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1. Some history

Serious work on groups generated by reflections began in the nineteenth century.
In 1852 Möbius determined the finite subgroups of O(3) generated by isometric
reflections on the 2-sphere (or equivalently, by orthogonal linear reflections on R3).
He showed that the fundamental domain for such a group on the 2-sphere was a
spherical triangle with angles π

p , π
q , π

r , with p, q, r integers ≥ 2. Since the sum of
the angles in a spherical triangle is greater than π, we must have 1

p + 1
q + 1

r > 1.
For p ≥ q ≥ r the only possibilities for (p, q, r) are (p, 2, 2) for any p ≥ 2 and
(p, 3, 2) with p = 3, 4 or 5. The last three cases are the symmetry groups of the
Platonic solids (the tetrahedron, cube or dodecahedron, respectively). Subsequent
work of Riemann and Schwarz on hypergeometric functions showed the existence
of groups generated by reflections across the edges of triangles with angles integral
submultiples of π in either the Euclidean or hyperbolic plane. By the end of the
nineteenth century, in connection with their work on automorphic forms, Klein and
Poincaré had studied other groups generated by isometric reflections across the
edges of polygons (with 3 or more edges) in the hyperbolic plane.1

In the second half of the nineteenth century work also began on finite reflection
groups on Sn for n > 2 (or equivalently, finite linear reflection groups on Rn+1),
generalizing Möbius’ results for n = 2. The work developed along two lines. First,
around 1850, Schläfli classified regular convex polytopes in Rn+1 for n > 2. He
showed that the symmetry group of such a polytope was a finite group generated
by reflections and, as in Möbius’ case, the projection of a fundamental domain to
Sn was a spherical simplex with dihedral angles integral submultiples of π. Second,
around 1890, Killing and E. Cartan classified complex semisimple Lie algebras in
terms of their root systems. In 1925, Weyl showed that the group of symmetries of
such a root system was a finite group generated by reflections.2 This intimate con-
nection with the classification of semisimple Lie groups cemented reflection groups
into a central place in mathematics. The two lines of research were united by Cox-
eter [4] in the 1930’s. Coxeter classified discrete groups generated by reflections on
the n-dimensional sphere or Euclidean space.

The central example of a finite reflection group is the symmetric group Sn+1

acting on Rn+1 by permutation of coordinates. Transpositions act as orthogonal
reflections across hyperplanes of Rn+1. The diagonal line L in Rn+1 is fixed by
Sn+1. So, Sn+1 acts on the orthogonal complement L⊥, and L⊥ can be identified
with Rn. The associated root system is type An, and the associated complex
Lie group is SL(n + 1,C). If we project the standard basis of Rn+1 to Rn and
take its convex hull, we get a regular n-simplex. This exhibits Sn+1 as the group

2000 Mathematics Subject Classification. Primary: 20B30, 20F55, 05C25, 05E15.
1 In this paragraph and the next I have relied on the Historical Note of [2, pp. 249–257].
2It turns out that these two cases (symmetries of regular polytopes and symmetries of root

systems) cover all finite reflection groups.
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of symmetries of the regular n-simplex. A fundamental domain on Rn+1 is the
convex region {x ∈ Rn+1 | x1 ≥ · · · ≥ xn+1}. Projecting this region to Rn, we
get a simplicial cone, and then intersecting with Sn−1, we get a spherical (n − 1)-
simplex.

The other n-dimensional space of constant curvature, besides the sphere and
Euclidean space, is hyperbolic n-space Hn. It also admits isometric reflections, and
there are discrete groups generated by reflections on Hn with compact fundamental
domains (at least for fairly small values of n; cf. [8]).

