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For the purposes of this review we can define a projective module to be a direct
summand of a free module. We will only consider commutative rings R with unit
and finitely generated projective modules, which are easily seen to be direct sum-
mands of finitely generated free modules. A natural question arises immediately:
Are all such modules free? In general, the answer is negative. Classical examples
are given by modules over rings of algebraic integers of class number greater than
1. A trivial example is given by taking P = A× 0 over a product ring R = A×B.
For certain classes of rings such as fields and principal ideal domains the answer
is affirmative, so a better formulation would be, which rings R have the property
that all finitely generated projective R–modules are free?

The most famous question of this type was raised by Serre in [19]:

Serre’s Problem. Let R = k[x1, . . . , xn] be a polynomial ring over a field k. Are
all finitely generated projective R–modules free?

The answer is clearly “Yes” for n = 0 and n = 1, but for higher values of n
the question proved to be extremely difficult and it took about 23 years until the
problem was solved independently (and affirmatively) by Quillen [15] and Suslin
[23].

Serre was led to this question by his theorem that vector bundles on an affine
variety are equivalent to finitely generated projective modules over its coordinate
ring. The polynomial ring k[x1, . . . , xn] is the coordinate ring of affine space An.
Since all topological vector bundles on Euclidean space Rn are trivial [22], it is
natural to ask if the same is true algebraically. Additional evidence was later
provided by a theorem of Grauert [6] which implies that analytic vector bundles on
Cn are trivial but neither the topological nor the analytic proof generalize in any
obvious way to the algebraic case.

The problem turned out to be surprisingly difficult. At first only partial results
were obtained. In 1957, Seshadri [18] solved the case of 2 variables. No further
significant results were found for many years until in 1974 Murthy and Towber
[12] solved the case of 3 variables over an algebraically closed field. Soon after, a
number of cases were obtained by Suslin and Vaserstein [26] and by M. Roitman
[17]. Finally in 1976, the full solution was obtained by Quillen and Suslin.

1. Some early history

In a way it was fortunate that the problem proved so difficult, since most of the
theory of projective modules over commutative rings was developed in attempts
to solve Serre’s problem. The first significant results were found by Serre himself
[20]. He showed that a finitely generated projective module P over a polynomial
ring R = k[x1, . . . , xn] is stably free; i.e., for some finitely generated free R-module
F , P ⊕ F is free. Serre gave two proofs of this, one using graded rings and one
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using Grothendieck’s functor K0, which also served to introduce many commutative
algebraists to the new field of algebraic K–theory. This result led to an interesting
reformulation of the problem. It will clearly suffice to show that if F = P ⊕ R is
free, so is P . It is easy to see that a non–zero element v = (v1, . . . , vn) of a free
module F = Rn generates a direct summand if and only if it is unimodular; i.e.,
there are elements ai of R such that

∑
aivi = 1. The complement P will be free if

and only if v is part of a free base of F and so can be transformed into (1, 0, . . . , 0)
by an automorphism of F . This leads to a restatement of Serre’s problem as a
unimodular row problem involving only polynomials over the field k.

Unimodular Row Problem. Let v = (v1, . . . , vn) be a unimodular row over the
polynomial ring R = k[x1, . . . , xn]. Is v the first row of an invertible matrix over
R?

Equivalently, is there a g ∈ GLn(R) such that (v1, . . . , vn)g = (1, 0, . . . , 0)?
Serre also showed that it would suffice to consider projective modules of rank at

most n.

Theorem 1.1 (Serre [20]). Let R be a commutative noetherian ring of Krull di-
mension d. If P is a finitely generated projective module of constant rank r ≥ d,
then P = Q ⊕ F where F is free and Q has rank at most d.

It is natural to ask whether Q is unique. A very useful theorem of this sort was
proved by Bass.

Theorem 1.2 (Bass [1]). Let R be a commutative noetherian ring of Krull dimen-
sion d. If P and Q are finitely generated projective modules of constant rank r > d
and if P ⊕ F ≈ Q ⊕ F with F free and finitely generated, then P ≈ Q.

It follows that all projective modules of rank > n over k[x1, . . . , xn] are free (for
k a field). Bass [2] also showed that all non–finitely generated projective modules
over this ring are free so that only the finitely generated case remains of interest.

These theorems can be summed up as follows: Let Pr(R) be the set of iso-
morphism classes of finitely generated projective R–modules of rank r and define
Pr(R) → Pr+1(R) by sending the class of P to that of P⊕R. Then, for R noetherian
with dim R = d, we have

(1) Pd(R) � Pd+1(R) ≈−→ Pd+2(R) ≈−→ Pd+3(R) ≈−→ . . . .

The limiting value Pr(R) for r >> 0 can be identified with Rk0(R), the kernel of
the rank map on K0(R) [3].

Needless to say, these theorems play a fundamental role in the study of projective
modules over noetherian rings. More general versions were later proved by Eisenbud
and Evans [5].

