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1. The myriad roles of measures

An almost universal setting for dynamics involves a topological spaceX equipped
with a measure μ. The domain of μ is referred to as the Borel σ-algebra of X,B,
which is the smallest collection of sets containing the open sets of X and closed
under taking countable unions and complements. Typically, the setting suggests a
method of measuring the open sets; however, the diversity of such measurements
makes the subject of measure theory interesting and complex. In Euclidean space
we use the volume of a box; on manifolds we use the local volume of a small ball as
determined by a Riemannian metric. On a topological group, the Haar measure is
the unique measure invariant under (left or right) group translation. On a metric
space a measure often arises from the “easiest” way to assign volume to a ball. In
short, a measure provides a notion of size generalized to badly misshapen sets.

Many abstract spaces have natural measures; in the symbol space X =∏∞
j=0{0, 1}, in order to define and measure a ball centered at ω ∈ X, which we

denote by Br(ω), infinite strings of symbols are matched up against ω to find the
smallest index where they disagree to get the radii and a measure for the ball. The
points whose first k coordinates are ω0, ω1, . . . , ωk−1 compose B2−k(ω), and since
there are 2k disjoint balls with this radius, a good choice is to set μ(B2−k(ω)) = 2−k.
The Carathéodory construction of a measure for a locally compact topological space
X allows us to obtain a measure from a large variety of definitions of the “size of
a basic open set”. The resulting measure has as its domain the Borel sets, and we
end up with a natural and elegant notion of measuring sets on X which goes well
beyond our notions of volume of balls and cubes in Euclidean space. This of course
allows us to integrate Borel measurable functions on X.

When X is compact, we usually normalize μ so that μ(X) = 1 and call μ a
probability measure. This brings us to the raison d’être of measures. They carry
information well beyond volume. The probabilistic role of measures was noticed by
Boltzman and Gibbs in their attempts to understand the macroscopic behavior of
a closed system containing gas particles in the 1800s (see, e.g., [21]). The paradox
was that the particles were acting under known forces, yet following 1027 of them
seemed impossible. Moreover, instead of the classical invertible flows one might
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observe, such a system tended towards an equilibrium state, a uniform distribution
of the gas throughout the container which was best represented by a measure.

A third important role of a measure is that it can “pick out” a dimension. These
measures are often called geometric measures. Consider the interval I = [a, b] as a
subset of R2. While the 2-dimensional Lebesgue measure of I is clearly 0 since I can
be covered by finitely many rectangles of arbitrarily small area, the 1-dimensional
Lebesgue measure is its length. The usefulness of measures to pick out more subtle
notions of dimension is most clearly evident with Hausdorff measure. It provides an
effective tool for detecting a noninteger dimension; if we consider the ternary Cantor
set C as a subset of I, then taking countable open covers and defining the outer
measure m∗

s(C) = inf{
∑

k (length(Jk))
s
: C ⊂

⋃
k Jk, Jk an interval}, it is not hard

to calculate that for s < ln 2/ ln 3, m∗
s(C) = ∞, while for any s > 2/3,m∗

s(C) = 0.
Measures play a central role in the theory of communications, or information

theory as first outlined by Claude Shannon in 1948 [16]. If a message is imperfectly
transmitted and the received message is “Meet me ths Fridy”, one would easily know
how to fill in the blanks. (FYI, this has been raised to a fine art form by today’s
texting and tweeting.) The redundancy is reflected by a measure associated to the
English language in which letters are not equally likely to occur. Indeed there’s a
Markov measure that helps determine what letter might occur next given one that
has just occurred; the classic examples trotted out being what occurs after a Q and,
say, the limited number of letters one can expect after an X.

Another application occurs in Ramsey theory, by which we mean the study of
extracting order from apparent chaos; in particular, one uses measures to pick
out patterns from seemingly random blocks of numbers. Nowhere is this more
apparent than in the work of Furstenberg [7, 8], where measure-preserving ergodic
theory techniques are used to give a new proof of an important number-theoretic
result, the Szemerédi Theorem. The large body of work was followed by many
others, and more recently, by Tao in [18], where some of the process is reversed to
offer new techniques for obtaining strong recurrence results on measure-preserving
transformations under quite random assumptions. This is not a topic explicitly
covered in the book under review, so we refer to the references mentioned in [18]
for a full account.

