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The exploration of mathematics that lies at the intersection of geometry, topol-
ogy and group theory has been going on for least a century, with the work of Max
Dehn in the 1910s being frequently put forward as an early example of the geomet-
ric approach to the study of groups (see Stillwell’s compilation and translation of
selected works [5]). In 1936 Hurewicz published his proof that the homotopy type of
an aspherical CW complex—a cell complex whose universal cover is contractible—is
determined by its fundamental group [6]. Starting from this result, one can ascribe
topological invariants such as Euler numbers to groups that are fundamental groups
of compact, aspherical cell complexes. In the last 30 years this exploration of geo-
metric and topological aspects of group theory has lead to a number of illuminating
examples and deep insights. Below I discuss two such results, which are directly
related to the books under review.

1. Davis manifolds

In 1934, as part of an incorrect proof of the Poincaré Conjecture, Whitehead
claimed that any open, contractible 3-manifold must be homeomorphic to R

3. In
the following year he constructed the Whitehead contractible 3-manifold, which is
the complement of a rather complicated subset of the 3-sphere. While this manifold
is a contractible open 3-manifold, it is not homeomorphic to R

3.
Keeping in mind Whitehead’s counterexample as a source for caution, it was

still natural to wonder if Whitehead’s original instinct contained a kernel of truth.
Whitehead’s contractible 3-manifold is not the universal cover of a closed aspher-
ical manifold. On the other hand, if M is a closed Riemannian manifold with
nonpositive sectional curvature, then the nonpositive curvature ensures that M is
aspherical and, in this situation, the universal cover of M is homeomorphic to Eu-

clidean space, M̃ ≈ R
n. The argument points out that the exponential map from

the tangent space at a fixed point to M is a covering map. Thus it was quite natural
to ask

Question 1.1. Is it always the case that the universal cover of a closed aspherical
manifold is homeomorphic to Euclidean space?

In [4], Mike Davis showed that the answer is “no”. The construction of his
counterexample begins with a contractible 4-manifold, K, which admits a finite
simplicial structure. Let L be the boundary of K. By Lefschetz duality, the bound-
ary manifold L has the same homology as a 3-sphere, but there are examples where
L has nontrivial fundamental group. From now on, we assume that π1(L) is non-
trivial, and so we are working with what is often called a Mazur manifold [7].
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We can construct a Davis manifold using K and a naturally associated Coxeter
group. Coxeter groups are groups generated by reflections. The symmetry groups
of the Platonic solids are finite Coxeter groups, and elementary examples of infinite
Coxeter groups are associated with some of the standard tilings of Rn and H

n. For
example, Rn can be tiled by n-cubes. The associated Coxeter group is generated
by the 2n reflections whose reflecting hyperplanes pass through the codimension-1
faces of a given fixed cube. In this case the corresponding Coxeter group would be
Dn

∞, the product of n copies of the infinite dihedral group.
To construct a Davis manifold from the Mazur manifold K, first define a Coxeter

group W , whose generating reflections correspond to the vertices in L = ∂K. The
defining relations state that two generating reflections commute if and only if their
associated vertices bound an edge in L. Just as one could repeatedly reflect a single
n-cube to generate a tiling of Rn, one can use W to repeatedly “reflect” K across
(the barycentric subdivision of) its boundary L to form a manifold U . Davis showed
that this space U has a number of nice properties:

(1) The space U is a contractible 4-manifold.
(2) U is the universal cover of a closed aspherical 4-manifold.
(3) U is not homeomorphic to R

4.

To establish claim (3), one first notes that R
4 is simply connected at infinity.

A contractible, locally finite cell complex is simply connected at infinity if given a
nested, exhaustive sequence of finite subcomplexes

K0 ⊂ K1 ⊂ K2 · · · where

∞⋃
i=0

Ki = K ,

the inverse limit of the induced sequence of fundamental groups

π1(X \K0) ← π1(X \K1) ← π1(X \K2) ← · · ·

is trivial. Work of Stallings and Freedman shows that in dimensions ≥ 4, being
simply connected at infinity is both necessary and sufficient for establishing that a
contractible n-manifold is homeomorphic to R

n. In contrast to R
4, the manifold

U is not simply connected at infinity. In fact, a judicious choice for the exhaustive
sequence that is informed by an understanding of the structure of Coxeter groups
combined with an iterated use of van Kampen’s theorem shows that π∞

1 (U) is the
free product of infinitely many copies of π1(L).

