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1. INTRODUCTION

Maximum principles are among the most powerful and widely used analytic tools
in the study of second-order linear and nonlinear elliptic and parabolic equations.
They enable us to obtain valuable information about (real valued) solutions of
differential equations and inequalities (such as a priori pointwise estimates, and
uniqueness and stability results) without the need to know in advance the solutions
explicitly, or without even knowing a priori the existence of such solutions. As a
matter of fact, in many cases, the maximum principle (or MP for brevity) is an
essential ingredient in proving also existence theorems. Moreover, MPs are closely
related to some well known important qualitative properties of solutions of such
equations, e.g., Harnack inequalities, comparison principles and tangency theorems,
Phragmen-Lindel6f principles, removability of isolated singularities, and Liouville
theorems.

As an illustration of the MP, we mention the everyday fact that a body with a
prescribed (time-independent) boundary temperature attains the highest tempera-
ture of a steady-state temperature on its boundary.

The present article briefly surveys the exciting field of maximum principles with
emphasis on the content and features of the book under review (which will be
denoted by [PS]).

2. WHAT ARE MPS ALL ABOUT

A familiar heuristic principle in the study of elliptic equations states that every
property of the Laplace operator remains true for general second-order elliptic op-
erators if properly formulated. Following this rule of thumb, we shall present in this
section a few features of the MP which can be quite easily proved for the Laplacian
using only advanced calculus arguments. Surprisingly, the proofs of the analogous
results for general linear and nonlinear elliptic and parabolic operators are in many
cases based on the same considerations. Generally speaking, the maximum prin-
ciple for such operators relies mainly on the ellipticity of the operator and not on
other properties (such as the smoothness of the coefficients or the structure of the
equation).

Throughout this review, D denotes a domain in R%. The Laplace operator is
defined on (real valued) functions u € C? by

d 0%u(x)
Au(z) := e

i=1
A function u € C?(D) satisfying in D the equation Au = 0 (resp. the differential
inequality Au > 0) is called harmonic (resp. subharmonic) in D. The function u
is superharmonic in D if —u is subharmonic in D.
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Note that for d = 1, a subharmonic function is a convex function. It is well
known that a nonconstant C?-convex function u defined on an interval [a,b] C R
satisfies a strong MP. Namely, the maximum of u is attained only at the boundary.
Moreover, the one-sided first derivative of u at a maximum point is not zero (end
point lemma). The higher dimension generalizations are given in the following
theorems.

Theorem 2.1 (Weak maximum principle). Let D C RY, d > 2 be a bounded
domain, and let u € C*(D) N C(D) be a subharmonic function in D. Then the
mazimum of u in D is achieved on the boundary 0D.

Proof. If v € C?(D) N C(D) satisfies Av > 0 in D, then v cannot have a local
maximum point in D. Indeed, if o € D is a local maximum point of v, then
Av(xg) <0, in contradiction to our assumption.

Notice that for any € > 0, the function v.(z) := u(x) +¢lz|? = u(z) +¢ Zle x?
satisfies Av. > 2ed > 0. Set M := maxypu, and L := maxpp |z|?. From our
argument applied to v., it follows that v. < M + L in D. Since u = v. — |z|?,
it now follows that u < M + <L in D. Because ¢ is arbitrary, we obtain v < M in
D. O

Remark 2.2. For any set A and for any function u, we have mina u = — max(—u).
It follows that a superharmonic function u € C?(D) N C(D) satisfies the weak
minimum principle in a bounded domain D. Namely,

min u(z) = min u(z).

The weak maximum principle (or WMP for brevity) readily implies the unique-
ness and stability of solutions to the Dirichlet problem:

Corollary 2.3. Consider the Dirichlet problem in a bounded domain D:

Au = f, x €D,
{ u(z) = g(z), x € 0D.

1. Problem 1)) has at most one solution in C*(D) N C(D).
2. Let uy,us € C?*(D)NC (D) be solutions of the Poisson equation Au = f with
the Dirichlet continuous boundary data g1 and go, respectively. Then

(2.1)

— < — .
mase 11 () — up(@)] < max [91(2) — g2()

The boundedness of D is essential. Indeed, for d = 2, the functions u; = 0 and
uz(x) = log |z| both solve the Dirichlet problem

Au =0, |z|? > 1,
u(z) =0, |z|?> = 1.

We note that if 9D is smooth and u € C(D) is any function attaining its
maximum at some boundary point 2o € 9D, then du/0v > 0 at xg for any vector
v which points outward from D at the point zg. It turns out that if v in addition is
a nonconstant subharmonic function in D, then a strict inequality holds, provided
xq satisfies the interior sphere condition at xo. We have:

Theorem 2.4 (Boundary point lemma). Let u € C2(D)NC(D) be a subharmonic
function in a domain D. Suppose that xo € 0D lies on the boundary of an open
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ball B(y, R) C D, and that an outward directional derivative Ou/0v exists at xo. If
u(z) < u(xg) in D, then

N0 at
By at Tg.

