relations, K∗(F ) is completely determined by the groups Ki(F ), i = 1, 2, the
multiplication K1(F )×K1(F ) → K2(F ), and the distinguished element ε ∈ K1(F ).

In the book, certain ‘relative’ Milnor rings K∗(F )/S are considered, where S is
a subgroup of F×. These relative Milnor rings can be understood in the general
context of multifields introduced just recently in [M2]. A multifield is a structure
just like a field, except that the addition is multivalued. If F is a field (or multifield)
and S is a subgroup of F×, we can form the quotient multifield F/mS. Declare
a, b ∈ F to be equivalent if as = bt for some s, t ∈ S. Denote the equivalence
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class of a ∈ F by a. F/mS is just the set of equivalence classes {a | a ∈ F} with
multifield structure induced by the field structure on F , i.e., 0 = 0, 1 = 1, −a = −a,
a + b = {c | cs = at + bu for some s, t, u ∈ S}, ab = ab. (If F is only assumed to
be a multifield, one should replace the condition cs = at + bu by the corresponding
multifield condition cs ∈ at + bu.) As a set, F/mS is just F×/S ∪ {0}. If F is any
multifield, one can define the Milnor ring K∗(F ) exactly as before. (Just replace
the condition 1 = ai +aj in the definition by the corresponding multifield condition
1 ∈ ai + aj .) Multifields form a category in a natural way and F � K∗(F ) defines
a functor on this category. (A suitable target category, the so-called category of
κ-structures, is defined in the book.) For any subgroup S of F×, the relative Milnor
ring K∗(F )/S is just the Milnor ring K∗(F/mS).

There is special interest in the subgroups (F×)n := {an | a ∈ F×}, n ≥ 1.
As one might expect, the homogeneous part of degree r of K∗(F )/(F×)n is just
Kr(F )/nKr(F ) if r ≥ 1. This is not true however for r = 0 (since, by definition,
the homogeneous part of degree zero is always Z).

One sees the connection between orderings, valuations and quadratic forms al-
ready in the classical work of Hasse and Minkowski on quadratic forms over number
fields (finite extensions of Q). The paper of Pfister [Pf] exploits Artin-Schreier the-
ory to understand the relationship between orderings and quadratic forms over an
arbitrary field F , char(F ) �= 2. One typically studies quadratic forms over a field
F , char(F ) �= 2, by studying the Witt ring W (F ) of all Witt equivalence classes
of (non-degenerate) quadratic forms over F ; see [Pf] or [W]. At the same time,
it is well-known that the ring W (F ) carries precisely the same information about
F as the relative Milnor ring K∗(F )/(F×)2: If F1, F2 are fields, char(Fi) �= 2,
i = 1, 2, then W (F1) ∼= W (F2) as rings iff K∗(F1)/(F×

1 )2 ∼= K∗(F2)/(F×
2 )2 as

graded rings with distinguished element.1 It is important to say, though, that it
is often a highly non-trivial problem to translate results about W (F ) into results
about K∗(F )/(F×)2 (or the other way around).

There is also the connection with Galois cohomology: Fix a positive integer n
and a field F with char(F ) � n. Denote by Fsep the separable closure of F , µn

the group of n-th roots of unity in Fsep and GF the Galois group of Fsep over F .
Recently, Voevodsky [V2] announced a proof of the Block-Kato conjecture: The
natural group homomorphism

Kr(F )/nKr(F ) → Hr(GF , µ⊗r
n )

induced by the cup product is an isomorphism, for all r ≥ 1. When n = 2 this is
the Milnor conjecture, which was proved in [V1]. The case r = 1 is immediate from
Hilbert’s ‘Satz 90’. The case r = 2 was proved earlier in [M-S]. Suppose now that
n = p, p prime, and µp ⊆ F× (this includes the case n = 2). Fixing a generator ξp

of µp, one sees that µp is identified with Z/pZ (as a GF -module), and H2(GF , µ⊗2
n )

is identified with H2(GF , Z/pZ), which is the p-torsion part of the Brauer group
of F . The isomorphism from K2(F )/pK2(F ) to H2(GF , Z/pZ) sends the class of
�(a)�(b) to the cyclic algebra generated by i, j subject to ip = a, jp = b, ij = ξpji.
I should say, also, that H2(GF , Z/pZ) is identified by H2(GF (p), Z/pZ) by the
inflation map, where GF (p) is the Galois group of the maximal pro-p extension of
F .

