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A topological manifold of some given dimension is, by definition, a Hausdorff
space whereby every point has an open neighborhood that is homeomorphic to the
Euclidean space of the given dimension. This being the case, a neighborhood of any
one point looks just like that of another. There is a natural equivalence relation on
such manifolds; it identifies two when they are mutually homeomorphic. This is to
say that there is a continuous map from one to the other with continuous inverse.
One can then ask for a ‘list’” of the possible equivalence classes. The word ‘list’ is in
quotes because there are countability issues with regard to the fundamental group.
Better to fix the homotopy type and ask for the set of homeomorphism classes
with the given homotopy type. For example, the issue of classification of compact
manifolds with the homotopy type of the n-dimensional sphere is known for all n:
there is but one. Smale proved this around 1960 for n > 5 (as did Stallings at
nearly the same time). Freedman proved the case n = 4 in 1980. Perelman’s recent
proof of the Geometrization Conjecture has this as a corollary in the case n = 3.
The case n = 2 follows from the Riemann mapping theorem, and the case n =1 is
a nice exercise for an undergraduate. In any event, the classification question for
topological manifolds is well understood save for dimension 4 in the cases when the
fundamental group is suitably large.

There is a notion of a smooth structure on a topological manifold. To say more,
suppose one is given a topological manifold. Each point has a neighborhood with
a homeomorphism to Euclidean space. The intersection of two such neighborhoods
thus embeds in two ways into a Euclidean space. This being the case, the inverse of
one embedding followed by the other defines a homeomorphism from one open set in
a Euclidean space to another. Such a map is called a transition function. A manifold
has a smooth structure if each point has a neighborhood with a homeomorphism to
Euclidean space such that all transition functions are smooth maps. This is to say
that derivatives to any given order exist. This condition is necessary and sufficient
to do calculus on the manifold. The point being that such a system of coordinate
neighborhoods supplies an unambiguous notion of a differentiable function.

A manifold with a smooth structure is said to be a differentiable manifold. Two
such manifolds are deemed to be equivalent if there is a homeomorphism between
them that intertwines the corresponding sets of differentiable functions. Such a
homeomorphism is said to be a diffeomorphism. Here is a natural question: Fix a
homeomorphism type of a compact, topological manifold and ask for a list of the set
of equivalence classes of diffeomorphism types. In dimensions 2 and 3, each topolog-
ical manifold has a unique equivalence class of smooth structure. The classification
of diffeomorphism equivalence classes for manifolds of dimension greater than 4
is also well understood. This is due to work of people such as Smale, Stallings,
Hirsch, Kirby, Seibenmann, Milnor, Kervaire, and then others who I pray forgive
me for not naming them explicitly. The justly famous example of the n-dimensional
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sphere supplies a wonderful example; the list stemming from the work of Milnor
and Kervaire.

I left out dimension 4 because the story in dimension 4 is not at all understood.
The fact is that there are no truly compelling conjectures; the story may well
be truly bizarre. What follows is meant to give a sense of where the frontier of
ignorance lies. To start, I remark that necessary and sufficient conditions for a
compact topological 4-dimensional manifold to have a smooth structure are not
known. There are known obstructions; some come from old work of Rochlin and
the pair of Kirby and Seibenmann. Then there are those discovered since 1980 that
use gauge theories and owe allegiance to the pioneering work of Donaldson (more
on gauge theory in a moment). There may be obstructions as yet undiscovered.

To give more of an indication of the divide between known and unknown, start
with a smooth, compact, oriented 4-dimensional manifold. Suppose, in addition,
that this manifold has an embedded torus inside with a tubular neighborhood
that is diffeomorphic to the product of the torus and a disk; the disk giving the
directions normal to the surface. A new manifold can be had by taking out this
tubular neighborhood and then gluing in something with the same boundary. The
boundary is a 3-dimensional torus. What follows gives an example: Take the
product of the circle with the complement of a solid tubular neighborhood of a
knot in the 3-sphere. The boundary of this product is also a 3-dimensional torus.
The result of this excision and regluing is called knot surgery. The pioneers of this
are Ron Fintushel and Ron Stern. If the torus has certain desirable properties, then
the new manifold will be homeomorphic to the original. This begs for the following
question:

When is the knot surgery manifold diffeomorphic to the original?