These geometric examples have several common features. Suppose W denotes
the group and T the set of reflections in W . The fixed point set of a reflection t is a
“hyperplane” Ht. (In the spherical case, a “hyperplane” means a great subsphere of
codimension one, and, similarly, in the hyperbolic case, it means a totally geodesic
subspace of codimension one.) A connected component of the complement of the
union of the Ht, over all t ∈ T , is the interior of a convex polytope K. (Such a
polytope is a chamber.) In the spherical case, K must be a simplex, and in the
Euclidean case, a product of simplices. In the case of Hn, there are many more
possibilities for K (at least when n ≤ 4). Let S denote the set of reflections across
the codimension one faces of K. Then S generates W and every element of T is
conjugate to an element of S. Moreover, W acts simply transitively on the set of
chambers, and K is a strict fundamental domain for the W -action in the sense that
K intersects each W -orbit in exactly one point. It follows that K can be identified
with the space of orbits. If s and t are reflections across adjacent faces of K, these
faces make a dihedral angle of π/m for some integer m ≥ 2 and st is rotation by
2π/m around the codimension two subspace Hs∩Ht. (This can be seen by thinking
about the dihedral subgroup generated by s and t.) In particular, the order of st
is m. The similarity between the example of the symmetric group and other finite
reflection groups is one reason for the interest of combinatorialists in the subject of
reflection groups.

Around 1960 Jacques Tits introduced the notion of an abstract reflection group,
which he called a “Coxeter group”. Tits considered pairs (W, S) with W a group
and S a set of involutions which generate W so that the group has a presentation of
the following form: the set of generators is S and the set of relations is {(st)m(s,t)},
where m(s, t) denotes the order of st and the relations range over all unordered
pairs s, t ∈ S with m(s, t) �= ∞. The pair (W, S) is a Coxeter system and W
is a Coxeter group. It is remarkable that this simple definition encapsulates all
the essential properties of a reflection group. This was demonstrated in 1968 with
the appearance of the wonderful volume of Bourbaki, Groupes et Algèbres de Lie,
Chapitres 4, 5, et 6 (an English translation of which has appeared as [2]). In the
first part of [2] the basic properties of Coxeter groups are developed in a purely
group theoretic and combinatorial manner. This is also done in Chapter 1 of the
book under review. The most convincing justification for thinking of Coxeter groups
as abstract reflection groups is Tits’ proof that any Coxeter system (W, S) can be
realized as a group generated by linear (not necessarily orthogonal) reflections3

across the faces of a simplicial cone in RS . Moreover, W acts properly on the
interior I of a convex cone in RS , and the W -action on I has all the properties of

3 This representation is called the “contragradient of the geometric representation” in [2] as
well as in the book under review.
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the geometric actions discussed previously. These facts are proved in [2] as well as
in Chapter 4 of the book under review.4

2. What is in this book

The authors write in the Foreword to [1]:

By “combinatorics of Coxeter groups” we have in mind the math-
ematics that has to do with reduced expressions, partial order of
group elements, enumeration, associated graphs and combinatorial
cell complexes, and connections with combinatorial representation
theory.

2.1. Reduced expressions. One begins with the word length function l : W → N,
defined by putting l(w) equal to the smallest integer n such that w = s1 · · · sn with
si ∈ S. The word s1 · · · sn is a reduced expression for w. The separation property of
a reflection can be encoded in various ways as a combinatorial condition on words
in S representing elements of W (e.g. the “Deletion Property” or the “Exchange
Property”). The best result along this line is Tits’ solution to the Word Problem
(cf. [1, §3.3] or [3, pp. 49–51]). This says, first of all, that any reduced expression
for a given w ∈ W can be transformed into any other one by a sequence of moves
which only involve replacing an alternating subword st · · · in s, t of length m(s, t) by
the alternating word ts · · · of the same length (such moves are called “braid moves”
in [1]). Secondly, any expression for w can be shortened to a reduced expression by
a sequence of braid moves and cancellations (or “nil moves”) involving replacing a
subword of the form ss by the empty word.5

Weak order and Bruhat order. There are two different partial orders on W .
The first, called the weak right order, is defined by v <R w if there is a reduced
expression for w which begins with a reduced expression for v. (Similarly, there is
a “weak left order”.) These weak orders are the subject of Chapter 3 in [1].