1K∗(F1)/(F×
1 )2 and K∗(F2)/(F×

2 )2 can be isomorphic as graded rings without being isomor-

phic as graded rings with distinguished element. K∗(F1)/(F×
1 )2 and K∗(F2)/(F×

2 )2 are isomor-

phic as graded rings iff the associated Witt-Grothendieck rings are isomorphic.
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An interesting feature of the category of multifields is that products exist in
certain cases. For example, if Fi, i = 1, . . . , k are multifields satisfying 1 − 1 =
Fi for each i, then the product multifield

∏k
i=1 Fi is defined (as a set it is just∏k

i=1 F×
i ∪ {0}) and, as one might expect,

K∗(
k∏

i=1

Fi) =
k∏

i=1

K∗(Fi).

In the field case, multifield products arise rather naturally: Suppose F is a field and
S1, . . . , Sk are subgroups of F× which are open in pairwise distinct V -topologies
on F and ∃ positive integers ni such that (F×)ni ⊆ Si, i = 1, . . . , k. Then the
multifield product

∏k
i=1(F/mSi) is defined and, using the approximation theorem

for V -topologies, the natural map F/m(∩k
i=1Si) →

∏k
i=1 F/mSi is a multifield

isomorphism, so, in particular,

K∗(F )/(∩k
i=1Si) ∼=

k∏
i=1

K∗(F )/Si.

The origins of this important result can be seen already in the number field case.
Working in the general content of V -topologies allows one to handle orderings and
valuations simultaneously.

Assume, from now on, that n is a fixed positive integer, F is a field, char(F ) � n,
S is a subgroup of F× and (F×)n ⊆ S. What can we say about the structure
of K∗(F )/S? To what extent do orderings and valuations control this structure?
There are two cases I know of where there are some answers:

(1) F×/S is finite.
(2) S is closed under addition.

Case (2) is just the case where S is a preordering of higher level; see [B-R]. If n = 2
this is just a preordering in the usual sense; see [B-B] or [L]. I will concentrate here
on case (1), turning briefly to case (2) at the end.

To keep things simple, let’s assume further that n = 2, i.e., (F×)2 ⊆ S and
char(F ) �= 2. To get some idea of what sort of structures one might expect, sup-
pose we have managed somehow to find subgroups S1, . . . , Sk of F× which are open
in pairwise distinct V -topologies such that S = ∩k

i=1Si. By our above analysis,
F/mS ∼=

∏k
i=1 F/mSi and K∗(F )/S ∼=

∏k
i=1 K∗(F )/Si, so we are reduced immedi-

ately to the case k = 1 and S = S1. Our V -topology comes from an archimedean
absolute value or a valuation. If it comes from an archimedean absolute value,
then either S is an archimedean ordering or S = F×. Each of these cases is rather
trivial. If S is an ordering (archimedean or not), then F/mS = {−1, 0, 1} with
addition satisfying 1 + 1 = 1, 1 − 1 = {−1, 0, 1}. We denote this multifield by L1.
(Its structure does not depend on the field and ordering we pick.) If S = F×, then
F/mS = {0, 1} with addition satisfying 1 + 1 = {0, 1}. We denote this multifield
by L0. The associated κ-structures, κi := K∗(Li), i = 0, 1, are easy to compute.

Suppose now that the V -topology comes from a valuation v. Typically v is not
unique. Fix some such v and denote the residue field by F . Suppose first that
char(F ) �= 2. One way to ensure that S is open is to require 1 + mv ⊆ S. Suppose
this is the case. (This assumption is not quite as far-fetched as it might appear. For
example, if the valued field (F, v) is Henselian, then it is automatically the case.)
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Then we have a natural short exact sequence of groups

0 → F
×

/S → F×/S → v(F×)/v(S) → 0.