In the early 1970’s Suslin and Vaserstein introduced many useful techniques for
dealing with projective modules, including the use of symplectic methods. They
also proved many results concerning the unimodular row problem, of which I will
mention only the following remarkable and very useful theorem of Suslin concerning
this problem.

Theorem 1.3 (Suslin’s n! Theorem [24]). Let (a0, a1, . . . , an) be a unimodular
row. If r0, r1, . . . , rn are positive integers such that n! divides r0r1 . . . rn, then
(ar0

0 , ar1
1 , . . . , arn

n ) can be completed to an invertible matrix.
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This was proved shortly before the complete solution to Serre’s problem was
found. The case n = 2 was proved earlier in [27].

Serre [21] also discovered a very useful application concerning complete intersec-
tions. If X is an algebraic variety of dimension d in n–space defined by an ideal I,
the problem is to determine when I has the minimal number of generators n−d so
that X is the complete intersection of n−d hypersurfaces. Here is a very simple case
which illustrates Serre’s idea. Suppose I is an ideal of height 2 in the polynomial
ring R = k[x, y]. We want to know if I can be generated by 2 elements. A necessary
condition is that this should hold locally; i.e., for each maximal ideal m of k, Im

should have 2 generators. Assuming this, one can calculate with the Koszul complex
that Ext1(Im, Rm) ≈ Rm/Im, and one can conclude easily that Ext1(I, R) ≈ R/I.
The generator corresponds to an extension 0 → R → P → I → 0, and Serre shows
that P is a projective R–module. Since rk P = 2, Seshadri’s theorem shows that
P ≈ R2. Since P maps onto I, I has 2 generators as required. This approach has
played a very important role in the subsequent study of the complete intersection
problem.

2. The solution

Quillen’s solution of the problem is based on a Local–Global principle. Instead
of proving directly that a module is free, he considers a relative version. A module
M over a polynomial ring R[X] is called extended if M ≈ R[X] ⊗R N for some
R–module N . (Of course N = M/XM). If m is a maximal ideal of R, write Mm

for the localization MR−m. The following is Quillen’s basic result.

Theorem 2.1 (Quillen’s Patching Theorem [15]). Let M be a finitely presented
module over R[X] where R is a commutative ring. If Mm is extended from Rm for
each maximal ideal m of R, then M is extended from R.

Horrocks [8] had previously shown that if R is a local noetherian ring, P is a
finitely generated projective module over R[X], and P [f(X)−1] is free for a monic
polynomial f(X), then P is free. Quillen’s theorem shows that this can be global-
ized; namely, if R is not assumed local and P [f(X)−1] is extended from a projective
R–module, then so is P . Now if P is a finitely generated projective module over
k[X1, . . . , Xn] where k is a field, invert all monic polynomials in X1 getting a projec-
tive module over k(X1)[X2 . . . , Xn] which will be free by induction on n. It follows
that P [f(X)−1] is free for some monic polynomial f(X1) so P is extended from
a projective k[X2, . . . , Xn]–module and is therefore free by the induction hypoth-
esis once again. Quillen observes that the same argument will work for projective
modules over R[X1, . . . , Xn] if R is a principal ideal ring.

At the same time as Quillen’s work, Suslin found a completely different proof.
These proofs were quickly followed by elementary proofs due to Suslin and Vaser-
stein. Vaserstein even gave a complete proof in 8 lines! These proofs are stated in
terms of the unimodular row problem.

Suslin’s elementary proof actually proves a stronger result, namely that the el-
ement g of GLn(R) such that (v1, . . . , vn)g = (1, 0, . . . , 0) can be taken to be a
composition of elementary transformations of the form (x1, . . . , xn) �→ (x1, . . . , xi +
axj , . . . , xn) obtained by adding a multiple of xj to xi for some j �= i (as in the
familiar construction of the Euclidean algorithm). These generate the subgroup
En(R) of GLn(R). The theorem actually applies to any noetherian ring.
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Theorem 2.2 (Suslin). Let A be a commutative noetherian ring and let R =
A[x1, . . . , xm]. If n ≥ max(3, 2 + dimA), then any unimodular row (v1, . . . , vn)
over R can be reduced to (1, 0, . . . , 0) by a series of elementary transformations.

Note that the bound on n is independent of m. The solution to Serre’s problem
follows immediately, since if A is a field, the bound is n ≥ 3 and unimodular rows
of length 2 can be completed trivially.

3. Subsequent work

Once Serre’s problem was solved there were naturally a number of related prob-
lems to which the methods were applied. Perhaps the best known of these problems
is the following. I have phrased this conjecture as a question to avoid confusing
the casual reader. A ring is called regular if it is noetherian and its localizations at
prime ideals are regular local rings.

Bass–Quillen Conjecture. If R is a regular ring, is every finitely generated pro-
jective module over R[x1, . . . , xn] extended from R?

This was shown to be true for dim R ≤ 2 by Quillen [15] and by Suslin [23]
(independently) using a theorem of Murthy and Horrocks [11] for the local case.
Rao [16] has done the case dim R = 3 with 1

6 ∈ R. For higher dimensions the
following is the best result obtained so far.

