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Bounded symmetric domains were first investigated, and immediately classified,
by E. Cartan in 1935 [Car35]. Ever since, bounded symmetric domains have been
intensely studied as objects of complex analysis, differential geometry, functional
analysis, and representation theory. They form an important class of homogeneous
spaces and are therefore natural examples in harmonic analysis. The book under
review by L. Vaksman adds yet another facet to this colorful picture. The com-
bination of bounded symmetric domains with the theory of quantum groups takes
the subject into the realm of deformation quantization and Poisson geometry, on
the one hand, and of noncommutative algebra on the other. Vaksman’s motivation
for the construction and investigation of quantum bounded symmetric domains,
however, stems from the interest in locally compact quantum groups, as will be
illustrated below.

Vaksman studied quantum groups with V. Drinfeld in Kharkov, Ukraine, in the
1980s and early 1990s. Jointly with Y. Soibelman, he did pioneering work on com-
pact quantum groups, in particular on quantum SU(2) and its relations to q-special
functions [VS88]. With his student L. Korogodskĭı, he was among the first to in-
vestigate examples of noncompact quantum groups [VK91]. In the late 1980s these
topics were at the forefront of research on quantum groups. Vaksman continued to
run a seminar and an active research group on the subject until his untimely death
after a severe illness in 2007. He followed a broad research program which aimed at
the development of a comprehensive theory of quantum group analogs of bounded
symmetric domains. Vaksman and his collaborators developed this theory largely
on their own. Since 1997, Vaksman coauthored about twenty papers on the subject
and an extensive set of “lecture notes” [Vak01]. The monograph under review is his
mathematical legacy in that it presents the beginning of the theory he envisioned.
Originally he had intended to cover significantly more material. Sadly, however,
this plan was “not accessible due to some nonmathematical reasons”, as he writes
in the introduction.
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1. Bounded symmetric domains

A bounded domain is a bounded, open, connected subset of Cn. It is natural to
ask for classification of bounded domains up to isomorphism (that is, a holomor-
phic bijection with holomorphic inverse). In the simplest case, n = 1, Riemann’s
mapping theorem implies that any simply connected bounded domain is isomor-
phic to the unit disk D1 = {z ∈ C | |z| < 1}. To obtain classification results in
higher dimensions, Cartan assumed additionally that the bounded domain D is
symmetric; that is, that every point of D is the isolated fixed point of an involu-
tory automorphism. In this case D is simply connected and Cartan’s answer to
the classification problem is surprisingly simple: there exist four classical series of
irreducible bounded symmetric domains and two exceptional cases of dimensions
16 and 27, respectively. The first of the four series is given by the matrix balls

{Z ∈ Matn,m(C) | idn − ZZ̄t is positive definite},

which for n = m = 1 does indeed coincide with D1. Several classical textbooks
describe the structure of bounded symmetric domains ([Bor98], [Hel78], see also
the survey [Kor99]).

Any bounded domain D has a natural Kähler metric, the Bergman metric, which
is invariant under automorphisms. Hence, if D is symmetric, then it is a Hermitian
symmetric space. In this way one identifies the irreducible bounded symmetric
domains with nonflat noncompact irreducible Hermitian symmetric spaces. In the
simplest case of the unit disk D = D1, the Bergman metric coincides with the
hyperbolic (Poincaré) metric.

Moreover, there is a one-to-one correspondence between irreducible nonflat non-
compact and compact Hermitian symmetric spaces. The unit disk D1, for example,
corresponds to the one-dimensional complex projective space CP 1. In general, com-
pact Hermitian symmetric spaces are certain generalized flag manifolds G/P where
G is a complex semisimple Lie group and P a parabolic subgroup. The flag manifold
G/P possesses a cell decomposition with exactly one cell in maximal dimension,
called the “big cell”. Via the exponential map, the big cell is identified with a
commutative Lie subalgebra u− of g, which is a prehomogeneous vector space of
commutative parabolic type [Rub92]. In this way D is realized as a centrally sym-
metric convex bounded domain inside u−. This embedding of D into u− is called
the “Harish-Chandra embedding” and forms the basis for Vaksman’s construction
of quantum bounded symmetric domains.