One checks from this, using elementary valuation theory, that the structure of
the multifield F/mS is completely determined by the structure of the residue
multifield F/mS and the group v(F×)/v(S). This implies, in turn, that the κ-
structure K∗(F )/S is completely determined by the κ-structure K∗(F )/S and
the group v(F×)/v(S). (It is what is called the extension of K∗(F )/S by the
group v(F×)/v(S).) Of course, it could be that v(S) = v(F×), in which case
K∗(F )/S ∼= K∗(F )/S. But, if we are lucky and this is not the case, then we can
proceed by induction on |F×/S|.

The case char(F ) = 2 is a bit different. Here, a reasonable way to ensure that
S is open is to require that 1 + 4mv ⊆ S. Suppose, for example, that F is a finite
extension of Q2, v is the unique extension of the 2-adic valuation, and S = (F×)2.
In this case we do have 1 + 4mv ⊆ S, and F/mS is one of the so-called dyadic local
types L2k,i, L2k−1, k ≥ 2, i ∈ {0, 1}; see the survey paper [M1] for the definitions.
(If [F : Q2] is even, we get L2k,i where 2k = [F : Q2] + 2 and

i =

{
0 if

√
−1 ∈ F×

1 if
√
−1 /∈ F× .

If [F : Q2] is odd, we get L2k−1 where 2k − 1 = [F : Q2] + 2. To understand what
is going on here one needs to know some local classfield theory.) The associated
κ-structures are denoted by κ2k,i, κ2k−1, k ≥ 2, i ∈ {0, 1}.

Thus we see that, modulo various unwarranted assumptions, K∗(F )/S is either
κ0 or it is a finite product of (one or more) κ-structures, each of which is either κ1,
an extension of something simpler, or one of the dyadic local types κ2k,i, κ2k−1,
k ≥ 2, i ∈ {0, 1}.2 The class of elementary types is the smallest class of κ-structures
containing κi, i ∈ {0, 1}, κ1,1 and the dyadic local types κ2k,i, κ2k−1, k ≥ 2,
i ∈ {0, 1} and closed under formation of finite products and extensions by a finite
group of exponent 2. It is known that if K∗(F )/S is of elementary type, then so
is K∗(F )/S′, for any S′ ⊇ S. The elementary type conjecture (at least, a version
of it) is that K∗(F )/(F×)2 is of elementary type, for any field F , char(F ) �= 2,
with |F×/(F×)2| < ∞. Various people have worked on this; see the survey paper
[M1]. On the positive side, it is known that every elementary type is realized by a
field, i.e., has the form K∗(F )/S for some field F , char(F ) �= 2 and some subgroup
S of F×. It is even possible to arrange things so that S = (F×)2, if we want.
The construction of the field F involves lots of valuation theory; see [Ku]. Also, the
structure of elementary types is well-understood. For example, given d ≥ 0, one can
count the number of non-isomorphic elementary types K∗(F )/S with |F×/S| = 2d.
Actually, we get two numbers e(d), e(d) here, depending on whether we view the
κ-structures as graded rings with distinguished element or just as graded rings.

2Actually, it is necessary to include an additional building block, κ1,1 = K∗(L1,1), where
L1,1 = {−1, 0, 1} with addition satisfying 1 + 1 = {−1, 1}, 1− 1 = {−1, 0, 1}. This is the same as

the extension of κ0 by a cyclic group of order 2, but the distinguished element is not the same.
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Both numbers are useful; e.g., see [Mi-S]. Here are the first few values:

d e(d) e(d)
0 1 1
1 3 2
2 6 5
3 17 15
4 51 47
5 155 145
6 492 470

There has also been work on the related problem of detecting valuations from their
K-theoretic ‘footprints’. (E.g., if K∗(F )/S decomposes somehow, as an extension
or product, is it possible to find valuations witnessing this fact?) Bröcker’s trivial-
ization theorem for fans [B2] is an early result of this type. More recent results of
this sort are found in [A-E-J] and [J-W2]. These results are applied, in [J-W1] and
[J-W2], to understand the structure of the Galois group GF (2), for K∗(F )/(F×)2 of
elementary type. (Roughly, products correspond to free products of Galois groups,
extensions correspond to certain semi-direct products of Galois groups, and dyadic
local types correspond to Demushkin pro-2 groups.) More recently still, beginning
with the papers [E], [H-J] and [Ko], the conjecture, as well as parts of the theory,
have been extended to the case n = p, p an odd prime (assuming µp ⊆ F×). I
should say that, for n = p, p prime, the elementary type conjecture is known to be
true for |F×/(F×)p| = pd, where{

d ≤ 5 if p = 2
d ≤ 4 if p �= 2

.

