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REFLECTIONS AND PROSPECTIVES

J. GLIMM

ABSTRACT. Intellectual challenges and opportunities for mathematics are
greater than ever. The role of mathematics in society continues to grow; with
this growth comes new opportunities and some growing pains; each will be
analyzed here.

1. INTRODUCTION

“Tt was the best of times, it was the worst of times, ...” (Dickens)

Progress for the past decade or so has been extraordinary. The solution of
Fermat’s Last Theorem [II] and of the Poincaré Conjecture [I] have resolved two
of the most outstanding challenges to mathematics. For both cases, deep and
advanced theories and whole subfields of mathematics came into play and were
developed further as part of the solutions. And still the future is wide open.
Six of the original seven problems from the Clay Foundation challenge remain
open (http://www.claymath.org/millenium). The 23 DARPA challenge prob-
lems (http://.arsmathematica.net/archives/2007/12/26/605/) are open. En-
tire new branches of mathematics have been developed, including financial mathe-
matics and the connection between geometry and string theory, proposed to solve
the problems of quantized gravity. New solutions of the Einstein equations, inspired
by shock wave theory, suggest a cosmology model which fits accelerating expansion
of the universe possibly eliminating assumptions of “dark matter” [9]. Interdisci-
plinary mathematics is in vogue, and with it an array of novel problems, as well as
a deeper examination of many traditional ones. Among the newer entries to this
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list, we mention mathematics and medicine, biology, geology, sociology, economics,
linguistics, genetics, and the list goes on.

As a professional discipline, mathematics is also healthy. The number of Ph.D.
degrees awarded annually has been stable for a decade. Attendance at the Joint
Meetings continues to rise. Journals are as crowded with papers as ever, and
continue to expand. The numbers of graduates choosing industrial, laboratory, and
other nonacademic employment continues to increase, as it should for a subject
with increasing ties to the larger world. Private donations to mathematics are
at unprecedented levels, with five major centers, institutes, or major funding for
existing institutes established in recent years, and perhaps more that I am not aware
of. However, in view of current financial problems, problem spots are appearing
in this picture. They first emerged in employment and will no doubt expand from
there.

Running through all of this is a sea change in the relation of mathematics to
society. Not to interpret too narrowly, this is the mathematical version of a sea
change in the relation of science and technology to society.

In simple terms, mathematics works. It is effective. It is essential. It is practical.
Its force cannot be avoided, and the future belongs to societies that embrace its
power. Its force is derived from its essential role within science, and from the
role of science in technology. Wigner’s observations concerning “The Unreasonable
Effectiveness of Mathematics” [10] are truer today than when they were first written
in 1960.

With the benefits of increased recognition and importance come increased obli-
gations and responsibilities, and inexorably, an increase in external influences over
the profession. Our interests as mathematicians (as well as those of our society)
are best served by being engaged in this process.

The positive aspects of increased respect for mathematics within society include
new problems, arising from new instances of the use of mathematics, new resources
to address these problems, new colleagues in other disciplines to share this work
with, and an enhanced sense of relevance and of coupling to important forces of
history. We see many signals that a vigorous coupling to these forces is a magnet
to attract young talent into our profession. For example, some of the larger math-
ematics programs, in terms of the undergraduate degrees as a fraction of the total
undergraduate population, are found at UCLA and Stony Brook, where a wide
range of interdisciplinary and career-relevant tracks are offered. Negative aspects
of these changes include pressures to organize our activities along externally deter-
mined directions. Here we need to value the diversity of our activities, and adopt
a “big tent” philosophy, whereby within a large range of valuable professional ac-
tivities, different mathematicians emphasize different directions and even different
goals, all of value. With this point of view, the increased expectations which we
face will be shared among those with a desire to meet them, and are thus far less
onerous.