2. Bestvina–Brady groups

A group G is of type Fn if there is an aspherical cell complex whose fundamental
group is G, that is, there is a K(G, 1), where the n-skeleton is finite. This property
generalizes two standard notions of finiteness for groups: a group is of type F1 if and
only if it is finitely generated; it is of type F2 if and only if it is finitely presented.
If H is a finite index subgroup of G, and G is of type Fn, then H must be of type
Fn as well. Proof. Take the appropriate cover of a K(G, 1) to create a K(H, 1).
However, if H is of infinite index in G, almost anything can happen. The following
example is due to Stallings (n = 3) and Bieri (n ≥ 4). Define Gn to be the direct
product of n copies of the free group of rank two:

Gn = F2 × · · · × F2 .
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Let φ : Gn → Z be the diagonal map, taking each of the standard generators of Gn

to the generator 1 ∈ Z. Then the kernel of φ is of type Fn−1, but it is not of type
Fn.

There is an alternative theory of finiteness properties that arises in a more al-
gebraic approach to group cohomology. Fix a group G and look at resolutions of
Z viewed as a trivial ZG-module. Then G is of type FPn if there is a projective
resolution of Z as a trivial ZG-module that is finitely generated through dimension
n.

If G is of type Fn you can use the action of G on the universal cover of a K(G, 1)
to get a resolution of Z as a ZG module that is finitely generated through dimension
n. So Fn ⇒ FPn. Being of type FP1 is equivalent to being finitely generated, so
F1 ⇔ FP1. If G is finitely presented, then type FPn implies type Fn for all n.
Thus the natural question to ask was

Question 2.1. Does a group have type Fn if and only if it has type FPn?

In [1] Mladen Bestvina and Noel Brady showed that the answer is “no” and their
approach uses Artin groups. Let K be a finite flag complex, that is, a simplicial
complex where every complete graph in the 1-skeleton corresponds to a simplex in
K. Define the associated right-angled Artin group to be

AK = 〈V (K) | vw = wv whenever {v, w} ∈ E(K)〉 .

In other words, AK is generated by elements associated with the vertices of K, with
relations saying two generators commute when their associated vertices share an
edge. This should sound quite similar to the construction of Coxeter groups used
in creating Davis manifolds.

The groups AK do not have exotic finiteness properties. In fact, they admit
finite classifying spaces that are subcomplexes of tori. However, they do have
exotic subgroups of infinite index. Let BBK denote the kernel of the diagonal map
φ : AK → Z that sends each standard generator of AK to the generator 1 ∈ Z.
Then the kernel BBK is finitely generated if and only if the complexK is connected;
BBK is finitely presented if and only if K is simply connected. And in general, the
presence of a finiteness property for the kernel BBK is directly tied to the triviality
of a homology or homotopy group of K. Bestvina and Brady’s proof of this result
uses a variation on classical Morse theory, and this technique has had a continued
impact on the field.

To answer the question above, let K be a finite acyclic flag complex, with non-
trivial fundamental group. Thus K has trivial homology, but π1(K) is not trivial.
Then the kernel BBK of the diagonal map φ : AK → Z is not finitely presentable,
yet there is a finite projective (in fact free) resolution of Z as a trivial ZG-module.
That is to say, BBK is not of type F2 but it is of type FPn for all n.

3. The books

I hope that readers of the two stories above suspect that I have left out a num-
ber of important details. They are right, and moreover, not only have I skipped
important details, I have skipped a number of interesting details. My only defense
is to say that there are now two books that do a wonderful job of presenting both
the group theory and the geometry/topology that underlies these and many other
results.



350 BOOK REVIEWS

Ross Geoghegan’s Topological methods in group theory starts at an elementary
level (discussing cell complexes, cellular homology, and fundamental groups) but it
moves at a brisk pace. Section 1.2 defines CW complexes; section 3.1 introduces
the fundamental group; and section 4.5 presents a nice, geometric argument for
Hurewicz’s Theorem: πn(X) ≈ Hn(X) when X is simply connected and (n − 1)-
acyclic. All of that is accomplished in the first 123 pages.

While much of this foundational material will be known to potential readers, it
should not be skipped. Not only is Geoghegan’s exposition spare yet enlightening,
he presents this material in a manner that serves as an appropriate foundation
for the mathematics that follows. As one example, Geoghegan’s presentation of
the Hurewicz Theorem leads nicely into a proper-homotopy version of this result
(Theorem 17.1.6), and essentially all that is necessary to prove the proper-homotopy
version is to simply point back to the earlier argument. Another place where
Geoghegan’s style and insights are particularly notable is in his discussion of duality
in Chapter 15. In this thirteen-page chapter he presents a geometric treatment of
Poincaré Duality for manifolds and quickly builds from there a treatment of duality
properties in the context of groups. While this material is presented quite efficiently,
an attentive reader will gain a good deal of intuition and understanding by working
through these ideas.