Gauge theories can be used to prove that there are simply connected examples—
not terribly complicated—where the new manifold is different if the knot has a non-
trivial Alexander polynomial. This Alexander polynomial is a classical invariant of
knots that can be used to tell one knot from the other. For example, the Alexander
polynomial of the unknotted circle is 1, while that of the trefoil (think of a pretzel)
ist —1+t~1. (In all cases, knot surgery using the unknotted circle gives back the
original smooth manifold.)

What follows is now the key point: There are countably many pairwise inequiv-
alent knots with the same Alexander polynomial. This last observation begs the
next question:

If two inequivalent knots have the same Alexander polynomial, must
the corresponding knot surgeries give diffeomorphic 4-manifolds?

At this writing, there is no way to tell. The knot surgery 4-manifolds may well
see the more subtle invariants of knots. If this is the case, then the 4-dimensional
classification problem is most likely no simpler than the problem of classifying knots
in the 3-sphere. Of course, the 4-dimensional classification problem may be way
more complicated than this. There may be a zoo of undetected neutrino man-
ifolds that pass through ordinary matter, mathematicians in particular, without
interaction.

Gauge theory, in the guise of the Seiberg-Witten equations, has supplied in-
variants of smooth 4-manifolds that ‘see’ the Alexander polynomial of the knot.
In fact, all the myriad post-1980 discoveries about smooth 4-dimensional mani-
folds invoke the Seiberg-Witten equations, or else closely related tools such as the



BOOK REVIEWS 507

self-dual Yang-Mills equations as originally employed by Donaldson, or else tools
recently developed by Peter Ozsvath and Zoltan Szabo that are widely believed to
be equivalent to the Seiberg-Witten tools.

The Seiberg-Witten tools give invariants of 4-manifolds that are obtained by
counting the solutions to the eponymous equations with suitable algebraic weights.
This counting of Seiberg-Witten solutions for a knot surgered manifold (or from
other sorts of surgeries) involves what can be loosely described as a multiplicative
form of the classical Meyer-Vietoris calculations. The latter allow one to compute
the homology groups of a manifold from the homology groups of a given decomposi-
tion into subsets and those of the mutual intersections of the various combinations
of these subsets. In the case at hand, when the pieces are submanifolds with
boundary, the classical Meyer-Vietoris requires knowledge of the homology of the
manifolds with boundary, the homology of the boundary, and the manner in which
the parts glue together to give the whole.

The gauge theory analogs of the ‘homology of the boundary’ is deemed Floer
homology in honor of Andreas Floer. Any given compact, oriented 3-dimensional
manifold has various versions of Seiberg-Witten Floer homology. Each version is
a diffeomorphism invariant of the 3-manifold; and each is constructed from the
solutions to both the 3-dimensional Seiberg-Witten equations as defined on the
given manifold, and also the 4-dimensional Seiberg-Witten equations as defined on
the product of the manifold with the real line. Here is a very rough idea of what is
involved. The chain complex for the Floer homology is taken to be the free Z module
that is generated by solutions to the equations on the given 3-manifold. Given this
basis for the chain complex, the differential appears as an integer valued matrix
whose entries are computed using the solutions to the Seiberg-Witten equations
on the product of the manifold with the line. If & and ( are used to denote two
generators, then the (o, 8) matrix element of the differential is a cleverly weighted
count of those solutions on the product of the given manifold and the line with
the following property: the solution converges at large negative values on the line
to the solution on the 3-manifold that defines «, and it converges at large positive
values to the solution that defines 3.

What was just said raises the following questions: Why not just count solutions
outright? Why go through all of this trouble with weighted counts on the manifold
and on its product with the line? Here is why. The Seiberg-Witten equations
constitute a system of differential equations whose definition requires the a priori
choice of a Riemannian metric on the manifold. As it turns out, corresponding
solution sets for distinct metrics can be, and often are, vastly different. This is the
source of most (but not all) of the evil. Were the solution set metric independent,
one could obtain a 3-manifold or 4-manifold invariant by simply counting solutions.
Given that the solution sets can vary with the metric, one must come to terms
with the manner in which solutions appear and disappear as the metric is varied.
Donaldson in the context of 4-manifolds, and Floer in the context of 3-manifolds
understood how to compensate for this appearance and disappearance phenomena
by assigning suitable algebraic weights to the solutions.