The motivation for the second partial order comes from Lie theory. Finite Cox-
eter groups play a decisive role in the study of Lie groups and associated geometric
objects such as the “flag manifolds” G/B. (Here G is a semisimple Lie group and
B is a “Borel subgroup”, i.e., a maximal solvable subgroup.)6 The manifold G/B
has the structure of a cell complex with one cell for each element in the associated
Coxeter group W . This defines the Bruhat order on W : given elements v, w ∈ W ,
write v < w if the cell corresponding to v is contained in the closure of the cell
corresponding to w. It turns out that one can give a combinatorial definition of the
Bruhat order that is valid for all Coxeter groups (not only those that are associated
to Lie groups). This partial order is the subject of Chapter 2 in [1].

4 One of the most entertaining and important sections of [1] is §4.3 on “The numbers game”.
Here the authors give a combinatorial method for computing generic orbits in the contragradient
geometric representation and then show how to use this method to determine when a given
expression s1 · · · sn is reduced.

5 Since such moves do not increase l(w), this gives an algorithm for deciding when a word in
S represents the identity element of W .

6If G = GL(n, k), with k = R or C, then B is the subgroup of upper triangular matrices and
G/B can be identified with the manifold of all “flags” of the form F1 ⊂ · · ·Fn−1 ⊂ Fn = kn,
where Fi is an i-dimensional subspace of kn.
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Kazhdan-Lusztig polynomials. To any Coxeter system (W, S) and parameter
q, one can associate a “Hecke algebra”. When q = 1, the Hecke algebra is the group
algebra of W . When W is finite, the representation theory of the Hecke algebra
determines the representation theory of any associated finite group of Lie type
over a field of order q. In order to study the representations of the Hecke algebra,
Kazhdan and Lusztig [7] defined a certain additive basis (called the “Kazhdan–
Lusztig basis”) for the Hecke algebra and then gave formulas relating this basis to
a standard basis in terms of certain polynomials in Z[q]. These are the mysterious
“Kazhdan–Lusztig polynomials”. In Chapter 5 the authors define these polynomials
(without first mentioning Hecke algebras or Kazhdan-Lusztig bases) and develop
methods for computing them. I prefer the discussion of this material in Humphreys’
book [6]. The representation theory of Hecke algebras is discussed in Chapter 6.
The discussion is soon specialized to the case of the group algebra of the symmetric
group.

Growth series. Chapter 7 is entitled “Enumeration”. Its first section, “Poincaré
series”, deals with the growth series

∑
w∈W tl(w). It turns out that this is the power

series of a rational function in t. Various explicit formulas for this rational function
are given in §7.1. The rest of the chapter deals with the problem of counting the
number of reduced expressions for an element of the symmetric group.

The book contains a great deal more than is indicated above. For example, in
§4.8 it is shown that the reduced expressions for elements of W form a regular
language (i.e., they are recognized by a finite state automaton).

Each chapter concludes with a list of exercises and “Notes” which give historical
and bibliographical information, as well as references for the exercises. The exer-
cises and notes are very nice features. In particular, the exercises contain many
interesting facts which cannot easily be found elsewhere.

3. Other possible approaches

I should confess that I also have written a book [5] on Coxeter groups. There are
several possible approaches such a book could take. For example, one could choose
to emphasize any one of the following four directions:

(1) connections with root systems and Lie theory,
(2) connections with the theory of buildings,
(3) connections with combinatorics,
(4) connections with geometric group theory.

There might well be other choices of direction. The book under review is an example
of (3), while [2], [3], [5] are examples of (1), (2), (4), respectively. Each of these
four viewpoints is distinct and each leads to a very different book. This is certainly
the case when comparing (3) and (4). The material in [1] is almost completely
disjoint from that in [5]. The same is true for the bibliographies of these books.
The fact that there are such disparate approaches to this subject is a testament to
the pervasiveness of Coxeter groups in mathematics.
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