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The prototypical degenerate diffusion equation is the porous medium equation
(PME)

∂tu = ∆(um),

where u(x, t) ≥ 0, m > 1 is a constant, and ∆ is the Laplace operator in Rd for
d ≥ 1. Since

∆(um) = ∇ · (mum−1∇(u)),

the quantitymum−1 plays the role of the diffusion coefficient. The PME is parabolic
for u > 0, but degenerates at u = 0 since the diffusion coefficient vanishes there.
The earliest occurrence of the PME in the scientific literature seems to be in 1903–
04 in the work of J. Boussinesq on ground water flow [5]. In an approximate theory
of almost horizontal flow, he obtained the PME with m = 2 for the height of the
water mound. Subsequently, in the 1930s the petroleum engineers L. S. Leibenzon
[9] and M. Muskat [10] independently derived the PME for the evolution of the
density of an ideal gas flowing isentropically in a homogeneous porous medium.
This flow is characterized by the ideal gas law, the conservation of mass, and an
empirical relationship between the pressure and the velocity known as Darcy’s law.
Solving these equations for the density and scaling out the constants leads to the
PME with m = 1 + γ, where γ ≥ 1 is the exponent in the ideal gas law. In both
the ground water and ideal gas flows m ≥ 2, but various values of m > 1 occur in
other applications. Much more information can be found in Vazquez’s monograph
[14].

One of the most striking manifestations of the degeneracy of the PME is the
finite speed of propagation of disturbances from rest. Let u(x, t;u0) denote the
solution to the Cauchy (initial value) problem

∂tu = ∆(um) in Rd×R+,

u(x, 0;u0) = u0(x) in Rd.

If u0 has compact support, then u(·, t;u0) will be compactly supported for all
t > 0. For m = 1, the PME is the classical equation of heat conduction for which
the speed of propagation of disturbances from rest is infinite. In particular, even if
the nonnegative initial function has compact support, the solution to the Cauchy
problem for the heat equation will be everywhere positive for all t > 0.

If we allow 0 < m < 1 in the PME, the equation is still degenerate at u = 0.
However, in this case, instead of vanishing, the diffusion coefficient blows up at
u = 0. Moreover, in this case as for the heat equation, there is an infinite speed of
propagation. The case m > 1 is often referred to as slow diffusion while the case
0 < m < 1 is called fast diffusion. Fast diffusion arises in various plasma physics
models as well as in other applications (cf. [14]). There is a further distinction in
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the class of fast diffusions. Let mc = (d−2)+/d, where (·)+ = max(0, ·). If m ≥ mc,
then the PME conserves mass; i.e., if∫

Rd

u0(x)dx = M < ∞,

then ∫
Rd

u(x, t;u0)dx = M

for all t > 0. This is no longer the case for m < mc, and we distinguish between
super - and subcritical fast diffusion. In the subcritical regime there is extinction
in finite time. If u0 is bounded and not identically zero, then there exists a 0 <
T (u0) < ∞ such that u(x, t;u0) ≡ 0 in Rd × (T (u0),∞). One can also consider
ultrafast diffusion with m < 0. To deal with ultrafast diffusion we rescale the PME
as

∂tu = ∆

(
1

m
um

)
= ∇ · (um−1∇u)

to retain the (formal) parabolicity. In this form we can also take the limit as m → 0
to obtain the equation ∂tu = ∆(lnu) which arises in the study of Ricci flows (see
[13]). The theory for slow and supercritical fast diffusion is quite complete. For
subcritical, and even more so, ultrafast diffusion there remain many open problems
(cf. [13], [14]).

We can also drop the restriction u > 0 by rewriting the PME in the form

∂tu = ∆(|u|m−1
u). More generally, we can consider the generalized porous medium

equation (GPME)
∂tu = ∆(ϕ(u))

for suitable classes of functions ϕ. The basic question is what are the assumptions
on ϕ needed to generalize results for the PME to the GPME. One such body of
results for the PME is the initial trace theory for continuous weak solutions which
we now describe.

