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The arithmetic theory of quadratic forms goes back to the earliest days of math-
ematics: for instance, sums of squares of integers or rational numbers were already
mentioned in the work of Diophantus. Quadratic forms over algebraic number fields
and their rings of integers became prominent in the development of class field theory
in the early 20th century.

By contrast, quadratic forms over arbitrary fields were rarely—if at all—con-
sidered before 1937. This date is very important in the so-called algebraic theory of
quadratic forms, because this is the year of the publication of the pioneering paper
by Ernst Witt [26], “Quadratische Formen iiber beliebigen Korpern” (Quadratic
forms over arbitrary fields). This paper is innovative in many ways. As already
mentioned, even the idea of taking coefficients in an arbitrary field rather than
a “natural” field, such as for instance an algebraic number field, was a new one.
Moreover, whereas all the previous authors considered quadratic forms individually,
Witt introduced the new concept of studying them collectively. This notion, called
the Grothendieck—Witt ring of a field, is built up from the isomorphism classes of
nondegenerate quadratic forms in the same way that ring of integers is constructed
from natural numbers. From the Grothendieck—Witt ring we then obtain the Witt
ring of the field, in which the “trivial” quadratic forms, that is the hyperbolic ones
(nondegenerate quadratic forms having the largest possible isotropic subspace) are
identified to the zero element. One of the main results of this paper is the so-
called Witt cancellation theorem, namely that stably isomorphic quadratic forms
are isomorphic. Using this, one shows that the class of a quadratic form in the
Grothendieck—Witt ring determines the form. Moreover, two nondegenerate qua-
dratic forms of the same dimension are isomorphic if and only if they have the
same image in the Witt ring. Hence the classification problem of quadratic forms
is essentially equivalent to the determination of the Witt ring.

EARLY BREAKTHROUGHS AND LAM’S FIRST BOOK

With Witt’s 1937 paper a new topic was born, the theory of quadratic forms
over fields. Even though the paper did not go unnoticed, very little progress was
made until the late 1960’s. At that time, a series of papers by Pfister changed this
situation—not only did he prove beautiful new results, but the notions and methods
he introduced inspired many other mathematicians to work on the algebraic theory
of quadratic forms. Among those was T. Y. Lam, who, in 1973, published the first
textbook [10] dealing with this topic. This book was an immediate success. It was
very timely, appearing only a short time after Pfister’s papers, and also contained
important results of Knebusch and Scharlau. Moreover, the book is extremely
well written and accessible even for beginning students—the existence of this book
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was an important contribution to the quick development of the algebraic theory of
quadratic forms in the 1970’s and beyond.

Let us go back to the late 1960’s to survey Pfister’s work. Let F' be a field
of characteristic # 2. Many long-standing questions concerned sums of squares of
elements of F: for instance, the level of the field F', denoted by s(F), is by definition
the smallest positive integer s such that —1 can be written as a sum of s squares
(we say that s(F) is infinite if no such s exists). Is s(F') always a power of 27 This
was conjectured by Kaplansky in 1953, and it was generally believed to be true, but
no proof was available before Pfister. In 1968, using the theory of multiplicative
quadratic forms, today called Pfister forms, he proved in a beautiful and elegant
paper that indeed s(F') is either infinite or a power of 2. Another consequence of
his theory is that the product of two sums of 2" squares is also a sum of 2" squares,
generalizing the well-known results for sums of 2, 4 and 8 squares.

Ever since their invention in the late 1960’s, Pfister forms continue to play a
basic role in the algebraic theory of quadratic forms. They are very easy to define:
if aq,...,a, are nonzero elements of F, we denote by (ai,...,a,) the quadratic
form a; X? + -+ + a, X2. The associated n-fold Pfister form ({a1,...,a,)) is by
definition the tensor product of the n binary forms (1, a;). This is a quadratic form
in 2™ variables; the special case where all the a;’s are equal to 1 corresponds to sums
of 2" squares. Let us denote by W (F') the Witt ring of F', and let I(F') be the ideal
of Witt classes of even-dimensional forms. It turns out that the powers I"(F') play
an essential role in the study of the Witt ring—and it is easy to see that they are
generated by the n-fold Pfister forms. The famous Arason—Pfister theorem, proved
in 1970, states that the intersection of the I"(F)’s (n > 1) is trivial.

