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Stability of matter is a fundamental fact about the nature of ordinary matter.
In essence it says that macroscopic objects exist! It is at the same time a rigorous
mathematical statement in the theory of quantum mechanics. I will describe its
precise meaning below. It is somewhat surprising that stability of matter is not
a subject treated in standard physics textbooks. It is however one of the most
celebrated results and a cornerstone in mathematical physics. The book under
review, The Stability of Matter in Quantum Mechanics by Lieb and Seiringer, is
the first to give a complete and thorough account of stability of matter. I will begin
with an overview of the subject itself.

The reason stability of matter is not treated in physics textbooks is not because
of its lack of importance, in fact, what could be more important? More likely, the
reason is that it is not easy to derive. In contrast to most other results in math-
ematical physics there was, to the best of my knowledge, no heuristic derivation
of stability of matter prior to the rigorous proof of the theorem, which appeared
in 1967 in the seminal work of Dyson and Lenard [4]. Even Onsager’s paper [13],
which is probably the very first to address the issue, was mathematically correct
and presented ideas used in many later works.

Stability is an important concept in physics and the notion is used in many
contexts. One of the triumphs of the theory of quantum mechanics is that it explains
the stability of atoms. The puzzling question settled by quantum mechanics is why
the electrons in the atom do not simply collapse on top of the atomic nucleus due
to their mutual electrical attraction. There are two ways to formulate this problem.
We might ask why there is dynamic stability, i.e., why the motion is well defined for
all times independently of the initial condition. Or we might alternatively ask why
there is energetic stability, i.e., why the total energy cannot be arbitrarily negative,
which it would be if the electrons were arbitrarily close to the nucleus. This is
indeed what may happen in classical mechanics, where we have neither energetic
nor dynamic stability.

It turns out that in quantum mechanics energetic stability implies dynamic sta-
bility. In technical terms if the energy is bounded below there is a natural realization
(the Friedrichs extension) of the energy operator, as a self-adjoint operator, i.e., the
Hamiltonian, on a Hilbert space. This operator generates the dynamics. Hence a
study of stability in quantum mechanics may focus on energetic stability. This is
the topic of the book by Lieb and Seiringer.

The energetic stability of atoms, or more precisely of the hydrogen atom (an atom
with one electron) is usually explained, at least heuristically, in the first few pages of
most textbooks in quantum mechanics. The explanation is based on the uncertainty
principle. Likewise, stability of the hydrogen atom is proved in the introductory
chapter of the book by Lieb and Seiringer. It is pointed out here, however, that,
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contrary to what is stated in most physics texts, the famous Heisenberg formulation
of the uncertainty principle is, in fact, not very useful in order to conclude stability.
For this purpose the Sobolev inequality is a better formulation of the uncertainty
principle and is used in the book by Lieb and Seiringer to prove stability of the
hydrogen atom.

Energetic stability, i.e., the fact that there is a lower bound to the energy, is
referred to in the book as stability of the first kind. Stability of matter, also called
stability of the second kind, is a more complicated notion relating to the energy of
macroscopic systems. Individual atoms or molecules are relatively small systems
with a few degrees of freedom. Macroscopic matter, however consists of an enor-
mous amount of atoms, i.e., it is made out of a macroscopic number of nuclei and
electrons. As an example one gram of hydrogen consists of approximately 6 - 1023
(Avogadros’ number) hydrogen atoms. Stability of the first kind only states that
the energy of such a system is not arbitrarily negative. It does not address the issue
of how negative it may be depending on the size of the system, e.g., measured by
the number of particles. For macroscopic systems, however, it is important that the
dependence of the energy on the size of the system is at most linear. The energy of
twice an amount of a substance should be essentially twice the energy of the amount
itself. This is stability of matter. It is closely related to the extensivity of matter,
i.e., that the volume of a substance grows proportional to its quantity, otherwise
a macroscopic number of particles would not take up a macroscopic volume. As
obvious as this may sound, it is difficult to prove.

Contrary to stability of the first kind, stability of the second kind does not follow
from the uncertainty principle alone. It requires also the Pauli-exclusion principle,
i.e., the fact, to be explained below, that electrons are fermions and thus cannot
occupy the same one-particle states. Without the exclusion principle, stability of
matter fails. In fact, as first noted by Dyson [3], the energy of such a system would
have a super-linear behavior as a function of particle number and the volume would,
indeed, decrease; more particles would take up less space.

It was mentioned above that stability of matter is usually not treated in physics
textbooks. There is however another case of stability due to the Pauli-exclusion
principle which is known to any physicist. This is Chandrasekhar’s famous the-
ory [2] (for which he got the Nobel prize in 1983) of gravitational stability and in-
stability of stars in their late evolutionary state as white dwarfs. Chandrasekhar’s
theory was given a rigorous formulation in [10, 1], and this is also covered in Lieb
and Seiringer’s book.