Assume m > 1. Let Br denote the ball of radius r centered at 0 ∈ Rd, and let
ST = Rd× (0, T ]. A function u(x, t) is said to be a continuous weak solution to the
PME in ST if it is continuous and nonnegative in ST , and it satisfies∫∫

Rd×(τ1,τ2)

(um∆η + u∂tη) dxdt =

∫
Rd

uηdx
∣∣τ2
τ1

for all τj such that 0 < τ1 < τ2 ≤ T and for all η ∈ C2,1(ST ) such that η(·, t) has
compact support for all t ∈ [τ1, τ2]. It is shown in [2] that corresponding to every
continuous weak solution u in ST there is a unique nonnegative Borel measure ρ
on Rd such that

lim
t↘0

∫
Rd

u(x, t)η(x)dx =

∫
Rd

η(x)ρ(dx)

for all test functions η ∈ C0(R
d). The measure ρ is called the initial trace of u

and it satisfies a growth condition which limits the amount of mass it can place at
infinity. Specifically, there exists a constant c = c(d,m) > 0 such that∫

Br

ρ(dx) ≤ c

{(
rκ

T

) 1
m−1

+ T
d
2 u(0, T )

κ
2

}
,

where κ = 2 + d(m− 1). Roughly speaking, this means that, on average, “u(x, 0)”

cannot grow faster than |x|
2

m−1 as |x| → ∞.
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It is natural to ask when does a nonnegative Borel measure ρ determine a con-
tinuous weak solution to the PME. For any nonnegative measure µ, define

|||µ||| = sup
r≥1

r
−κ

m−1µ(Br).

The initial trace ρ of a continuous weak solution satisfies |||ρ||| < ∞. Conversely,
if ρ is a nonnegative Borel measure with |||ρ||| < ∞, then there exists a continuous
weak solutionW [ρ](x, t) of the PME in ST with initial trace ρ for T = c(d,m)/lm−1,

where c(d,m) > 0 is a constant and l = limr→∞ supR≥r R
−κ

m−1 ρ(BR). Moreover

W [ρ](x, t) ≤ c(d,m)t
−d
κ (1 + |x|2) 1

m−1 |||ρ||| 2κ

in ST [4].
Given a continuous weak solution u of the PME, we determine a unique initial

trace ρ with |||ρ||| < ∞ . On the other hand, given the measure ρ, we can construct
a continuous weak solution W [ρ] which also has initial trace ρ. Dahlberg and Kenig
[6] prove that W [ρ] = u. A continuous weak solution u to the PME in ST possesses
various regularity properties [6]. For each t ∈ (0, T ),

u(x, t) ≤ C(1 + |x|2) 1
m−1 t

−d
κ ,

where C is a constant which depends only on T, u(0, T ), d, and m. Moreover, u is
Hölder continuous with exponent depending only on d and m on all compact sets
K ⊂ Rd × (0, T ) and satisfies the Aronson–Bénilan estimates [1]

∆v ≥ −d

κt
and ∂tv ≥ − (m− 1)dv

κt
in D′(ST ),

where v = m
m−1u

m−1. The estimate for ∆v is sharp, and equality is achieved for

the self-similar explicit Barenblatt solution [3]. If u represents the density of the
gas, then, in view of the ideal gas law, v is its scaled pressure.