2. Analysis on bounded symmetric domains

The fundamental problems of harmonic analysis on homogeneous spaces are
formulated for example in the first chapter of Helgason’s book [Hel84]. We restrict
here to the example of the unit disk D1. The group

SU(1, 1) =

{(
a b
b̄ ā

) ∣∣∣∣∣|a|2 − |b|2 = 1

}
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acts transitively on D1 by means of

z �→ az + b

b̄z + ā

and allows the identification D1 with the homogeneous space SU(1, 1)/ SO(2). The
algebra of SU(1, 1)-invariant differential operators on D1 is generated by the Lapla-
cian � = −(1 − |z|2)2 ∂

∂z
∂
∂z̄ , and the SU(1, 1) invariant integral is given by dν =

(1 − |z|2)−2dxdy for z = x + iy. Harmonic analysis aims to solve the spectral
problem for � on the space L2(dν) of square integrable functions on D

1. It turns
out that the spectrum is purely continuous and equals the semiaxis (−∞,−1/4].
Similar to the situation on the real line, the eigenfunction expansion is obtained
via the Fourier transform. To make this precise, let

P (z, ζ) =
1− |z|2

|1− zζ|2
, z ∈ D

1, ζ ∈ ∂D1,

denote the Poisson kernel for D1. For any C∞-function f on D1 with compact
support, one has

f(z) =

∫ ∞

0

{∫ 2π

0

P (z, eiθ)iρ+
1
2 f̃(ρ, eiθ)

dθ

2π

}
s(ρ)dρ,(1)

where

f̃(ρ, eiθ) =

∫
D1

P (z, eiθ)−iρ+ 1
2 f(z)dν(z)

is the hyperbolic Fourier transform and s(ρ)dρ = 2ρ tanh(πρ)dρ is the Plancherel
measure. Equation (1) can now indeed be seen as a continuous decomposition of f
into eigenvectors of � because the integrand

u(z) =

∫ 2π

0

P (z, eiθ)iρ+
1
2 f̃(ρ, eiθ)

dθ

2π

is a solution of the differential equation

�u = −
(
ρ2 +

1

4

)
u.

Details can be found in [Hel84, Introduction §4].
We now move on to another aspect of analysis on the unit disc D1, namely its

relation to the representation theory of the group SU(1, 1) via so-called Bergman
spaces. For λ ∈ (1,∞), one defines L2(dνλ) by the measure

dνλ = (1− |z|2)λdν = (1− |z|2)λ−2dxdy.

The weighted Bergman space L2
a(dνλ) is the completion of the space of polyno-

mials C[z] inside L2(dνλ). The spaces L2
a(dνλ) consist of holomorphic functions.

Moreover, for λ ∈ N, they carry a representation Tλ of SU(1, 1) via the action

(Tλ(g)f)(z) = f(g−1z)(−b̄z + a)−λ for g =

(
a b
b̄ ā

)
.
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The representations Tλ, λ ≥ 2, are irreducible and unitary with respect to the
natural Hermitian inner product on L2

a(dνλ). They form the so-called holomorphic
discrete series of representations of SU(1, 1); see [Kna86, Chap. VI]. We have arrived
at an instance of the general principle that important classes of representations can
be realized geometrically as function spaces on the unit disk or its boundary. This
principle holds in more generality and establishes the relation between analysis on
bounded symmetric domains and the representation theory of real reductive groups.

In Vaksman’s monograph all of the above results and much more is deformed
into the setting of quantum groups. Before we describe his approach, however, we
should first recall what quantum groups are all about.

3. Locally compact quantum groups

The story of quantum groups has been told many times. Quantum groups arose
in the early 1980s as the mathematical underpinning of the quantum inverse scat-
tering method developed by the school of L. Faddeev. The main objects are certain
Hopf-algebra deformations Uq(g) of the enveloping algebra U(g) of a semisimple
complex Lie algebra g, which were first discovered by V. Drinfeld and M. Jimbo
([Dri87] and [Jim85]). Quantum groups, or quantized enveloping algebras, owe their
name to the fact that they can be obtained via deformation quantization from U(g).
In their early days, quantum groups provided breathtaking new techniques and re-
sults in representation theory and beyond. As an example we just mention the
theory of canonical and crystal bases, which on a basic level extends the classical
Littlewood–Richardson rule for tensor product decompositions of sln(C)-modules
to general g ([Lus90], [Kas91]). Other fundamental contributions concern modular
representation theory and conformal field theory.

Dually to Uq(g) the theory of quantum groups provides noncommutative analogs
of algebras of functions on groups and homogeneous spaces. We write Cq[G] to
denote the quantum group analog of the algebra of regular functions on a complex
algebraic group G with Lie algebra g. Real forms of G and g are encoded by
Hopf-∗-algebra structures on Cq[G] and Uq(g), respectively. One of the simplest
examples, the quantum group version of SU(2), was independently discovered in
the pioneering work by S. Woronowicz [Wor87b]. His approach might be called
“noncommutative topology” and is motivated by the Gelfand representation, which
identifies any commutative C∗-algebra with the algebra of continuous functions on
a locally compact Hausdorff space. In Woronowicz’s program the goal was to find
a general operator algebraic framework of quantum groups as noncommutative C∗-
algebras, which includes known noncommutative analogs of functions on groups
such as SU(2), SU(1, 1), and the group E(2) of plane motions. The group structure
should be reflected in a Hopf-algebra structure of the C∗-algebra. The framework of
C∗-algebras can be seen as the starting point to carry out the program of harmonic
analysis in greater generality [Dix77].