More often than not the measure on a space X is being studied in conjunction
with a dynamical system which is iterated infinitely often to model the passage
of time. If T : X → X and μ is a Borel measure on X, one frequently requires
that μ(T−1A) = A for any A ∈ B. Demanding the invariance of the measure is
physically inspired, but if, say, X is a k-dimensional Riemannian manifold and μ
is the k-dimensional volume form, then at the very least for a diffeomorphism T
on X we have that the zero sets are preserved under T ; μ(A) = 0 if and only if
μ(T−1A) = 0. A measure that preserves only the zero sets is called nonsingular,
and a complete classification (up to orbit equivalence) of nonsingular invertible
transformations in the 1970s and 1980s borrowed from and lent to the solution of
an important classification problem of von Neumann factors (up to isomorphism)
[3, 4, 11].

It is a classical result of Krylov and Bogolubov (see, e.g., [10, Thm. 1.4.3] that
if T is a continuous map from a compact space X to itself, then each point x0 ∈ X
gives rise to an invariant measure as follows. Let δx0

denote the point mass measure
at x0; i.e., given A ∈ B, δx0

(A) = 1 if x0 ∈ A, and 0 otherwise. Then the sequence
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of point mass measures μn = 1
n

∑n−1
k=1 δTkx0

always has weak-* limit points, each of
which can easily be seen to be an invariant measure. However, a measure obtained
this way does not always provide the best tool for studying the dynamical properties
of T , for example if x0 is periodic.

Invariant measures flow from many mathematical and physical sources. Statis-
tical mechanics was introduced by the physicists Maxwell, Boltzman, and others
to understand the time evolution of systems of fluids or gases. The abundance of
particles leads one to assume the inefficiency of following each particle’s motion
individually, and the system seems to unfold over time almost randomly, achieving
an equilibrium state independent of the beginning state. This idea has been de-
veloped into a mathematical theory of thermodynamical formalism, where physics
terminology has been adapted to a purely mathematical setting, with a dictionary
connecting the fields (see, e.g., [10] or [21]). Gibbs states correspond to invari-
ant measures which maximize a distribution, potentials correspond to probability
distributions, and pressure is a function on potentials which satisfies some useful
variational principles.

At this point in the discussion of measures, all sorts of questions appear: What
invariant measures are natural for a given system? When there are many invariant
measures, what is the relevant information carried by each? When a measure ν on
X is nonsingular with respect to T , how do we detect an invariant measure μ with
the same measure 0 sets as ν, or show that none exists?

2. Julia sets of rational maps of the sphere

There is a great conflation of these ideas where different aspects of measure
theory, analysis, and geometry interact beautifully, one informing the other, in
the field of complex dynamics. For a rational map of the Riemann sphere C∞,

say R(z) = p(z)
q(z) , with no common factors and d = min{deg(p), deg(q)} ≥ 2, the

Julia set is well known to be typically a fractal set supporting a variety of inter-
esting measures. The Fatou and Julia sets are defined by F (R) = {z ∈ C∞ :
{Rn}n∈N is equicontinuous at z}, and J(R) = C∞ \ F (R). In general, the surface
area measure on the sphere (Lebesgue measure) is not the one of interest; rather
there is a unique measure of maximal entropy (which is log(deg(R))) that gives
equal weight to each preimage of a point ([6, 12, 13]), and for many maps R, there
exists a unique nonatomic conformal measure, which picks out the dimension of
the Julia set. Given t ∈ R, a Borel probability measure ν is called a t-conformal
measure if it is supported on J(R) and it satisfies

ν(R(B)) =

∫
B

|R′(z)|tdν

for every Borel set B such that R|B is injective. In this setting we are interested in
the value t corresponding to the Hausdorff dimension of J(R). In a landmark result,
it was shown that μ and ν are completely singular [20], except in rare circumstances
which have interesting algebraic origins.