These results for the slow diffusion casem > 1 extend the classical Widder theory
[15], which completely characterizes nonnegative solutions to the heat conduction
equation. The situation for the fast diffusion case 0 < m < 1 is radically different.
For example, Herrero and Pierre [8] study the Cauchy problem in Rd × R+ with
0 < m < 1. They prove that if u0 ∈ L1

loc(R
d), then the Cauchy problem has a

time-global continuous weak solution, i.e., they obtain global existence without any
growth conditions at infinity. Moreover, for all t > 0 and all R > 0,∫

BR

|u(x, t;u0)| dx ≤ C

{∫
B2R

|u0| dx+ t
1

1−mR
−κ

1−m

}
,

where C is a constant depending only on d and m. If mc < m < 1 and u0 ∈
L1
loc(R

d), then there exists a solution to the Cauchy problem such that for all t > 0
and all R > 0

sup
x∈BR

|u(x, t;u0)| ≤ C

{
t
−κ
d

[∫
B4R

|u0| dx
] 2

κ

+

(
t

R2

) 1
1−m

}

(L∞−L1 regularization). More information on the fast diffusion case can be found
in [13].

A major portion of the Daskalopoulos–Kenig book is devoted to extending the
above results to a suitable class of GPME’s. In order to define a suitable class,
it is necessary to introduce some structure assumptions on the function ϕ(u). A
nonnegative continuous function ϕ : [0,∞) → R, which is differentiable on R+ and
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normalized by ϕ(0) = 0 and ϕ(1) = 1, is said to be of class Γa if there exists a
constant a ∈ (0, 1) such that for any u > 0

a ≤ uϕ′(u)

ϕ(u)
≤ 1

a
.

Thus, functions in Γa have power growth at u = 0. This is the minimal structure
assumption. To extend the results for the slow diffusion case m > 1, the authors
introduce the subclass Sa ⊂ Γa of functions which are strictly increasing and satisfy
the superlinearity condition

uϕ′(u)

ϕ(u)
≥ 1 + a

for all u ≥ 1. To extend the results for supercritical fast diffusion mc < m < 1,
they introduce the subclass Fa ⊂ Γa of functions which are strictly increasing and
satisfy the sublinearity condition

d− 2

d
+ a ≤ uϕ′(u)

ϕ(u)
≤ 1− a

for all u ≥ 1. The lower bound d−2
d + a turns out to be essential for L∞ − L1

regularization.
In the first chapter the authors assume at the very least that ϕ ∈ Γa, and they

develop some of the basic tools they will employ throughout the book. A standard
procedure in the study of a degenerate problem is to approximate by nondegenerate
problems and seek estimates that allow for passage to the limit. For this purpose
one needs a comparison principle as well as some sort of compactness theorem. Here
the comparison principle is essentially standard, and the compactness theorem is
the equicontinuity result of P. Sacks [12], the detailed proof of which is given in
this chapter. There are local L∞ bounds (L∞ − L1 regularization) for smooth
nonnegative solutions for both ϕ ∈ Sa and ϕ ∈ Fa. Moreover, there is a Harnack
type estimate for nonnegative weak solutions when ϕ ∈ Sa with ϕ(u)/u monotone
increasing on [1,∞). The chapter ends with an existence proof for a weak solution
of the homogeneous initial-Dirichlet problem

∂tu = ∆ϕ(u) in Ω× (0, T ],

u(x, t) = 0 on ∂Ω× (0, T ], u(x, 0) = u0(x) on Ω,

where Ω is bounded and u0 ∈ L∞(Ω), and for the corresponding Cauchy problem
with u0 ∈ L∞(Rd) ∩ L1(Rd).

In the next chapter the authors extend the results on the initial trace theory
outlined above for the PME in the slow diffusion case m > 1 to the GPME with
ϕ ∈ Sa. Actually, with the exception of the pointwise estimates and the Pierre
uniqueness theorem [11], the detailed proofs are given for the PME and the reader
is referred to the literature for the generalizations to the GPME. The chapter
concludes with remarks on various complementary topics mainly for the PME.