Besides being a problem of basic physical importance, the study of stability
of matter leads to a wealth of beautiful mathematics. Topics such as variational
calculus, potential theory, operator theory, spectral theory, Sobolev inequalities,
and phase space analysis need to be brought together in order to arrive at a proof
of stability of matter.

Let me briefly review the precise formulation of stability of matter and, as a
guide to the reader of the book, indicate the main steps in its proof.

Matter is described as consisting of electrons and nuclei. All the electrons are
identical with the same mass m and negative charge —e. The nuclei may be different
and have different masses and (positive) charges. The charge of a nucleus is Ze,
where the integer Z is the atomic number of the nucleus. The smallest nucleus is
the hydrogen nucleus (a single proton) with Z = 1 and all naturally existing nuclei
have Z < 92 corresponding to the elements in the periodic table.
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Imagine that we have N electrons and M nuclei with atomic numbers Z =
(Z1,...,Zm). Let En a(Z) be the smallest possible (actually the infimum) energy
of such a system. It depends on the nuclear charges, their masses, the mass and
charge of the electron, and Planck’s constant % (this is really Planck’s constant
divided by 2). Stability of the first kind is the claim that En p/(Z) is finite (not
negative infinity). Stability of matter states that

(1) Enm(2) = —E(Z)(N + M),

where the constant =(Z) depends only on Z = max{Z1,...,Zy}, Planck’s con-
stant, and the mass and charge of the electron, but not on the masses of the nuclei.
Establishing stability of matter with a constant independent of the masses of the
nuclei is physically important. Nuclei are much heavier than electrons, and the en-
ergy per particle should not diverge as the masses tend to infinity. In other words
we might as well think of the worst case scenario when the masses of the nuclei are
all infinite. This is the case referred to as static nuclei.

To give the precise definition of Ex ps(Z) we introduce the 3-dimensional coordi-

nates of the electron positions X = (x1,...,xy) € R*N, and the nuclear positions
R = (Ry,...,Ry) € R, The state of the electrons is described by a complex
valued wave function (X, o), where ¢ = (01,...,0n) denotes the internal spin

degrees of freedom. FEach o; can take g values. For physical electrons the spin
is 1/2 corresponding to ¢ = 2, but in the discussion here ¢ could be any positive
integer. The wave function should be normalized, i.e., 3  [pan [t/(X, o)]?dX =1,
where dX = dxq---dxy. -

The important Pauli-exclusion principle can now be formulated as the require-
ment that the wavefunction is fermionic, which means that it is antisymmetric
under the interchange of (x;,0;) and (x;,0;) for any ¢ # j.

The energy consists of two parts a kinetic energy, which is

R o
S IR LIS
=1 g

and a potential energy, which is
Vy(R) =Y / Vo(X, B)[$(X, o) dX,
- JRsN

where we have introduced the electrostatic Coulomb potential

N M 7 1 Z2
Ve(X,R) = — E E _ E _ _
C(_7 _) " - |Xi — RJ| + — |Xi — Xj| + — |R2 — R]|
i=1 j=1 1<i<j<N 1<i<j<M

For simplicity we here consider the case where all nuclear charges are equal, i.e.,
equal to the maximal value Z. There is a monotonicity argument showing that
this is, indeed, the worst case. Finiteness of the kinetic energy Ty, implies that v
belongs to the Sobolev space H'(R3*Y). For such a function all terms in V, are also
finite. The precise definition of the energy is then

Enm(Z) = inf{ Ty +e*Vy(R): Re R3*M o) € H' fermionic, normalized} .

Note that the static nuclei are described only through their positions R, which are
optimized in order to minimize the energy.
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Stability of matter (Il) can be derived from inequalities on the kinetic energy
Ty and the Coulomb potential V. The first fundamental inequality is the Lieb—
Thirring [§] kinetic energy estimate for normalized fermionic wavefunctions 1) with
q spin states

R K 5
LN /3
Ty > om 275 /R3 py(x)°/°dx.

Here we have introduced the electronic density

X1 NZ/ X,g)|2dx2...de.

