BULLETIN (New Series) OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 50, Number 1, January 2013, Pages 153-160
S 0273-0979(2012)01396-4

Article electronically published on October 11, 2012

SELECTED MATHEMATICAL REVIEWS

related to the paper in the previous section by
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MR1001453 (90e:57059)| 57R55; 58E15, 81E13, 81E40
Atiyah, Michael
Topological quantum field theories.

Institut des Hautes Etudes Scientifiques. Publications Mathematiques (1988),
no. 68, 175-186 (1989).

In May 1987 the author [in The mathematical heritage of Hermann Weyl
(Durham, NC, 1987), 285-299, Proc. Sympos. Pure Math., 48, Amer. Math. Soc.,
Providence, RI, 1988; MR0974342 (89m:57034)] suggested that certain interesting
recent developments in the study of low-dimensional manifolds (due to Donald-
son, Floer, Gromov, and others) could be profitably formulated and understood
in physical “field-theoretic” terms. These suggestions led E. Witten to the discov-
ery of what is now known as “topological field theories” [Comm. Math. Phys. 117
(1988), no. 3, 353-386; MR0953828|(89m:57037)], and the interest these theories
have received since then has led to the construction of a large number of models in
various (and indeed arbitrary) dimensions.

Now—two years later—the author presents an axiomatic approach to the subject
of topological field theories, with the aim of bringing some order into the plethora
of theories now known and providing a suitable framework to place these on a
mathematically more rigorous footing. The set of axioms is closely related to that
put forward by Segal for conformal field theories (formulated in terms of “mod-
ular functors”), basically extracting the essential ingredients from the physicists’
path-integral approach to quantization of field theories, supplemented by axioms
characterizing their “topological” nature. This, despite its simplicity, very efficient
and powerful new approach may be expected to lead to new insights and results in
the near future.

From MathSciNet, October 2012
Matthias Blau

MR0990772 (90h:57009) 57M25; 17B67, 57N 10, 58D15, 58D30, 81E40
Witten, Edward

Quantum field theory and the Jones polynomial.
Communications in Mathematical Physics 121 (1989), no. 3, 351-399.

The author introduced the notion of a topological quantum field theory in a
previous article [same journal 11 (1988), no. 3, 353-386; MRI0953828||/(89m:57037)]
where he discussed the Donaldson invariants of 4-manifolds. The paper under re-
view interprets the Jones invariants of links in the 3-sphere in terms of quantum
field theory and at the same time introduces new invariants of links in arbitrary
3-manifolds. In particular, there are new invariants of closed 3-manifolds. Math-
ematicians should find this paper more accessible than the article cited above as
the field theory here does not involve supersymmetry. We explained some general
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features of topological quantum field theory in our review of the previous article,
so we proceed directly to the current paper.

Fix a compact Lie group G. In this paper the author deals only with sim-
ple groups, and to be definite we take G = SU(N); the general case is discussed
further by R. Dijkgraaf and the author [“Topological gauge theories and group
cohomology”, ibid., to appear], for example. Then if M is an oriented closed 3-
manifold and A a connection on a (necessarily) trivial SU(/V)-bundle over M, one
defines the Chern-Simons invariant £(A). It takes real values, but changes by inte-
gers under gauge transformations. Also, the possible Chern-Simons invariants are
parametrized by an integer k. (For a general compact group they are parametrized
by H*(BG).) The variables N and k turn out to be simply related to the vari-
ables in the Jones polynomial. The Chern-Simons invariant is the Lagrangian of a
classical field theory; the classical solutions are the flat connections. But it is the
quantum theory which is of interest. The partition function, defined by integrating
exp(2miL(A)) over the space of connections, is proposed as a new invariant of the
3-manifold M. If C is an oriented loop in M, and R a representation of SU(N),
then for each connection A we can evaluate the character of R on the holonomy of
A around C; this is well-defined and gauge-invariant. When this is inserted into the
path integral, repeatedly for a link with several components, one gets an invariant of
a link in M. The author asserts that since there are no background geometric data
(such as a metric) in the theory, these path integrals define topological invariants.