WHEN ARE TWO QUADRATIC FORMS ISOMORPHIC?
MILNOR’S CONJECTURE AND VOEVODSKY’S THEOREM

The paper of Milnor, “Algebraic K-theory and quadratic forms” [12], is another
one of the landmarks of the theory. It also appeared in 1970, and it contains
a famous conjecture that inspired many authors in the late 20th and early 21st
century. The starting point is the classification problem of quadratic forms via
cohomological invariants. Indeed, the simplest invariants of quadratic forms are
the dimension (or number of variables) and the determinant. If we want invariants
defined on W (F'), then we have to consider dimension mod 2—indeed, the invariant
must vanish on hyperbolic forms, and these may assume any even dimension. Hence,
dimension mod 2 gives us a map ey : W(F) — Z/2Z, the kernel of which is by
definition I(F'); thus we obtain an isomorphism eg : W (F)/I(F) ~ Z/2Z. Similarly,
the determinant induces a homomorphism e; : I(F)/I*(F) — F*/F*?, and it is
easy to see that e; is an isomorphism. The last of the classical invariants, the
Hasse—~Witt invariant, also provides a homomorphism ey : I2(F)/I3(F) — Bra(F).
It is a basic remark that the target groups can all be identified to Galois cohomology
groups with mod 2 coefficients. Indeed, let Fs be a separable closure of F, and let
I'r = Gal(Fs/F). For all positive integers n, set H"(F) = H"(I'p,Z/2Z). Then
HY(F) = Z/2Z, H'(F) = F*/F*%, and H*(F) = Bry(F). For all a € F*, let us
denote by (a) the image of a in H'(F'). In his 1970 paper, Milnor conjectured that
for every positive integer n, there exists a well-defined isomomorphism

en s I"(F)/I"™Y(F) — H"(F)
sending the n-fold Pfister form ({(aq,...,ay)) to the cup product (—ai)U---U(—ay,).
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The only easy cases of Milnor’s conjecture are n = 0 and n = 1. Even the case
n = 2 is very difficult, and was only proved in 1981 by Merkurjev using methods
from algebraic K-theory and algebraic geometry. Even though later on Arason
and Wadsworth found elementary proofs for this case, this seems to be hopeless
for higher values of n. The case n = 3 was settled by Merkurjev and Suslin, and
independently by Rost in the early 1990’s. Their proofs are highly nontrivial and
nonelementary, relying on methods of algebraic K-theory. Rost also announced the
proof of the case n = 4, but the general case still seemed out of reach at that time.
However, in the following few years, Voevodsky developed new tools, in particular
motivic cohomology, that made it possible to prove Milnor’s conjecture (cf. [14],
[23], [24], [13], see also the surveys [7], [16]). In 2002 Voevodsky received the Fields
Medal for this work.

Milnor’s conjecture, today Voevodsky’s theorem, provides a classification of qua-
dratic forms via “secondary invariants”. It is a beautiful and important theorem,
but in a way this is not really what we want! Is it possible to find a complete set
of invariants defined on W (F) itself? This is not known so far.

WHEN DOES A QUADRATIC FORM HAVE A NONTRIVIAL ZERO?

Many important results and open questions in the algebraic theory of quadratic
forms concern the notion of isotropy. We say that a quadratic form ¢ : V — F' is
isotropic if there exists a nonzero x € V such that ¢(z) = 0, and it is anisotropic
otherwise. The maximal dimension of an anisotropic quadratic form over F' is an
important invariant of F', called the u-invariant (for lack of a better name!), and
it is denoted by u(F'). This invariant is somewhat reminiscent of the level of F'—
indeed, s(F) is the highest dimension of an anisotropic unit form (1,...,1) over F.
In 1953, Kaplansky conjectured that w(F) is either infinite or a power of 2—and
this conjecture was believed plausible by many. It is easy to prove that there exist
fields of u-invariants 1, 2 and 4, and more generally any power of 2, and that no
field can have u-invariant 3, 5 or 7. Therefore, it came as a big surprise when
Merkurjev proved in 1989 the existence of a field with a u-invariant equal to 6, and
then, in 1990, that for any even number n there exists a field with u-invariant n !
The method used by Merkurjev, called index reduction, uses the theory of central
simple algebras, and also relies on algebraic geometric techniques. More recently,
Izhboldin [5] and Vishik [22] proved that odd integers also occur as u-invariants:
Izhboldin constructed fields with w-invariant 9, and Vishik fields with u-invariant
2" 4+ 1 for any n > 3. The method of Vishik uses tools from algebraic geometry.
Even though Kaplansky’s conjecture does not hold in general, it is worth noting
that the fields constructed by Merkurjev, Izboldhin and Vishik are huge, and that
the conjecture might be true for fields of finite type over Q.