2. THE BIG TENT FOR MATHEMATICS

“such a cooperation and harmony would be the very end and success” (Thoreau)

It would be difficult to recall the number of times someone has said to me some-
thing to the effect that, “It is unfortunate that in some decades past, we failed to
keep the doors open for some particular subject, which has now established itself
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as an independent entity.” History shows that such divisions are not necessary.
For example, the American Physics Society represents all aspects of physics, and
physics has not been similarly fractured. It is of course the case that we will not
reverse the course of history, nor will we cause water to flow upstream. But a simple
examination of the past may help us with decisions that lie in the future; the future
is certainly full of wide open issues of this type. I believe the mistakes were made
in following a narrow and misplaced sense of equity, which, in not being future
oriented, failed to perceive the strength and potential of evolving and emerging
subfields of mathematics.

Today we face similar choices, in responding to areas such as scientific com-
puting, biomathematics, quantitative finance, and the mathematics of data-driven
science. As the expectations of professional responsibility continue to bear on our
profession, we find an increasing flow of some of our members to professional activ-
ities and concerns which go beyond a traditional research focus, such as innovation
and excellence in teaching, employment in research laboratories, research in inter-
disciplinary science, and government service. A positive response to all of these
trends comprises what I call the “big tent” philosophy: value all of the many and
varied forms of professional activities, distinctions and accomplishments.

How does the big tent play out in specific terms? The appointments of N.
Weiner and J. Nash at MIT and of J. Tukey at Princeton speak to a success for
this point of view from a previous generation. The existence today of a number of
universities with strength in both pure and applied mathematics and faculty who
are comfortable in moving from one to the other provides a current benchmark of
success. Partly due to the success of these efforts, and partly due to the success
of analogous interdisciplinary work in other areas of science and technology, the
standards for this type of integration within and across disciplines continue to
increase. Accordingly, it is the opportunities and responsibilities of today and
tomorrow that we address here.

We have already accomplished the principle of cordial relations among the mul-
tiple mathematics organizations and among the points of view they represent. A
next step, and one that I hope is taken, is to engage in joint activities, where there
is added value in doing so. The Joint Meetings, which have a long and positive
history, are a clear example. Recently, special sessions sponsored by SIAM have
been added to these meetings. As the AMS no longer holds a summer meeting,
SIAM, with its summer meeting, could consider its own version of this cooperation.
The regional meetings of the AMS are unique, in the sense that secondary STAM
meetings are national, and restricted to specialized subject matter. Regional meet-
ings are an opportunity for graduate students to attend at a reasonable cost. These
meetings could have a broader intellectual focus, including some aspects of applied
mathematics as well as traditional research areas. I believe there has been a recent
trend in this direction, which I hope will continue.

In terms of teaching, our natural liaison is with MAA. Many mathematicians
belong to both organizations, and can simply wear one hat or the other depend-
ing on the activity being pursued. A clear instance of the added value of explicit
cooperation between the societies is the issue of education within research univer-
sities, as this issue requires a greater participation by research faculty than has
been traditional. The Task Force on the First Year Undergraduate Experience in
Research Universities (see §3) is an example of such a working group. Another
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example is the teaching of K-12 teachers, insofar as much of this takes place in
research universities. There is a sizable effort by AMS members in this direction.

3. THE IMPORTANCE OF TEACHING WELL
“And gladly would he learn, and gladly teach” (Chaucer)

The vast preponderance of the funding for mathematics comes from the univer-
sities and colleges. The support from NSF and other federal agencies is far smaller.
Studies using focus groups have concluded that the mathematics faculty believes
that its courses are well taught, while the students, parents, deans and faculty col-
leagues in “client departments” do not. While we can hope that these reports are
out of date, surely there is much progress still to be made. If public spiritedness
and a sense of shared responsibility is not sufficient to focus attention on the topic
of this section, I hope that simple self-interest will do the trick: T have yet to meet
a good teacher who does not love his/her teaching. And I have yet to meet a poor
one who derives satisfaction from it. My estimate, from my two decades experience
as a department chair, is that the added time needed for good teaching is not over
5%, and the added satisfaction is immense.