Chapter 3 consists of three distinct sections. The first is devoted to extending
the results of Herrero–Pierre for the PME with mc < m < 1 to the GPME with
ϕ ∈ Fa. In particular, if ϕ ∈ Fa, then a locally finite Borel measure µ determines
a unique continuous weak solution to the GPME with µ as its initial trace. The
second section of Chapter 3 concerns the logarithmic diffusion equation (LDE)

∂tu = ∆(lnu)
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in dimensions d ≥ 2. As noted above this equation arises as the limit as m → 0 of
the scaled PME with ϕ = 1

mum. In the critical dimension d = 2, the LDE represents

the evolution of the conformally equivalent metric g with ds2 = u(dx2+dy2) under
the Ricci flow. For d ≥ 3 and radially symmetric locally integrable u0, there is a
growth condition which is necessary and sufficient for the existence of a solution to
the Cauchy problem in Rd × (0, T ). A counterexample shows that this condition
does not guarantee existence for nonradially symmetric u0. For d = 2, there is
a corresponding growth condition which is necessary and sufficient for existence
regardless of the symmetry of u0. There is also a strong nonuniqueness property.
For given u0 and for every s ∈ [0,∞), there exists a solution us(x, t;u0) to the
Cauchy problem in Rd × (0, Ts) where

Ts =
1

2π(2 + s)

∫
R2

u0(x)dx,

such that us(x, t;u0) = 0 for all t ≥ Ts. The final section of Chapter 3 summarizes
various results on the time-asymptotic behavior and the existence or nonexistence
of solutions to the Cauchy problem for the PME in the fast and ultrafast diffusion
regimes. For subcritical fast diffusion and ultrafast diffusion there is extinction
in finite time. Moreover, for ultrafast diffusion the solution can fail to exist since
extinction is instantaneous if the initial data u0 decays too rapidly at infinity.

Chapter 4 deals with the homogeneous initial Dirichlet problem in an infinite
cylinder Ω = D×R+, whereD ⊂ Rd is an open bounded set with smooth boundary.
If ϕ ∈ Sa, then this problem has a maximal strong (i.e., continuous) solution α(x, t),
called the “friendly giant”, which has an infinite trace at t = 0, and which is such

that for any other strong solution u we have u ≤ α. If limh↘0
ϕ(hu)
ϕ(h) exists uniformly

on compact subsets of [0,∞), then α attracts all strong solutions as t → ∞. For
any solution u other than α there exist nonnegative Borel measures µ on D and λ
on ∂D satisfying appropriate finiteness conditions such that for any η ∈ C∞

0 (Rd)
with η|∂D = 0,

lim
t↘0

∫
D

u(x.t)η(x)dx =

∫
D

η(x)µ(dx)−
∫
∂D

∂nη(σ)λ(dσ).

Strong solutions are uniquely determined by their initial trace, and any given Borel
measures λ, µ satisfying the finiteness conditions determine a unique strong solution
with these measures as initial trace. In the fast diffusion case for the PME, there
are analogous trace and uniqueness results, but the existence result holds only for
(d−1)+

d < m < 1.
The final chapter is devoted to proving that every distribution solution to the

PME with m > 1 defined in an open set Ω ⊂ Rd ×R with u ∈ Lm
loc(R

d ×R) has a
representative which is continuous a.e. in Ω. The same result holds for the GPME
if ϕ ∈ Sa and is convex. Whether this remains true without convexity is an open
question.

This is not a book for beginners. The reader will need a considerable degree
of mathematical sophistication. A working knowledge of real analysis and partial
differential equations is called for at a minimum. There are no exercises, but there
are various open research problems cited in the notes at the end of chapters. Ad-
vanced graduate students and experienced researchers will find much to interest
them here. The proofs are concise and elegant, and some are quite novel. There
is considerable overlap with the monographs of Vazquez [13], [14] which present
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a comprehensive theory of the PME. Where they do overlap, the treatments are
sufficiently distinct so that the interested reader will learn a great deal by consult-
ing both Daskalopoulos–Kenig and Vazquez. There is essentially no overlap with
the similarly titled book by DiBenedetto [7] which treats the degenerate parabolic

equation ∂tu = ∇ · (|∇u|p−2 ∇u) for p > 1.
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