The author first addresses the issue of whether these Feynman path integrals
make sense. The usual perturbative calculations of quantum field theory here be-
come the large-k limit of the theory. This relates to previous work of A. S. Shvarts
[Lett. Math. Phys. 2 (1978), no. 3, 247-252] and A. M. Polyakov [Modern. Phys.
Lett. A 3 (1988), no. 3, 325-328; MR0927055| (89¢:81097)]. The leading order
behavior is thus computed in terms of the Chern-Simons invariant, Reidemeister
torsion, certain combinations of 7n-invariants, and linking numbers. As expected,
these are all topological invariants. This discussion points out one subtlety of the
theory—the need to frame the 3-manifolds and the links in order to carry out the
path integral. Much more striking is the agreement with the large-k behavior of
the exact solutions computed later.

Next, the author considers the path integral on a 3-manifold of the form ¥ x R,
where ¥ is an oriented closed surface. Using standard principles of quantum field
theory which relate path integrals to canonical quantization and which prescribe
the treatment of symmetries, he is led to the conclusion that the quantum Hilbert
space attached to ¥ is obtained by quantizing the moduli space of flat SU(NV)-
bundles over 3, which is a symplectic manifold. Since this moduli space is compact,
the quantum Hilbert space is finite-dimensional. What is the key to the entire
paper comes with the realization that this is exactly the description given by G.
Segal [“Two-dimensional conformal field theories and modular functors”, IAMP
Proceedings (Swansea, 1988), to appear| of the “space of conformal blocks” in the
(1 + 1)-dimensional conformal field theory usually called the Wess-Zumino-Witten
model. This space carries a (projective) representation of the mapping class group
which has been extensively studied, for example by V. G. Kac and M. Wakimoto
[Adv. Math. 70 (1988), no. 2, 156-236; MR0954660 (89h:17036)] in genus 1, and
this eventually allows the author to make explicit computations. Similar remarks
apply to punctured surfaces, which enter when there are links.
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The final ingredient is a general feature of quantum field theories, which we
might call the “gluing law”. It allows one to calculate a path integral by chopping
a manifold into smaller pieces. The author uses it to see how his invariants change
under surgery.

At this point one has a concrete prescription for computing the invariants. This
prescription is derived from the path integral, and in the author’s presentation its
validity depends on the path integral, but the algorithm itself is stated in terms
of elementary computable formulze. The author uses this prescription to derive
the skein relation of knot theory, and so relate his invariants to the Jones knot
polynomials. He also uses it to prove a conjecture of Verlinde (previously proved
by G. Moore and N. Seiberg [Comm. Math. Phys. 123 (1989), no. 2, 177-254;
MR1002038|/(90e:81216)]). Other illustrations of the theory are also given.

The paper ends with a hint that not only the space of conformal blocks of a (1+1)-
dimensional conformal field theory, but also the entire (141)-dimensional conformal
field theory, can be derived from the Chern-Simons theory in 241 dimensions.

The author’s paper catalyzed much activity by both mathematicians and physi-
cists. By now mathematicians have verified much of what he asserts without using
the path integral. The relationship to conformal field theory has been developed
in more detail by many physicists. We have neither the space nor the license to do
justice to these developments here.

From MathSciNet, October 2012
Daniel S. Freed

MR2335797//(2009b:14051) 14H10; 14F43, 19D06, 55P47

Madsen, Ib; Weiss, Michael

The stable moduli space of Riemann surfaces: Mumford’s conjecture.
Annals of Mathematics. Second Series 165 (2007), no. 3, 843-941.

In this landmark paper the authors prove Mumford’s conjecture: the stable
rational cohomology of Riemann’s moduli space is a polynomial ring generated by
the Miller-Morita-Mumford k;-classes of dimension 2i. By Harer-Ivanov homology
stability for the mapping class group, the rational cohomology of moduli spaces M,
is independent of the genus ¢ in degrees < (g — 1)/2. Thus Mumford’s conjecture
gives the rational cohomology of M, in these degrees.

More precisely, the authors prove the stronger, homotopy-theoretic version of the
conjecture from [I. H. Madsen and U. Tillmann, Invent. Math. 145 (2001), no. 3,
509-544; MR1856399|/(2002h:55011)]: a certain map

a: Z x BI't, 5 Q°CP>

is a weak homotopy equivalence. Here I', is the stable mapping class group and
BT'L is its classifying space to which Quillen’s plus construction has been applied.
The right-hand side is the infinite loop space associated to the Thom spectrum
which in degree n + 2 is the one-point compactification of the canonical n-plane
bundle on the Grassmannian manifold of oriented 2-planes in R"*2. Recall that
the plus-construction does not change the cohomology of the space and that the
mapping class groups have the same rational cohomology as the corresponding
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moduli spaces. The Mumford conjecture now follows immediately from the well-
known rational homotopy equivalences

>Ccp>, & 0=x>CcPr 4 7 x BU
under which x; corresponds to the integral Chern character class ilch; [cf. op. cit.].