This being the case, as President of the AMS, I convened a task force to focus on
the teaching of first year college/university students. I charged the task force to look
for actions that were (a) likely to be effective in making a substantial improvement
in the quality of the teaching and (b) were not so intrusive and time consuming as
to be damaging to the other professional activities of the faculty. The task force
focused on three topical areas:

e Use of technology, specifically machine-graded homework systems.

e Departmental leadership, from the chair and the senior professors in sup-
port of the goal of good teaching.

e Training of TAs in methods of good teaching.

The report, written by the task force chair and deputy chair, Jim Lewis and Alan
Tucker, will be published in the Notices of the AMS [4] and develops these themes.
The NSF has funded, and the AMS will conduct, a follow-on study of the technology
issue specifically. Its focus will be what might be called a user manual or frequently
asked questions (with answers) regarding the use of computer technology for grading
of homework. It will address such questions as required computer and personnel
support to install and maintain such a system, reasons why it was adopted or not
at responding institutions, and whether or why it was continued or not. Attitudes
of the faculty before and after adoption will also be sought.

4. THE RESEARCH AGENDA, LOOKING FORWARD
“you shall seek all day ere you find them” (Shakespeare)

Within the broad divide between pure and applied mathematics, there is no
need to decide which has influenced the other, as there are ample examples of
influence passing in both directions. There are ample examples of the added value
which accrues as subjects are passed back and forth, often acquiring powerful new
theoretical foundations and completely novel applications, unrelated to the original,
after making a round trip. Fourier analysis, group theory, probability and partial
differential equations provide only a few of the many examples of this phenomena.



REFLECTIONS AND PROSPECTIVES 131

The traditional rationale within applied mathematics has been to solve or provide
insight for equations which describe some part of the physical world. Much of pure
mathematics is an abstraction of this theme, and much, even where the connection
is lost in the mists of time, had its origins there. String theory and its connection to
geometry has greatly enriched mathematics. We hope that through its connections
to the quantization of gravity, it does as much for physics. Both turbulence and
the quantum mechanics of many bodies are challenges to physics that will continue
to engage mathematicians as well. Even where this point of view shows signs of
maturity, I believe it has decades of life left in it.

But there is a paradigm shift afoot. Mathematics is used to describe data, with-
out the benefit of an interpolating equation or physical principle. Consider the
problem of protein folding. One can integrate the classical equations of molecular
dynamics, based on a potential energy between atoms derived from more fundamen-
tal equations of quantum mechanics. This is an active line of investigation. But the
same problem can be attacked from a knowledge- (as opposed to theory-) based set
of principles. Many biomolecules have a measured geometry (folding pattern), from
X-ray crystallography or from NMR. So there is a statistical library of experimen-
tal “solutions” to these equations. These experimentally based “solutions” can be
used to populate probability models, which can generate sample folding patterns
of previously unfolded biomolecules. This approach is called a knowledge-based
method. In annual competitions organized by biomodelers, with molecules having
unknown folding patterns as a test problem, the knowledge-based methods usually
win except for proteins very dissimilar to all others in the library of known solutions.
Similarly, in the decoding of the human genome, competing teams placed different
emphasis on mathematics and computation vs. laboratory experiment. In the end,
the official version was that the contest was a draw, but all observers know that the
mathematical and computational ideas were extremely powerful. The mathematics
used here was not based on physical laws. It was based on pattern recognition, and
similarity of overlapping fragments, with statistical tests for the assembly of the
fragments into a reliable whole.