Simple smooth and fractal Julia set examples illustrate the ideas of these “natural
measures” associated to a rational map. It is well known that every degree 2 rational
map is conformally conjugate to one of the form R(a,b) = a(z+1/z+b) with a, b ∈ C,
a �= 0. We look inside a sample family of the form Ta = a(z+1/z−2). The critical
points of any of these maps are c = ±1, so we can control certain dynamical and
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Figure 1. The distribution of the measure μ of maximal entropy
for T

measure-theoretic behavior by our parameter choices. The map T := T− 1
4+

i
2
maps

the critical point c1 = 1 to c2 = −1 under two iterations, which is then mapped
to the repelling point at ∞. It is well known that if all critical points terminate
in repelling fixed points, the Fatou set is empty, so J(T ) = C∞. Now we consider
two natural invariant measures for T with support C∞. First, there is the unique
invariant measure of maximal entropy, call it μ, enjoying the property that the
measure-theoretic entropy hμ(T ) = log 2. Then it can be shown that the condition
of finite forward critical orbits gives enough expansion so that there is also an
invariant probability measure ν ∼ m, where m denotes normalized surface area.

Figure 2. J(Ta) is the black fractal set, and μ is supported on
J(Ra); a = −.4 + .78i.
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In Figure 1 we see the distribution of the maximal entropy measure μ by using an
algorithm that randomly chooses a preimage, with equal probability, and plots it
[9]. Its support is the entire sphere, but its singularity with respect to Lebesgue
measure is evident.

Using the value a = −.4 + .78i, we find an attracting period 3 cycle which
necessarily attracts the critical point at 1; so in Figure 2 we see J(Ta) in black,
showing the support of the various available natural measures. Mutually singular
invariant measures highlight different dynamical and statistical properties of orbits
of points, because the points are selected “randomly” from disjoint sets of full
measure.

3. The book under review

The book is an ambitious effort to apply the many roles of measures to a fairly
wide variety of settings of expansive transformations. It covers a lot of ground, much
of which is hinted at in the short first chapter entitled “Basic examples and defini-
tions”; these run the gamut from symbolic dynamics, complex dynamics, Kleinian
groups, symbolic shifts, and adding machines to Smale horseshoes. The early chap-
ters provide either a terse introduction to, or a nice review of, the most important
concepts in ergodic theory and dynamical systems, depending on whether or not
the reader has some prior familiarity with the field. The basic examples and defini-
tions are all present; for example, Chapter 2 provides a concise synopsis of ergodic
theory, including in its coverage noninvertible and non-measure-preserving results,
important topics for exploring examples that occur naturally in mathematics. The
book takes a foray into one real dimensional dynamics, giving a thorough account
of embeddings of the Cantor set into the real line and applying the treatment to
the Feigenbaum Universality phenomenon; in particular, proofs of results on infin-
itely renormalizable C2 interval maps are shown. The chapter stops short of the
complete picture involving the universal constant, but references for further study
are given. The large number of contributions by both Przytycki and Urbański to
the topics covered in the book are clear from, for example, the references in [5] and
[19]. Much of the exposition consists of original proofs by the authors. Some cover
topics not easily found in the literature (e.g., material from [15] and [17]). There are
readable books on complex dynamics, such as Beardon [1], Carleson and Gamelin
[2], or Milnor [14]; familiarity with the material in one of these books makes the
general setting of this text easier to digest.

Conformal Fractals is packed with classical gems with proofs provided. The
authors are experts on extending the subject in many of the important directions it
has taken in the past several decades, especially the move from uniformly hyperbolic
maps to expansive maps, which includes many rational maps of the sphere. This
is an interesting text that could be used for a year-long graduate course in ergodic
theory; the first three or four chapters contain enough information for a thorough
course in ergodic theory and topological dynamics, while the remaining chapters
contain a wide array of topics from which one could choose to develop an additional
semester-long course. It is very densely written; brief accounts are given of topics
that could fill many more chapters, but references and historical remarks send the
reader out for further information. It is useful to have the breadth of the subject of
fractal ergodic theory, including many topics beyond rational maps, in one volume.
All the applications of measures that appear in the first section of this review are
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covered in great detail in the book, except for the Ramsey theory. However, recent
activity indicates that this book may provide a useful tool in that area too, as
multiscaling in fractals is akin to finding order from chaos. The book can also
be used as an essential reference for the growing field of fractal ergodic theory; it
provides a worthwhile addition to every ergodic theorist’s library.
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