The choice of topics in this book is deeply influenced by shape theory, which
Geoghegan points out explicitly in his introduction. This becomes most apparent
starting in Chapter 10, where proper maps and proper homotopy theory is devel-
oped, and it continues through the remainder of the text. Because of this, this
book is an invaluable resource for anyone wanting a deep understanding of topics
related to the ends of groups. In addition to presenting properties like being simply
connected at infinity, this book also develops material on filtered or relative ends
of spaces, the fundamental group at infinity, and compactifiability at infinity. For
much of this material I can think of no place in the literature where it is presented
as well as it is here. In fact, there is a good deal of material in this book that does
not appear anywhere else in the literature.

Mike Davis’s The geometry and topology of Coxeter groups develops many themes
in the study of geometric group theory in the context of Coxeter groups. Coxeter
groups appear in many branches of mathematics, which is evidenced by the fact
that there are over a dozen books on Coxeter groups. Many of these other texts
focus on the theory of finite Coxeter groups, and/or they focus on connections
between Coxeter groups and combinatorics. None of the other books on Coxeter
groups provides the same insights into the geometry of infinite Coxeter groups that
is available in Davis’s book.

The first sixty pages of this book provide the foundation for the study of infinite
Coxeter groups, which begins in earnest in Chapter 5. Here Davis describes how
to construct spaces U upon which Coxeter groups act. The classic example of this
construction yields what is commonly called the Davis Complex, which thankfully
Mike Davis chooses not to rename in his book.

Davis presents the foundational results about the topology of the spaces U in
Chapters 7–9. This includes acyclicity conditions and cohomology with compact
supports, both of which are key to establishing topological properties at infinity for
the associated Coxeter groups.
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Infinite Coxeter groups are of great interest in geometric group theory because
of the flexibility of their construction combined with the fact that their associ-
ated Davis complexes support nonpositively curved metric structures. The two
stories told above suggest what I mean by flexibility, where one can use topological
properties present in finite cell complexes to establish the existence of topological
properties in certain groups. Another example that should be mentioned is the
reflection group trick, described in Chapter 11 of Davis’s book. This is a method
for converting aspherical complexes into closed aspherical manifolds, which retract
onto the original aspherical complexes. This technique can be used to establish that
there are closed, aspherical manifolds whose fundamental groups are not residually
finite, and there are closed, aspherical manifolds whose fundamental groups have
unsolvable word problems. Within the realm of manifold theory, this approach can
also be used to establish that in each dimension ≥ 13 there are closed, aspherical
manifolds that are not homotopy equivalent to smooth manifolds.

Mike Davis’s book concludes its discussion of the geometry and topology of
Coxeter groups by surveying recent work on weighted L2-cohomology of the spaces
U and more generally, buildings. There are approximately 150 pages of appendices
describing topics such as complexes of groups, the Novikov and Borel conjectures,
and CAT(0) geometry.

The construction of Davis manifolds and the results of Bestvina and Brady can be
found in both of these texts. Davis manifolds appear in section 16.6 in Geoghegan’s
book, and they are presented in section 10.5 in Davis’s book. The examples of
Bestvina–Brady show up in section 8.3 in Geoghegan’s book and section 11.6 in
Davis’s book. While these two books do cover some of the same ground, they are
a great complement to each other, not competing expositions.

The field of geometric group theory is too large for any single volume to attempt
to present all of the material that is now viewed as foundational. Such is the nature
of a field with rich connections to well-established branches of mathematics. As one
example, neither of the books being reviewed here would serve as good resources
for someone wanting to learn about hyperbolic groups. The topic is touched upon
in both texts, but is not a focus of either. A reader who is interested in focus-
ing on the cohomology of groups is well served by reading Ken Brown’s text [3];
a reader wanting a rich understanding of CAT(0) geometry should work through
Bridson and Haefliger’s book [2]. The books of Davis and Geoghegan are excellent
introductions to other, important aspects of the study of geometric and topological
approaches to group theory. Davis’s exposition gives a delightful treatment of infi-
nite Coxeter groups that illustrates their continued utility to the field; Geoghegan’s
book provides a well-presented, concrete development of geometric group theory
focused on a topological approach.
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