The weak homotopy equivalence « gives much more precise information on the
integral cohomology of the stable mapping class group since the cohomology of
2°°CP is well-understood. Thus we know the cohomology with Z/pZ-coefficients
[S. Galatius, Topology 43 (2004), no. 5, 1105-1132; MR2079997| (2006a:57020)]
and the divisibility of the k; classes in the integral lattice [S. Galatius, I. H. Mad-
sen and U. Tillmann, J. Amer. Math. Soc. 19 (2006), no. 4, 759-779 (electronic);
MR2219303| (2006m:57039)].

The philosophy of the proof is to view the homotopy-theoretic Mumford con-
jecture as an h-principle. While homotopy classes of maps from a manifold X*
to Z x BI'o correspond to isomorphism classes of oriented surface bundles, homo-
topy classes of maps from X* to Q2°CP> can be interpreted in terms of certain
concordance classes. Indeed, Q°°CP arises here as the infinite loop space asso-
ciated to a Thom spectrum and by standard cobordism theory homotopy classes
of maps X* — Q>CP>, correspond to concordance classes of pairs (g,dq) where
q: M**+2 — X* is a smooth, proper map of manifolds which is covered by a bundle
epimorphism §q: TM x R? — ¢*TX x R’ together with an orientation of the kernel
of dq.

The map « assigns to a surface bundle ¢: M — X the concordance class (g, dq)
where dq is the differential of q. Vice versa, to a pair (g,dq) one would like to
apply Phillips’ submersion theorem to replace it by a pair (¢,dq). However, the
submersion theorem applies only when M is open and is false in general. To get
around this difficulty, the authors’ strategy is to replace M by the open manifold
E := M x R and to analyse the singularities of the projection pry: £ — R on the
fibers of gopr;: E - M — X. For this they rely on V. A. Vassiliev’s theory
[Complements of discriminants of smooth maps: topology and applications, Trans-
lated from the Russian by B. Goldfarb, Amer. Math. Soc., Providence, RI, 1992;
MR1168473|/(94i:57020)].

The argument also uses surgery theory and homotopy colimit decompositions.
This part of the paper is highly technical and rather complicated. Most of the
paper is valid not only for surfaces but for manifolds of any dimension. It is only
in the final argument that Harer’s homology stability theorem is used in a crucial
way.

{Reviewer’s remark: A simplified proof of the main theorem is given by the
authors, Galatius and the reviewer in [“The homotopy type of the cobordism cat-
egory”, preprint, arxiv.org/abs/math.AT/0605249, Acta Math., to appear].}

From MathSciNet, October 2012
Ulrike Tillmann

MR2555928; 2010k:57064| 57R56; 18D10, 18G30, 57R15, 57R75
Lurie, Jacob
On the classification of topological field theories.

Current developments in mathematics, 2008, 129-280, Int. Press, Somerville, MA,
2009.
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The cobordism hypothesis, first proposed by Baez and Dolan in the 1990s, con-
cerns the structure of cobordism categories and is intimately connected to the def-
inition of topological field theory as developed by Atiyah. Lurie’s paper presents a
development of ideas that led to the cobordism hypothesis in its original statement,
then recasts it in many different forms. In fact, the observant reader will find over
a dozen theorems labeled “Cobordism Hypothesis” throughout the paper! While
the main ideas of the proof are given, it is still as yet an outline with many details
still to be developed. However, to call this paper merely a proof sketch would not
do it justice. It is also a very readable introduction to the ideas that led to the
conjecture, the various stages of development that led to its current form, and the
surprisingly many mathematical tools that are used throughout.

This paper is divided into four main sections. The reader wishing to get the main
ideas of the cobordism hypothesis and its relevance to topological field theories may
be content with reading the first section. The second section develops many of the
more complicated definitions that have been stated only informally in the first
section. The third section breaks the proof down into five major steps and outlines
the main ideas behind them. The fourth and final section presents special cases
and generalizations of the cobordism hypothesis.