This shift is not limited to the biological sciences. It is said that there are as
many data points measured for the atmosphere as there are computational grid
cells. For voice recognition, there is no such thing as a law of physics to convey
or interpret from the sound waves to the meaning. Still, mathematical ideas and
computer programs have a degree of success with this important problem. Hidden
Markov models provide the mathematical framework for this area. There is no law
of physics to guide the recognition of finger prints, nor to interpret an image and
decide whether there is a face in it. Computer recognition of handwriting and even
of digits remains a challenging problem. Even for digits, and even for postal zip
codes, where the accuracy requirements are not as high as they would be in bank
deposit slips, human beings are still in the lead. This advantage seems to be only
a matter of time. The leading chess champion is a computer. The mathematical
models of finance, although based on familiar mathematics (stochastic integrals
and differential equations), arrive at their formulations without use of physical
principles.

These new areas for mathematics encompass new areas of knowledge. The so-
cial sciences are beginning to participate in this mathematization of thought and
understanding. Here we include certainly linguistics and economics, where the role
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of mathematics is well established. The dynamics of voting preferences has been
described through a Markov process. In the aggregate behavior of large groups
of individuals, collective patterns emerge. Agent-based models have been used to
study automobile traffic patterns and to plan for disruptions caused by repairs. Net-
works of associations and correlations between purchase patterns have an obvious
commercial interest to merchandisers. Out of such utilitarian concerns will emerge
general principles, including mathematical ones. A typical and generic problem
is to describe a manifold and its inherent and possibly low-dimensional geometry,
when it is presented through noisy data embedded in a high-dimensional space.

If we have had four centuries of physically based and motivated mathematics, it
does not seem a stretch of the imagination to assume that we will have one or more
centuries of mathematics based on the organization of data and the intelligence
to be derived from it, perhaps to be named the mathematics of knowledge and
intelligence.

Mathematics and pure mathematicians have a long tradition of exploring the
issues of data, intelligence, noise and meaning. The classical works of Kolmogorov
and of Shannon illustrate this point. The future is bright for an expansion of this
type of inquiry.

5. WHAT MAKES US UNIQUE

We point out metrics in which mathematics excels, relative to other sciences.

“Love truth, but pardon error” (Voltaire)

5.1. The nature of truth, and how it is established. There is an absolute
nature to truth in mathematics, which is unmatched in any other branch of knowl-
edge. A theorem, once proven, requires independent checking but not repetition
or independent derivation to be accepted as correct. In contrast, experiments in
physics must be repeated to be regarded as confirmed. In medicine, the number
of independent confirmations required is much higher. Truth in mathematics is
totally dependent on pure thought, with no component of data to be added. This
is unique. Associated with truth in mathematics is an absolute certainty in its
validity.

Why does this matter, and why does it go beyond a cultural oddity of our
profession? The answer is that mathematics is deeply embedded in the reasoning
used within many branches of knowledge. That reasoning often involves conjectures,
assumptions, intuition. But whatever aspect has been reduced to mathematics
has an absolute validity. As other subjects search for truth, the mathematical
components embedded in their search are like the boulders in the stream, providing
a solid footing on which to cross from one side to the other.

As science acquires an increasingly computational basis, the search for truth be-
comes systematized. Verification of a computation asserts that the computation
solves the problem as it has been formulated mathematically, as an equation to be
solved. Validation means that this mathematical formulation is an accurate rep-
resentation of the intended domain of application, that is, a correct description of
the problem as it occurs in the real world. Uncertainty quantification refers to es-
tablishing limits or probability distributions for possible errors in the computation,
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both those arising from the numerical approximations (verification) and from the
mathematical approximations to the true problem (validation). Intuitively, it refers
to error bars associated with a computation, including all possible types of errors.
Continuing with this new set of responsibilities, we are asked to estimate quanti-
fied margins of uncertainty. These are the simulation equivalent of an engineering
safety margin, and the final test that a design is safe (enough) to build and use.
These margins serve to estimate and compare uncertainty in design and the design
point to the distance (and its own uncertainty) to some unsafe or unknown region
of design space.

Herein lies a new (or newly growing and popular) branch of mathematics: the
study of the various types of errors in various types of approximations and their
propagation, from input to output within a computation.