3(N— 1)

Note that the normalization condition on ¢ implies that [ps py(x)dx = N. A cele-
brated (still unsolved) conjecture of Lieb and Thirring [9] is that the best constant
K in the above inequality is obtained from the semiclassical expression

-3 2
2m) f{pER?’ : pl<1y P dp _ §(67r2)2/3
L, 5/3 :
((2”) Jipers  pi<y 1dp)

5
The second ingredient in deriving stability of matter is to control the Coulomb
potential energy. There are several approaches to this part. The simplest, which
however does not lead to the best-known constant in (), uses an estimate by
Baxter [I] on the Coulomb potential. It states that for all X € R*"N and R € R3M
we have

Kcr =

N
-1
Vel ) 2 -2 +1) 3 Wa Wi(x) = max {jx—Ry| "'},

Baxter proved this with probabilistic methods, but it can be derived [12] using
potential theory and elaborating on the original ideas of Onsager [13]. Lieb and
Seiringer give several stronger versions of this type of electrostatic inequality. For
the discussion here this original version will suffice. The importance of the in-
equality is that the Coulomb potential which contains terms depending on pairs
of electron coordinates is estimated by a sum of terms containing only individual
electron coordinates. This leads to an estimate on the energy that can be expressed
entirely from the electron density

2
T+ Vo) 2 5 [ a0 ax =202 +1) [ pu(OWa(x)ix
from which it is an easy exercise to derive ().

It turns out that () holds also with N + M replaced by M, i.e., only the
number of nuclei. The reason is that N much larger than M Z would mean that
the system is very far from being electrically neutral; in fact, it would be very
negatively charged, and this is not energetically favorable. Such an argument sounds
intuitively simple but is, in fact, rather subtle and has been a very active research
area in mathematical physics and is still not fully understood. It is often referred to
as the tonization problem because it may be rephrased as the question, what is the
maximal negative ionization of a system? Because of its implications to stability of
matter, Lieb and Seiringer use the opportunity to review what is known about this
intriguing problem and, in particular, they prove the stronger version of ().
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We have briefly reviewed some of the basic ideas presented in great details and
with beautiful clarity in essentially the first half of The Stability of Matter in Quan-
tum Mechanics.

On a historical note the book does not contain the original proof of stability of
matter by Dyson and Lenard [4]. It is closer in spirit to the later and more elegant
approach of Lieb and Thirring [8]. This latter derivation was, however, based on
Thomas—Fermi theory, which the book chooses to circumvent.

The stability of matter discussed up to this point is for nonrelativistic quantum
mechanics. Relativistic effects and in particular the interaction with the electro-
magnetic field are important phenomena. The emission and absorption of light are
processes of basic importance to the structure of atoms and it has been ignored
in the discussion so far. Unfortunately, there is no complete mathematical theory
describing relativistic quantum mechanics and the interaction of light and matter.
Results on stability are known in several approximate models, and these are also de-
scribed in detail in the book. Although these models do not claim to be complete,
they contain the basic feature, believed to be correct for all relativistic models,
that instability occurs in certain ranges of the physical parameters. Extensions of
stability of matter from the nonrelativistic setting is still a very active research
area.

The last chapter in the book contains a proof of existence of the thermodynamic
limit. 'This refers to the fundamental property that the energy, or for positive
temperature systems the free energy, per volume is not only bounded but has a
limit as the system size tends to infinity. The first proof of this was due to Lieb
and Lebowitz [7] and the proof in the book follows this original approach.

Stability of matter may be considered a step towards the more fundamental
existence of the thermodynamic limit. Historically this was how stability of matter
was viewed [5], but over the decades it has grown to be a subject in its own.

The subject is very much alive. Of particular interest to readers of the book
is a recent fairly elementary proof of the Lieb—Thirring inequality which appeared
[14, [15] after the publication of the book.

Over the years there have been short reviews on stability of matter (e.g., [6]), and
the subject has been treated briefly in mathematical physics texts such as [16, [I7].
A comprehensive textbook on the subject useful to researcher and students alike
is long overdue. The book The Stability of Matter in Quantum Mechanics is just
that. A book that an experienced researcher in mathematics or physics can use to
learn the subject, a book that the expert in the field must have, and a book that
is well suited for a semester course for graduate students. In particular, the book
can serve well as an introduction for mathematicians to quantum mechanics.

The book by Lieb and Seiringer presents physical ideas and concepts with math-
ematical rigor. It is not a book only about mathematics nor a book only about
physics. It is a book about both. A book in mathematical physics.

Stability of matter is an advanced subject dealing with complex physical sys-
tems and requiring sophisticated mathematics. The book manages to present the
material in an easily digestible way. Although basic knowledge of real analysis is
required, the book takes great care to aim at a broad audience. What makes the
book particularly easy and pleasurable to read is the careful balance between the
level of technical details and the clarity and continuity in the line of thought.

The book is written in a style that should be easily accessible to both mathe-
maticians and physicists. I am convinced that it will be an opportunity for many to
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enter the beautiful subject of stability of matter and all its interesting connections
to theoretical physics and pure mathematics.
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