There exists a satisfactory theory of compact quantum groups [Wor87a] which
encompasses C∗-algebra versions of all compact real forms obtained in Drinfeld’s
theory. In Drinfeld’s approach to quantum groups, on the other hand, much of har-
monic analysis, for instance the Peter–Weyl decomposition, is already built into the
definition of Cq[G]. In this setting for quantum SU(2), the relation between zonal
spherical functions and q-special functions was pioneered by Vaksman and Soibel-
man in [VS88], T. Koornwinder in [Koo89], and T. Masuda et al. in [MMN+91]
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and [MMN+88]. By now there exists a well developed q-analog of harmonic anal-
ysis on compact Riemannian symmetric spaces ([Nou96], [Let04]). It results in an
interpretation of multivariable Macdonald polynomials as q-analogs of zonal spher-
ical functions. For the simplest case of the quantum CP 1, also referred to as the
“Podleś sphere”, this program was performed by Koornwinder [Koo93]. In view
of Vaksman’s monograph, it is relevant to note that most of harmonic analysis on
compact versions of Drinfeld–Jimbo quantum groups and their homogeneous spaces
can be done on a purely algebraic level.

In the noncompact setting much less has so far been achieved. Noncompact
real forms of g result in different ∗-algebra structures on the Hopf algebra Cq[G].
The simplest example, the quantum group analog of SU(1, 1), was obtained right
at the beginning of the development of quantum groups as a Hopf-∗-algebra. It
has been enigmatic within Woronowicz’s approach. He proved in [Wor91] that
the comultiplication of the Hopf-algebra cannot be lifted to a comultiplication on
the level of unbounded operators on a Hilbert space satisfying the given ∗-algebra
relations. This “no-go theorem” resulted in a major setback in the development
of noncompact quantum groups. The problem, however, was partially resolved
when Korogodskĭı [Kor94] introduced an additional generator and discussed the
quantum group analog of the normalizer of SU(1, 1) in SL(2,C). His idea was used
in the approach by E. Koelink and J. Kustermans [KK03] to formulate quantum
SU(1, 1) in the operator algebraic framework for locally compact quantum groups
which had meanwhile been introduced by Kustermans and S. Vaes [KV00]. On the
algebraic side there are virtually no results about harmonic analysis on noncompact
Drinfeld–Jimbo quantum groups.

4. Vaksman’s hidden agenda

The origin of Vaksman’s work on quantum group analogs of bounded symmetric
domains lies in his early work with Korogodskĭı on noncompact quantum groups.
Vaksman takes Woronowicz’s general program into account, but his focus is on the
concrete examples provided by Drinfeld’s theory. He aims at the development of
harmonic analysis for noncompact quantum groups. As in the classical case, signif-
icant milestones are provided by finding the Fourier transform and the Plancherel
measure. But there is ample opportunity for diversion, studying Toeplitz opera-
tors, Berezin quantization, and other ramifications of complex analysis. Vaksman
takes the point of view that such problems can be solved even in the absence of
a general notion of noncompact quantum groups. Instead he takes guidance from
the representation theory of real reductive groups and proposes the investigation
of quantum Harish-Chandra modules [SSSV01]. In [SSV01] he suggests the con-
struction and investigation of q-analogs of nondegenerate spherical principal series
representations. This goal was achieved in [BSV07] which was among his last pa-
pers. The program suggested by Vaksman is vast, not least because it encompasses
more or less the classical theory of harmonic analysis for real reductive groups.
From this perspective the restriction to bounded symmetric domains turned out
to be a wise choice. They form a very important class of examples, but even bet-
ter, their compact counterparts have generally proved amenable to the extension of
classical mathematical concepts to the quantum group setting.
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5. Content of the book

The first half of Vaksman’s monograph is devoted to the quantum group analog
of complex analysis on D1 as indicated in Section 2. The quantum disc Polq(C)
was first introduced by S. Klimek and A. Lesniewski [KL93] as the noncommutative
∗-algebra with generators z and z∗ and the single relation

z∗z − q2zz∗ = 1− q2,(2)

where q ∈ (0, 1) is a fixed deformation parameter. This definition conforms with the
general idea of noncommutative geometry that noncommutative versions of a space
are given by deformations of the algebra of functions on the space. Indeed, if we
set q = 1, then we obtain the algebra of polynomial functions on D1. The explicit
choice of the parameters in (2) allows one to endow Polq(C) with the quantum
group analog of the action of SU(1, 1), or more explicitly with a module algebra
structure over the Hopf-∗-algebra Uq(su(1, 1)).