There is a darker side to the search for truth, one of systematic error and fraud.

We start with a softer version of this issue which is worthy of our professional
consideration: systematic miscommunication of truth across management levels.
Examples of truth perceived by the scientists in the trenches and ignored by man-
agers have occasionally blown up into public scandals. The famous case of the
O-rings involved in a shuttle disaster is an example.

Less well publicized is the opposite possibility, in which excuses and misinfor-
mation are passed up the line. To give a sense of the possibilities of this phenom-
ena within a mathematical context, consider the mathematics of risk management.
Probabilities for rare events can be inferred from the probabilities of common ones,
but only if there is a valid law relating the two. The normal distribution, and its
claimed justification in terms of the law of large numbers, is an example. Data
will exist only for common events, and extrapolation of this data to predict rare
events is a theoretical enterprise, not itself supported by the data. Data concerning
correlation between events is normally missing, but an assumption of independence
could falsely predict as rare an actually common event.

To make this point explicitly, I have the possibly unjustified impression that
“100-year storms” occur approximately every 25 years. Even if there were 100
years of storm data, the weather patterns may have changed, and certainly the
capability of the ground to absorb and hold back a flood surge has changed, so
it would seem that the categorization of a 100- or 500-year storm has no basis in
data and certainly has no basis in the laws of probability applied to the differential
equations which govern the weather.

This is a personal impression concerning a broad aspect of the application or mis-
application of mathematical ideas to areas of societal concern. Estimates of risk and
uncertainty are an essential output from the modeling and numerical simulation of
today, and will be increasingly so in the future. The mathematical risk-assessement
models used by the now defunct hedge fund Long Term Capital Management mis-
estimated risk for essentially the reasons given above, leading to a well-publicized
failure. Structural changes in the application of risk models cloud the relevance
of historical data. Outliers seldom are accompanied by sufficient data for valida-
tion of risk models. Possible correlations between different data streams are even
more difficult to assess, and historical data is potentially scarce, missing, or lacking
relevance.

In this context, we ask, “What are the professional responsibilities of a math-
ematical scientist to communicate the basis of estimates of risk to management,
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and what are the chances that these responsibilities can feasibly be discharged?”
To make these questions less abstract and more easily understood, I will translate
them to the context of engineering and the design and safety of bridges. The famous
failure of the Tacoma bridge was due to wind induced vibrations in the superstruc-
ture. This was a type of failure never previously encountered in the history of bridge
building, and never considered in the design calculations. Post-failure, it is (as far
as I understand) routinely considered in the design of new bridges. Likewise, the
failure of the I-95 bridge in Connecticut was traced to a lax program of inspections.
So we can find problems in the technology and problems in the regulatory regimen.
To the extent that these problems exist in the mathematics of risk management
and have not been adequately communicated to their users, their elimination or
amelioration should be a professional responsibilty of the mathematics community.
Certainly the communication of the nature and limitations of risk models, and of
their combined validation in mathematics and in data, are professional responsbil-
ities, as is a program to extend and improve the scientific and mathematical basis
for this technology.

A related issue with overtones of miscommunication between disciplines rather
than between management levels illustrates a theme often expressed among mathe-
maticians. Verification of numerical solutions is a step in their scientific acceptabil-
ity, and a formal requirement of many engineering oriented inquiries. Compressible
fluid flow, solved numerically, often is solved at the level of the Euler equations,
that is without use of the regularizations such as viscosity and mass diffusion which
are part of physics, but which may be small enough that there is a temptation to
set them to zero. However, these equations are known to have nonunique solutions
[B, [, [§], so any assertion that a particular numerical approximation is correct runs
into a big problem: If the true answer is not unique, what does correctness of
the approximation mean? How would you verify the mathematical correctness of
a numerical method to calculate the value of 0/07 This question and its import
have yet to reach the world of practical simulations, and so we only offer our own
proposal for its resolution. From the point of view of physics, the nonuniqueness
originates in the ratio of the regularizing terms, as the coefficients all go to zero.
Thus, the Schmidt number (ratio of viscosity to mass diffusion) and the Prandtl
number (ratio of viscosity to heat conducivity) are dimensionless quantities that
must be set within the numerical solution process. One hopes that once this is
done, verification of the numerical process can resume [5] [6].