Theorem 3.1 (Lindel [10]–Popescu [14]). If R is a regular ring containing a field,
then every finitely generated projective module over R[x1, . . . , xn] is extended from
R.

The proof also applies to unramified regular local rings, but the general case is
still open.

In another direction, the problem has been extended to the quadratic case. We
assume that the characteristic is not 2 for simplicity. By a quadratic module I will
mean a finitely generated projective module with a non–singular quadratic form.

Quadratic Analogue of Serre’s Problem. Let k be a field of characteristic not
2. Is every quadratic module over k[x1, . . . , xn] extended from k?

In this case the results are not so easy to describe, since Parimala [13] has shown
that in general the answer is “No”, but there are cases in which the answer is
affirmative.

There has also been quite a bit of work done on extending the results on Serre’s
problem to rings more general than polynomial rings. A theorem of this sort has
been proved for discrete Hodge algebras by Vorst [29], and J. Gubeladze [7] proved
a conjecture of Anderson which extends the solution of Serre’s problem to a large
class of monoid rings.

In quite a different direction, Suslin [25] proved a K1–analogue of Serre’s problem
for the special linear group. As observed above, Rk0(R) is the colimit of the sets
Pr(R). Similarly, SK1(R), the kernel of the determinant map on K1(R), is the
colimit of the sets SLr(R)/Er(R) [3]. This suggests an analogy between these two
sequences of sets. Suslin [25] proved the surprising result that for a commutative
ring R, En(R) is a normal subgroup of SLn(R) for n ≥ 3 so that SLn(R)/En(R)
is a group. By analogy with (1) we can consider the sequence formed by the
SLn(R)/En(R):

(2) SL1(R)/E1(R) → SL2(R)/E2(R) → SL3(R)/E3(R) → . . .
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with limit SK1(R). Bass [1], [3] conjectured and partially proved that if R is
noetherian and d = max(3, 2 + dim R), then we have

(3) SLd−1(R)/Ed−1(R) � SLd(R)/Ed(R) ≈−→ SLd+1(R)/Ed+1(R) ≈−→ . . . .

The full result was proved by Vaserstein[28]. This was extended by Suslin as follows.

Theorem 3.2 (Suslin [25]). Let A be a commutative noetherian ring and let R =
A[x1, . . . , xm]. If d = max(3, 2 + dim R), then (3) holds for R.

The ontoness follows from Theorem 2.2, while the injectivity is proved by re-
ducing to Vaserstein’s theorem. As in Theorem 2.2, the bound d is independent
of m. In particular, if A is a field, then SLr(R) = Er(R) for r ≥ 3. This result
can be considered a K1–analogue of Serre’s problem (for r ≥ 3) since it shows
that SLr(R)/Er(R) is trivial while Serre’s problem states that Pr(R) is trivial for
R = k[x1, . . . , xm] where k is a field.

Suslin also proved the following Local–Global theorem, which is an analogue of
Quillen’s Patching Theorem.

Theorem 3.3 (Suslin [25]). Let α(X) ∈ SLn(R[X]) satisfy α(0) = 1. Assume
that n ≥ 3. If the image α(X)m of α(X) in SLn(Rm[X]) lies in En(Rm[X]) for all
maximal ideals m of R, then α(X) lies in En(R[X]).

4. The book

I hope the preceding outline will inspire the reader to learn more about Serre’s
problem and related problems. If so, he or she can do no better than to consult
Lam’s book. Lam has done a magnificent job of organizing the material and pre-
senting complete proofs of all the results directly connected with Serre’s problem.
He also gives a very thorough discussion of recent work and of related topics not
directly relevant to Serre’s problem. The references are complete and make the
book a very valuable reference even for experts in the field. It is certainly the first
place one should look for anything related to Serre’s problem.

The book begins with a detailed account of the work done prior to the solution
of Serre’s problem. This is followed by separate chapters devoted to the elementary
proofs of Suslin and Vaserstein (including Suslin’s n! theorem), Horrock’s theorem,
and Quillen’s Patching Theorem. Everything directly connected to Serre’s problem
is proved in detail. The remaining chapters cover Suslin’s work on the special linear
group, results on the quadratic case, and applications to the complete intersection
problem. A final chapter summarizes work done since the solution of Serre’s prob-
lem. Here most proofs are omitted but complete references to the original papers
are given. I found this chapter extremely useful in searching for results related to
Serre’s problem, projective modules, etc. This chapter also contains references to
various applications of Serre’s problem to other fields of mathematics.

This book is a greatly expanded version of Lam’s 1978 volume in the Springer
Lecture Notes, but even readers thoroughly familiar with these notes will find much
of interest in the present book. It will be very useful to students wishing to learn
about projective modules and also to those familiar with this subject who wish to
look up the statement of a needed result or to look for a reference to recent work.
This is definitely a book that anyone even remotely interested in projective modules
should have on his or her shelf!
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