The starting point for the cobordism hypothesis is the fact that, for any positive
integer n, there is a category Cob(n) whose objects are closed, oriented, smooth
manifolds of dimension n — 1 and whose morphisms are given by diffeomorphism
classes of oriented cobordisms between these manifolds. Furthermore, Cob(n) can
be regarded as a symmetric monoidal category under the disjoint union of manifolds.
Let Vect(k) denote the category of vector spaces over a field k, with symmetric
monoidal structure given by the tensor product. Then a topological field theory of
dimension n is defined to be a symmetric monoidal functor Z: Cob(n) — Vect(k).
Thus, Z sends disjoint unions of manifolds to tensor products of vector spaces.

In low dimensions, topological field theories can be understood completely. When
n = 1, a topological field theory Z is determined by its value on a single point, partly
due to the fact that cobordisms between 0-dimensional manifolds are not terribly
complicated, but also because much is determined by the fact that Z is symmetric
monoidal. This structure also inherently limits the possible values that Z can take
on a point. In particular, this vector space must be finite-dimensional so that it has a
well-behaved dual vector space corresponding to the point with opposite orientation.
In other words, Cob(1) is the free symmetric monoidal category generated by a
single dualizable object.

The case where n = 2 is also known; 2-dimensional topological field theories
are equivalent to commutative Frobenius algebras. However, in higher dimensions,
it becomes harder to understand these functors simply because the manifolds and
the cobordisms between them become more complicated. When n = 2, a complete
description is possible because there is a nice way in which we can decompose 2-
dimensional manifolds with boundary into pieces which can be easily understood.
In higher dimensions, attempting a similar process becomes less feasible. One
really needs to consider a higher-categorical version of Cob(n) and the notion of an
extended topological field theory.

Instead of the ordinary category Cob(n), we utilize an n-category Cob,(n),
where there are i-morphisms for all 1 < i < n. The objects of this n-category
are 0-dimensional manifolds, the 1-morphisms are cobordisms between them, the
2-morphisms are cobordisms between the cobordisms, and so forth, up to
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n-morphisms, which are given by diffeomorphism classes of cobordisms between
lower-dimensional cobordisms.

There are several issues to be considered here. For n > 2, the cobordisms are
often manifolds with corners, and the higher categorical structure that results is not
a strict n-category, but a weak one, in which properties such as associativity hold
only up to isomorphism and satisfy various coherence conditions. To consider the
appropriate generalization of topological field theories, we need an accompanying
higher-categorical version of Vect(k), which in this paper is accomplished simply by
allowing the target to be a symmetric monoidal weak n-category C. Again, we need
to be concerned with duality, an issue which, not surprisingly, also becomes more
complicated in the higher-categorical world. The objects satisfying the necessary
conditions are called fully dualizable.

It is in this framework that Baez and Dolan made their version of the cobor-
dism hypothesis, with the additional structure required that all manifolds involved
have a framing. They conjectured that Cob,,(n) is the free weak n-category gen-
erated by a fully dualizable object, or that there is a one-to-one correspondence
between isomorphism classes of extended C-valued topological field theories Z and
isomorphism classes of fully dualizable objects of C.

However, Lurie refines this definition still more. He proves a version of the
cobordism hypothesis which is not given in the language of weak n-categories, but
in that of (0o, n)-categories, in which there are i-morphisms for arbitrarily large
i, but these morphisms are all invertible for all ¢ > n. The (oo, n)-categorical
version of Cob,,(n), which Lurie calls Bord,,, has n-morphisms cobordisms, (n+ 1)-
morphisms diffeomorphisms between the n-morphisms, (n+ 2)-morphisms isotopies
between the diffeomorphisms, and so on up.

Although (oo, n)-categories seem to be more complicated than weak n-categories,
they are actually easier to work with, due to a homotopy-theoretic approach that
conveniently encodes the weak higher-categorical data. Lurie points out that, al-
though one can recover the original cobordism hypothesis by truncating (oo, n)-
categories to weak n-categories, the additional structure is necessary in the proof
that he gives.

However, by the end of the first section, (0o, n)-categories have only been defined
informally. The second section is primarily concerned with pinning down the precise
definition of (oo, n)-categories, functors between them, and fully dualizable objects
in them. The major feature that is still not fully addressed is a concrete definition
of a symmetric monoidal structure on an (oo, n)-category, but Lurie does refer the
reader to his paper which treats the case where n = 1 in detail.