Proof. It can be verified that for any o > d/2, the function

v(x) = emole—yl* _ g—aR?

is a nonnegative subharmonic function in B(y, R) that vanishes on dB(y, R) and
satisfies Jv/0v < 0 at xg. Since u(z)—u(xo) is strictly negative in B(y, R), it follows
that for some € > 0, and 0 < p < R the function w(z) := u(x) — u(xg) +ecv(z) <0
on dB(y, R)UdB(y, p). By the WMP w(z) < 0in B(y, R) \ B(y, p), and w attains

its maximum at xy. Therefore,

ow ou ov
— > — > —e— .
81/*0 at xg = 7 = aay>0 at xg O

The boundary point lemma for elliptic operators is due to E. Hopf and O. A.
Oleinik. Using the WMP and the boundary point lemma, we obtain the following
uniqueness theorem for the Neumann problem.

Corollary 2.5. Let D be a smooth bounded domain. Then up to an additive con-
stant, the Neumann problem

{Au:f, rz €D,

(2.2) ou u e C*(D)ncY(D),

— =g, € oD,
on g .

has at most one solution. Here /0n is the exterior normal derivative.

The WMP still does not exclude the possibility that the maximum of a subhar-
monic function is attained also at an internal point. The boundary point lemma
implies the following strengthening of Theorem 211

Theorem 2.6 (Strong maximum principle). Let D be any domain in R, and let
u€C?(D) be a nonconstant subharmonic function in D. Then the mazimum of u
cannot be attained at any interior point of D.

The above MP is called “strong” since there are no assumptions on the domain
D nor on the behavior of u at the boundary. The strong maximum principle (or
SMP for brevity) implies the following comparison principle.

Corollary 2.7 (Stro_ng comparison principle). Let D C R? be a bounded domain.
Let u; € C?(Q) N C(D), i = 1,2, satisfy the following inequalities:
{ —Au; < —Aus, in D,

(2.3) w < g, on dD.

Then ui < ug in D unless uy = ug in D.

Degenerate nonlinear elliptic operators usually satisfy only a weak comparison
principle (one might conclude only that u; < ug in D), and one should impose
further conditions for the validity of the strong comparison principle which is called
in [PS] the tangency theorem (see Chapter 2).

The question of the existence of a solution to the Dirichlet problem (Z1I) is
frequently treated by using Perron’s method, which is heavily based on the MP,
and can be easily extended to general second-order linear and nonlinear elliptic and
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parabolic equations. Denote by S, the set of all subharmonic functions v € C(D)
satisfying v < g on 0D. Perron’s solution u of the Dirichlet problem (21]) in a
bounded domain D with f =0 and g € C(9D) is defined by
u(z) = sup v(z), z e D.
vES,
It follows that u is a well defined smooth harmonic function in D. Moreover, if D
is smooth enough, then v € C(D) and u = g on dD.

Recall that a boundary value problem is said to be well-posed if it has a unique
solution that continuously depends on the sources, including boundary conditions.
Using the results obtained, we see that the validity of the MP implies the well-
posedness of the classical Dirichlet problem. This statement remains true for general
linear and nonlinear second-order elliptic operators.

3. MPS FOR LINEAR ELLIPTIC OPERATORS

Let L be a second-order linear elliptic operator of the form

d d
(3.1) L(xz,0) = Z a;j(x)0;0; + Z bi(2)0; + c(x), zeD,
ij=1 i=1

where 9; = 9/0x;. We assume that L is strictly elliptic; that is, for each x € D
the real (symmetric) matrix [a;;(z);;] is positive definite on R?. Suppose that the
coefficients of L are smooth enough in D. A function u € C?(D) is a subsolution
(resp., supersolution) of L in D if Lu > 0 (resp., Lu < 0) in D.

It turns out that slightly modified weak and strong MPs for subsolutions, as
well as a boundary point lemma and a comparison principle, hold true in any
bounded subdomain D’ satisfying D’ C D if and only if the operator L admits a
positive supersolution (or solution) of the equation Lu = 0 in D (it seems that this
important fact is not mentioned in [PS]). The proofs for the linear case are similar
to Hopf’s technique presented above for the Laplacian. Moreover, this statement (if
properly formulated) is also true for the class of weak solutions of elliptic equations
in divergence form as well as for the class of strong solutions of strongly elliptic
equations with locally bounded coefficients. The existence of a global positive
supersolution can be verified easily if ¢ < 0 or if D is a “thin” domain (see, e.g.,
[T, 8] and Section 3.3).