To be able to formulate results similar to (1) in the quantum group setting,
Vaksman needs a quantum group analog of functions with compact support. He
constructs these finite functions D(D)q using an operator algebraic approach. More
explicitly, he first shows that the quantum disc Polq(C) has a unique faithful rep-
resentation by bounded operators on a Hilbert space. This representation has a
basis {e0, e1, e2, . . . } of eigenvectors for the element y = 1−zz∗ with corresponding
eigenvalues {1, q2, q4, . . . }. In a suitable completion he then defines D(D)q to be
the subalgebra of operators which act nontrivially only on finitely many of the basis
vectors ei. This corresponds to the fact that the function vanishes for small 1−zz∗;
in other words, the function has compact support in D

1.
For the space of functions D(D)q Vaksman manages to define an invariant in-

tegral corresponding to dν from Section 2 and develops the theory in impressive
analogy to the classical case. To give a flavor of this, we highlight just one of the
many interesting constructions. He defines q-analogs L2

a(dνλ)q of weighted Bergman
spaces inside a Hilbert space L2(dνλ)q which is a q-analog of L2(dνλ). He then de-

fines Toeplitz operators T (λ)
f = f̂ : L2

a(dνλ)q → L2
a(dνλ)q by T (λ)

f (ψ) = Pλ(fψ),

where Pλ : L2(dνλ)q → L2
a(dνλ)q denotes the orthogonal projection. In Example

1.129 Vaksman shows that

ẑ∗ẑ = q2ẑẑ∗ + 1− q2 + q2(λ−1) 1− q2

1− q2(λ−1)
(1− ẑẑ∗)(1− ẑ∗ẑ).

The above relation was obtained originally by Klimek and Lesniewski [KL93] via
deformation quantization of a two-parameter family of Poisson structures on D1.
Vaksman has constructed this algebra by completely different means.

In the second half of his monograph Vaksman begins to develop the theory
of quantum bounded symmetric domains in full generality. After a reminder on
Drinfeld–Jimbo quantum groups Vaksman addresses the construction of the alge-
bra Polq(u

−) of polynomial functions which is a q-analog of the algebra of complex
valued polynomials on u− considered as a real vector space. In the simplest case
g = sl2(C), the algebra Polq(u

−) coincides with the quantum disc Polq(C). To
obtain Polq(u

−), Vaksman first considers Harish-Chandra modules N(q+, 0) with
a Uq(g)-module coalgebra structure and defines a q-analog Cq[u

−] of the algebra



BOOK REVIEWS 343

of polynomials on the complex vector space u− by duality. The algebra Polq(u
−)

is then constructed by imposing commutation relations between Cq[u
−] and its

opposite algebra Cq[u
+] by means of the universal R-matrix of Uq(g). In private

conversation, Vaksman occasionally called this construction, which first appeared
in [SV98], his “best mathematical result”. Not only is Polq(u

−) the starting point
of the general theory of quantum bounded symmetric domains, it is also an example
of the relevance of Harish-Chandra modules within this theory. The algebra Cq[u

−]
is a quantum analog of the prehomogeneous vector space of commutative parabolic
type and has been constructed independently by other authors [Jak96], [KMT98].
These constructions, however, are purely algebraic, while Vaksman immediately
ventures into the construction of the Fock representation and of the quantum al-
gebra D(D)q of functions with compact support, which finally allow the definition
of a quantum analog of the invariant integral for any bounded symmetric domain
D. In the remaining sections, he constructs analogs of the Borel embedding and
discusses invariant differential operators on quantum bounded symmetric domains.
Fourier transform and Plancherel measure in the general case, however, remain
projects for the future. The final third chapter gives a brief outlook on directions
of possible future work. Keywords include the Shilov boundary, spherical principal
series representations, and the Penrose transform.

Vaksman’s book provides a stunning example of the extent to which classical
mathematics can be q-deformed within the theory of quantum groups. His writing is
not always easy to read and would have benefited from broader exposition and more
editorial work, had this been possible. The reader, however, who is willing to work
through the details, and who is always prepared to consult external references, will
be rewarded by a real sense of discovery. We can only follow Drinfeld’s words on the
book cover and strongly recommend Vaksman’s book to mathematicians interested
in noncommutative geometry, quantum groups, C∗-algebras, and operator theory.
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