For his definition, Lurie takes the n-fold complete Segal spaces as defined by
Barwick. When n = 1, one recovers Rezk’s complete Segal spaces, which are
known to be equivalent to other formulations of (co, 1)-categories. In this way, an
(00, n)-category is an n-fold simplicial object in the category of spaces, satisfying
a condition guaranteeing a notion of composition at each level, at least up to ho-
motopy, and a completeness condition relating the objects to morphisms which are
equivalences. Using this approach, Bord,, can be defined concretely. This section
also gives a precise definition of fully dualizable objects.

Lurie then gives a formulation of the cobordism hypothesis which deals with
more general manifolds with structure, not just with oriented or framed manifolds.
This version is actually the one which he proves in the third section. He also has
some discussion of how one might attempt to prove the cobordism hypothesis for
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non-smooth manifolds and the difficulties one would expect to have to overcome. In
a final subsection, he relates the cobordism hypothesis to work of Galatius, Madsen,
Tillmann, and Weiss on the Mumford Conjecture. While this portion may seem
like a side note, their methods end up playing a crucial role in the last step of his
proof.

The third section is the most technical but also shows the wide range of tech-
niques that must be employed to prove the conjecture. First, the cobordism hy-
pothesis is reduced to an inductive version in which one uses Bord,,_; plus some
additional information to understand Bord,,. Second, proving it for manifolds with
arbitrary structure is reduced to the case of ordinary smooth manifolds. Third, the
structure involved in moving from the (n — 1) case to the n case is formulated in
terms of (0o, 1)-categories rather than (oo, n)-categories. The fourth step involves
use of Morse theory to understand Bord,, as being built from Bord,,—; via handle
attachments, which can be interpreted as generators and relations. The fifth step
uses obstruction theory to prove that a modified version of Bord,, arising in the
previous section is in fact equivalent to the original.

The final section, titled “Beyond the cobordism hypothesis”, introduces the
reader to ideas that come out of the cobordism hypothesis and its proof. The
first subsection is concerned with E,-structures on (0o, n)-categories and a special
case which can be regarded as topological chiral homology. The second subsection
looks in some detail at low dimensions, defining Calabi-Yau objects in a symmetric
monoidal (0o, 2)-category and understanding them using work of Costello. Connec-
tions are made with ideas from string topology.

The final two subsections are concerned with generalizations. The first is the
case of manifolds with singularities, and the second, which makes use of the first in
its proof, is a sketch of the proof of the tangle hypothesis. Also first conjectured by
Baez and Dolan, the tangle hypothesis can be considered to be an unstable version
of the cobordism hypothesis.

From MathSciNet, October 2012
Julia Bergner

MR2648901 (2011i:57040) 57R56; 18D05, 18D10, 57R58, 81T45

Freed, Daniel S.; Hopkins, Michael J.; Lurie, Jacob; Teleman,
Constantin

Topological quantum field theories from compact Lie groups.

A celebration of the mathematical legacy of Raoul Bott, 367-403, CRM Proc.
Lecture Notes, 50, Amer. Math. Soc., Providence, RI, 2010.

The purpose of this paper is to introduce new approaches, in particular those
arising from recent developments in higher categorical structures, to the study of
topological quantum field theories (TQFTs). In particular, it gives a method for
obtaining an extended TQFT (a “0-1-2-3 theory”) from a finite group or a torus.
Toral theories are of particular interest because, as is shown in this paper, they
provide new information about Chern-Simons theory.

The theories of most interest here are those in dimension 3, but the paper works
up to this case by first considering 1- and 2-dimensional theories. From there,
extended field theories are constructed from finite path integrals, and then applied
to the case of a 3-dimensional theory with finite gauge group.
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The machinery needed to understand extended TQFTs from a torus group is
extensive, beginning with 2-cocycles and continuing with Drinfeld centers of braided
tensor categories. Finally, higher algebraic structures, built inductively beginning
from complex vector spaces, are needed. These tools allow one to give a quantization
procedure for TQFTs and ultimately to give new information about Chern-Simons
theory. The tables given at the end of the paper are useful for keeping straight the
various theories that arise throughout the paper.

As the authors freely admit in their introduction, there are still many details
to be worked out in these constructions, so this paper should be regarded as an
overview of many interesting results to be developed in more depth.

From MathSciNet, October 2012
Julia Bergner