Another topic related to isotropy is the theory of generic splitting introduced
by Knebusch. Let ¢ be a quadratic form, and let F'(q) be the function field of
the associated conic. Then clearly g becomes isotropic over F(q). Taking the
anisotropic part of this form and continuing this process, we get a sequence of
quadratic forms over bigger and bigger fields, and in particular a sequence of positive
integers given by the dimensions of these forms. This is called the splitting pattern
of the quadratic form. The determination of these splitting patterns is important
for the understanding of isotropy properties of quadratic forms. Recently, many
important results were obtained on this topic, in particular by Hoffmann, Karpenko
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and Vishik. For instance, Karpenko proved the following statement, conjectured
by Hoffmann: if ¢ is an anisotropic quadratic form belonging to I"™(F) such that
dim(q) < 2"*1, then dim(q) is of the form 2"+ —2¢ for some integer i € {0,...,n}.
Once more, the methods are based on algebraic geometry, in particular the study
of Chow groups of certain algebraic varieties related to the quadratic form.

FROM QUADRATIC FORMS TO LINEAR ALGEBRAIC GROUPS

Since the early 1960’s, it was clear that the study of quadratic forms can be
placed in the more general context of noncommutative Galois cohomology of linear
algebraic groups, in particular classical groups. Indeed, let ¢ be a quadratic form
and let us consider the group of all its isometries, called the orthogonal group O(q)
of the quadratic form ¢g. Then O(q) is a linear algebraic group defined over F.
The set of all isomorphism classes of quadratic forms ¢’ defined over ¢ such that
¢’ and ¢ become isomorphic over the separable closure F, can be identified with
the Galois cohomology set H'(I'r, O(q)(Fs)). We denote this set by H!(F,O,).
One can define H(F,G) for any linear algebraic group G over F. It is natural
to reformulate the classical results concerning quadratic forms in this framework,
and to ask whether they can be generalized to other linear algebraic groups. For
instance, a theorem of Springer proved in 1951 states that if two quadratic forms
become isomorphic over an odd degree extension, then they are isomorphic over the
ground field. This is equivalent to saying that if L is an odd degree extension of F,
then the canonical map of pointed sets H'(F,0,) — H'(L,0,) is injective. The
question of generalizing this, and other well-known results concerning quadratic
forms, was raised by Serre (see [18], [19]). This provided inspiration for intensive
research (see for instance [21], [I], [2], [B], [], and the survey [20]). In case G is
a classical group, a basic tool is provided by the result of André Weil [25] stating
that G can be obtained from an algebra with involution. Algebras with involution,
and the closely related notion of hermitian forms, are studied extensively in the
books of Knus, Merkurjev, Rost and Tignol (The Book of Involutions) [9], Scharlau
[17], and Knus [8]. Several of the questions of Serre’s 1962 paper are now (at least
partially) solved, but there are still many open problems—old and new !

LAM’S SECOND BOOK

Since 1973, the specialists in the field of quadratic forms grew up reading Lam’s
book [I0]. It contains all the basic facts explained in a wonderfully clear way. The
book was justly rewarded with the Leroy P. Steele prize in Mathematical Exposition
in 1982. A victim of its success, it went out of print by the late 1970’s; the second
printing with revisions issued in 1980 was not sufficient for the demand, and also
went out of print very quickly. Today’s students also need this excellent resource,
both for learning about quadratic forms over fields and for taking part in working
on the many open problems outlined above.

In view of all the recent progress, Lam decided to write a new book, based on the
first one, but with many chapters rewritten and two chapters added with new mate-
rial. The first 11 chapters are revised and augmented versions of the corresponding
chapters of [I0]. Chapter 12 is entitled “Special topics in Quadratic Forms”. Tt
contains a selection of results, for instance, isomorphisms of Witt rings, quadratic
forms of low dimension, behavior of Witt rings under biquadratic extensions, and
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several others. Chapter 13 is a complement of Chapter 11, and concerns field invari-
ants. In particular, Merkurjev’s construction of fields of u-invariant 6 is presented
here. Many new results are given with full proofs, others are only quoted. There
are many interesting exercises, and also a list of challenging open problems. The
title has also changed, it is now “Introduction to quadratic forms over fields”. Of
course it still has the same lively, inspiring and very clear style of its predecessor.

The book is readable with only a basic previous knowledge of algebra. It is
remarkable how much Lam is able to teach his reader with so few prerequisites.
The new book has more than doubled in size, and contains many interesting results
explained in an elementary way. Of course, it was not possible to present in detail
some of the recent progress outlined in this survey, because more sophisticated
notions and methods would have been necessary, such as Galois cohomology and
Chow groups. Still, Lam’s book is the right place to start, an important first step
before reading research articles and some of the other books, such as The Book of
Involutions [9]. Tt belongs on the shelves of every mathematical library, and is an
excellent choice of a textbook for a course on quadratic forms over fields. In every
aspect, Introduction to Quadratic Forms Quer Fields” is a great book, invaluable
both for learning the topic and as reference.
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