In case (2) one has satisfactory answers, valid for any even n, but they are phrased
in terms of the higher level reduced Witt ring WS(F ) rather than in terms of the
relative Milnor ring K∗(F )/S. What one gets is certain local-global principles,
relating the structure of WS(F ) to the structure of the various quotients WS′(F ),
where S′ is a preordering of higher level, S ⊆ S′ and |F×/S′| < ∞. In particular,
one has a local-global principle for reduced isotropy and a representation theorem
for the reduced Witt ring. There are also valuation-theoretic formulations of these
results. See [B-B] for the case n = 2, [B-R] for the general case. See [B1] and [Pr]
for earlier formulations of the local-global principle for reduced isotropy. It is not
clear, to me at least, how one goes about translating these results about WS(F ) into
results about K∗(F )/S, at least if n > 2. Despite this, it seems that the arguments
in [Po] do imply, for subgroups S of F× satisfying both (1) and (2), K∗(F )/S is of
elementary type (in a suitably generalized sense), for any even n. For n = 2 this
was known earlier; see [C] or [Ku].
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[B1] L. Bröcker, Zur Theorie der quadratischen Formen über formal reellen Körpern, Math.
Ann. 210 (1974), 233–256. MR0354549 (50:7027)

http://www.ams.org/mathscinet-getitem?mr=0910395
http://www.ams.org/mathscinet-getitem?mr=0910395
http://www.ams.org/mathscinet-getitem?mr=0506029
http://www.ams.org/mathscinet-getitem?mr=0506029
http://www.ams.org/mathscinet-getitem?mr=0778463
http://www.ams.org/mathscinet-getitem?mr=0778463
http://www.ams.org/mathscinet-getitem?mr=0354549
http://www.ams.org/mathscinet-getitem?mr=0354549


444 BOOK REVIEWS

[B2] , Characterization of fans and hereditarily Pythagorean fields, Math. Z. 151 (1976),
149–163. MR0422233 (54:10224)

[C] T. Craven, Characterizing reduced Witt rings of fields, J. Algebra 53 (1978), 74–96.
MR0480332 (58:505)

[E] I. Efrat, Orderings, valuations and free products of Galois groups, Sém. Struct. Alg.
Ordonnées 54, Univ. Paris 7 (1995).

[H-J] Y.S. Hwang, B. Jacob, Brauer group analogues of results relating the Witt ring to valu-

ations and Galois theory, Canad. J. Math. 47 (1995), 527–543. MR1346152 (97a:12004)
[J-W1] B. Jacob, R. Ware, A recursive description of the maximal pro-2 Galois group via Witt

rings, Math. Z. 200 (1989), 379–396. MR0978598 (90b:11127)
[J-W2] , Realizing dyadic factors of elementary type Witt rings and pro-2 Galois groups,

Math. Z. 208 (1991), 193–208. MR1128705 (92h:11032)
[Ko] J. Koenigsmann, From p-rigid elements to valuations (with a Galois-characterization of

p-adic fields), J. Reine Angew. Math. 465 (1995), 165–182. MR1344135 (96m:12003)
[Ku] M. Kula, Fields with prescribed quadratic form schemes, Math. Z. 167 (1979), 201–212.

MR0539104 (80f:10024)
[L] T.-Y. Lam, Orderings, valuations and quadratic forms, CBMS 52, Amer. Math. Soc.,

1983. MR0714331 (85e:11024)
[M1] M. Marshall, The elementary type conjecture in quadratic form theory, Cont. Math. 344

(2004), 275–293. MR2060204 (2005b:11046)
[M2] , Real reduced multirings and multifields, J. Pure and Applied Algebra 205 (2006),

452–468. MR2203627 (2006k:14110)
[M-S] A.S. Merkurjev, A.A. Suslin, K-cohomology of Severi-Brauer varieties and the norm

residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 1011–1046 (Russian);
Math. USSR Izv. 21 (1983), 307–340 (English translation). MR0675529 (84i:12007)

[Mi] J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math. 9 (1970), 318–344.
MR0260844 (41:5465)
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