To be sure, there are antecedents for this sort of business in bifurcation theory,
Morse theory, algebraic topology, and algebraic geometry. Even so, a stunning
breadth of mathematics is needed to tell the full Seiberg-Witten story. Moreover,
a string of novel applications has, and is still, increasing this breadth.
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For example, there is the relationship to knots. The appearance of the Alexander
polynomial was noted almost at the beginning of the Seiberg-Witten era. However,
Peter Kronheimer and Tom Mrowka have now found clever variants of 3-dimensional
gauge theories that see much more of knot theory. In particular, their new work
gives a beautiful geometric perspective to the novel knot invariants that come via
the work of Jake Rasmussen, the pair Ozsvath and Szabo, and Mikhail Khovanov.
The work of Kronheimer and Mrowka does not speak, as of this writing, to whether
smooth 4-manifolds ‘see’ more than the Alexander polynomial.

Kronheimer and Mrowka uncovered another side of the 3-dimensional Seiberg-
Witten story, this its surprise tie-in to the theory of foliations on 3-manifolds. In
particular, they find intimate connections to the work of David Gabai and his
students. Their most recent discoveries tie in to work of Yi Ni; Ni uses Gabai’s
notion of a sutured manifold to say things about the invariants of Ozsvath and
Szabo. As it turns out, Yi Ni’s work and that of Kronheimer and Mrowka is
not unrelated to the recent resolution by Stefan Friedl and Stefan Vidussi of a
question about symplectic 4-manifolds: When does the product of a circle with a
3-manifold admit a symplectic structure? They find that such is the case if and
only if the 3-manifold fibers over the circle. Their proof starts with the Seiberg-
Witten/Alexander polynomial connection mentioned above, plus some facts that
date to the dawn of the Seiberg-Witten era about the Seiberg-Witten invariants of
symplectic 4-manifolds.

A symplectic manifold is one with a closed and non-degenerate 2-form. The
odd-dimensional analog of a symplectic manifold is a contact manifold. The inves-
tigations of contact structures on 3-manifolds is a fast moving and exciting field,
due in large part to the pioneering work of Helmut Hofer, Emmanuel Giroux, Yasha
Eliashberg, and to many others who I also pray forgive me for not naming them
explicitly. Contact structures enter the story through recent work that identifies a
version of Seiberg-Witten Floer (co)homology with a novel Floer homology theory
for contact structures found by Michael Hutchings.

All of this name dropping is done for a the following reason: it is to indicate that
Seiberg-Witten Floer homology has tie-ins to almost all aspects of 3-dimensional
differential topology. Here we see knot theory, the theory of Heegard decompositions
(via the Ozsvath-Szabo invariants), foliations and sutured manifolds, fiberings over
the circle, contact geometry, . ... Indeed, what of 3-manifolds is missing?

Ahh, yes something immense is missing: the Geometrization Theorem and its
recent proof by Grigory Perelman. Richard Hamilton’s Ricci flow and the question
of Einstein metrics has not as yet entered. Even so, work by Claude Le Brun and
now others uses the 4-dimensional Seiberg-Witten invariants to obtain obstructions
to Einstein metrics and complete Ricci flows on compact 4-manifolds. This work
hints at a new and possibly very profound chapter in the Seiberg-Witten saga.

I mentioned Tom Mrowka and Peter Kronheimer some paragraphs back not
just because their work is so exciting. They wrote the book Monopoles and three-
manifolds; the book that motivates this essay. To my mind, this book is the
definitive bible for anyone wanting to learn the full story of the various Seiberg-
Witten Floer homology theories. This bible tells the story in all of its depth and
glory. The first eighty pages provides an exceptional outline and sketch of the
whole story. The details appear in the subsequent chapter; the analysis, the dif-
ferential geometry, topology, group theory, algebraic geometry, K-theory, operator
theory,...; it is all here, presented completely and in a most elegant way.
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I am thinking that there are mathematics books that are classics; these are
books that tell a particular story in the right way. As such, they will never go out
of date and never be bettered. Kronheimer and Mrowka’s book is almost surely
such a book. If you want to learn about Floer homology in the Seiberg-Witten
context, you will do no better than to read Kronheimer and Mrowka’s masterpiece
Monopoles and three-manifolds.
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