We should also mention more direct ethical challenges to our community. Misuse
of privileged information (as in the use of unpublished papers or unfunded research
proposals, available through a review or decision process) does occur. Multiple
simultaneous submissions of the identical paper to different journals can occur.
Journals may minipulate citations to enhance ratings, and so may authors. Use
of numerical ratings as a substitute for scientific judgment and exercise of math-
ematical taste is an administrative shortcut which encourages such behavior, and
where not supported by the independent use of judgment and taste, should be seen
as dangerous and potentially unethical in its own right. Plagarizing of passages in
papers or even of entire manuscripts does occur. Professional societies have an obli-
gation to encourage adherance to ethical behavior, to state clearly the boundaries
of unethical behavior, and to the extent practical, to enforce these boundaries.
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“The universe is written in the language of mathematics” (Galileo)

5.2. Universality and re-usability. Knowledge tends to pass from descriptive to
qualitative to quantitative. At the end of this transition, numerical and mathemati-
cal aspects emerge. Perhaps it is this progression which accounts for the universality
of mathematics as a language for systematic knowledge in science, technology, and
even beyond these boundaries.

Perhaps it is the exceptional simplicity and beauty of mathematical thought and
its extraordinary ability to organize knowledge that is the driving force for the
universality and re-usability of mathematics.

Perhaps it is the amazing increase in the power of computation that is the
driving force. It can be said that following Newton, we expect laws of physics to be
expressed in mathematical terms. But following the development of the computer,
we expect the solution also to come from mathematics, from computation. Von
Neumann observed a half century ago the virtual stagnation of science broadly at
the border between the linear and the nonlinear, and advocated the use of computers
to attack nonlinear problems in science. This plan has succeeded admirably, to the
extent that nonlinearity is an inconvenience but not a fundamental obstacle. One
decade ago, we observed a similar stagnation across broad stretches of science, and
at a point of difficulty that the computer does not (yet) address, multiscale science
[2]. While the science community has picked up the challenge of this point of view,
it is safe to say that the nub of the problem largely remains.

Perhaps it is the diversity of applications of computation, i.e., their importance
in the solution of so many different problems, and the need to reduce knowledge to
mathematical terms accessible to computation.

Perhaps it is the social forces which, observing striking successes of mathematical
ideas in unexpected areas (such as the decoding of the genome or the assessment
of risk in financial markets), have gone on to seek similar benefits more broadly.

For whatever reasons, there is no doubt that science, and more generally the
pursuit of knowledge, is increasingly interdisciplinary. And mathematics is one of
the few disciplines afforded interdisciplinary opportunities with virtually all of the
others. To some extent this trait is shared with physics (at least within the “physical
sciences”, defined to be those for which this universality relative to physics is true)
and computer science. But the universality of mathematics embraces also the social
sciences, where the laws of physics are not in play.

In an interdisciplinary and knowledge-driven society, mathematics plays a priv-
ileged and nearly unique role. It is the mortar that holds the bricks together. It is
the grand design and the architect.

Universality of mathematics is a fact, and one we should be proud of.

6. CONCLUSIONS

We see a broadening of the intellectual and professional opportunities and respon-
sibilities for mathematicians. These trends are also occuring across all of science.
The response can be at the level of the professional societies, which can work to
deepen their interactions, not only within the mathematical sciences, but also with
other scientific societies. At a deeper level, the choices to be made will come from
individual mathematicians. Here, of course, the individual choices will be varied,
and we argue for respect and support for this diversity of responses. In such a
manner, we hope to preserve the best of the present while welcoming the best of
the new.
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