4. MPS FOR NONLINEAR ELLIPTIC OPERATORS

The book under review considers substantially a very general class of quasilinear
equations in divergence form divA(z,u, Vu) + B(z,u, Vu) = 0, where A and B
satisfy growth conditions compatible with the Sobolev space WP, 1 < p < oc.
The equations considered include the celebrated p-Laplacian, the mean curvature
operator, and similar equations.

In fact, using a standard linearization procedure, E. Hopf proved under appro-
priate assumptions weak comparison principles and tangency theorems for fully
nonlinear second-order elliptic equations of the form

(4.1) F(x,u, Du, D*u) = 0, x€D.
If one further assumes that the given operator has an additional structure (e.g.,

semilinear operator of certain type, quasilinear operator in divergence form sat-
isfying some structured elliptic inequalities, homogeneity assumptions, etc.), one
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obtains MPs and comparison principles, as well as corresponding boundary point
lemmas under less restrictive assumptions. These results are based on the cele-
brated work of Serrin [5], and are discussed in detail in Chapters 3 and 6 of [PS].

5. THE COMPACT SUPPORT PRINCIPLE

Let f € C(R) be a nondecreasing function satisfying f(0) = 0. Let F(u) :=
fou f(s)ds. Assume that u > 0 satisfies the semilinear differential inequality Au —

f(u) <0in a domain D C R?. If fol(\/F(s))_1 ds = 0o, then the SMP holds true.
That is, if u vanishes at some point of D, then u must vanish everywhere in D.

On the other hand, if fol(«/F(s))_1 ds < 00, and u > 0 satisfy the differential
inequality Au— f(u) > 0 in an exterior domain D C R%, and u(x) — 0 as |x| — oo,
then u has a compact support. This phenomenon is often called the compact support
or the dead core principle.

In Chapter 5 of the book under review, the authors present generalizations of the
above phenomena to the case of (degenerate) quasilinear operators in divergence
form. In particular, the above two results hold true for the p-Laplacian and the
mean curvature operators.

6. HARNACK INEQUALITY AND HOLDER CONTINUITY

The maximum principles usually give us global bounds. On the other hand, local
pointwise estimates and regularity theory are fundamental tools in the study of
quasilinear equations. The most important results in these directions are Harnack
inequalities for nonnegative solutions, and the Holder continuity of weak solutions.
In Chapter 8 of [PS], the authors present in a very clear way detailed proofs of
these results for general quasilinear equations based on Moser’s iteration technique
and Serrin’s seminal work [5].

7. LIOUVILLE THEOREMS

The classical Liouville theorem asserts that any bounded (or nonnegative) entire
harmonic function in R% must be a constant. This statement is also true for solu-
tions of the equation Lu = 0 in R? provided that L is either of the form (B.1]), and
the coefficients of L converge sufficiently fast (as |x| — 00) to the coefficients of the
Laplacian, or L is a second-order linear uniformly elliptic operator in divergence
form with bounded measurable coefficients. Theorems of this kind are known as
Liouville or Cauchy-Liouville theorems. In Chapter 8 the authors present among
some other applications some Cauchy-Liouville theorems for quasilinear equations.

8. CONCLUSIONS

The book under review is written by leading experts who have made extensive
and deep contributions to the subject for many years; indeed, a substantial part of
the book’s material is due to the authors’ research. The book is an in-depth, up-to-
date, modern, clear exposition of the advanced theory of MPs. There are a number
of excellent classical books discussing mainly the MPs for linear elliptic operators
(see |2, Bl [4]). They should be considered as a good and essential starting point
before studying the book under review which treats the subject for very general
and different frameworks. On the other hand, the prerequisites assumed do not go
much beyond a first course in analysis and functional analysis, and the proofs of the
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main theorems are entirely self-contained. Therefore, the book should be accessible
to a large audience including graduate and postgraduate students and researchers
in the field of partial differential equations.

Each chapter is followed by notes that provide a short historical background,
and by exercises, some of which contain new results. The connections among dif-
ferent topics are clearly exhibited. Much attention is given to bibliographical and
historical notes.

Many topics appear in this volume for the first time in book form, e.g., the
compact support principle, Cauchy-Liouville theorems for quasilinear equations,
and nonhomogeneous structured elliptic inequalities. On the other hand, the book
omits many topics related to MPs, e.g., the Alexandrov-Bakelman-Pucci weak max-
imum principle, the principal eigenvalue and ground state (and in particular the
important work [I]), criticality theory, relations to spectral theory, removable sin-
gularities, and the anti-maximum principle.

Regardless of this remark, I strongly recommend this excellent book to every
researcher or graduate student in the field of elliptic equations. Naturally, it will
also be of interest to many mathematicians in related areas.
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