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What makes an intersection likely or unlikely? A simple dimension count in-
dicates that two curves in the plane are likely to intersect, while two curves in
three-space are unlikely to intersect. Indeed, in the complex projective plane, Be-
zout’s theorem says that two algebraic curves always intersect. Moving down a
dimension, it is unlikely that a curve C in the plane will intersect a given point P .
More generally—and this is where the real interest begins—the intersection of C
with a countable collection of “special” points {Pi}i≥1 is unlikely to be large un-
less C itself is also special in some way.

A prototype for the subject of unlikely intersections is the following theorem
in which the special points are those whose coordinates are roots of unity and
the special curves are translates of subgroups of the torus C∗2. This result was
conjectured by Serge Lang and proved by Ihara, Serre, and Tate in the 1960s.

Theorem 1. Let f(X,Y ) ∈ C[X,Y ] be a nonzero polynomial that has no factors
of the form Xd − cY e or XdY e − c with c a root of unity. Then the equation
f(X,Y ) = 0 has only finitely many solutions (ζ, η) in which ζ and η are roots of
unity.

A convenient way to describe the set of special points (ζ, η) in the theorem is as
the set of points of finite order in the torus C∗2, while as noted earlier, the special
curves Xd = cY e and XdY e = c are translates of algebraic subgroups of C∗2 by
points of finite order. A nontrivial generalization to C∗n was given by Laurent
in 1984.

Replacing the torus by an abelian variety A leads to a famous problem raised by
Manin and Mumford in the 1960s and solved by Raynaud in the 1980s. We suppose
that X ⊂ A is a subvariety of A that contains infinitely many torsion points of A.
Raynaud proved that there is an abelian subvariety B of A of positive dimension
and a torsion point T ∈ A such that X contains the translate of B by T .

More generally, one can look at a semi-abelian variety, i.e., the extension of an
abelian variety by a torus, and one can replace the torsion subgroup by the full
divisible hull of a finitely generated subgroup.

Theorem 2. Let G be a semi-abelian variety, let Γ ⊂ G(C) be a finitely generated
subgroup, let

Γdiv = {g ∈ G(C) : gk ∈ Γ for some k ≥ 1}
be the divisible hull of Γ, and let X ⊂ G be a subvariety. Then X ∩ Γdiv is finite
unless X contains a translate of an algebraic subgroup of G of dimension at least 1.
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This deep result, which is a combined generalization of conjectures of Mordell–
Lang and Manin–Mumford, was proven as the culmination of the work of a number
of mathematicians, including in particular Faltings, Hindry, McQuillan, and Vojta.
It may be summarized as saying that if a subvariety X of G contains infinitely
many special points, i.e., points of Γdiv, then X contains a special subvariety, i.e.,
a translate of a positive dimensional subgroup of X.

Theorem 2 deals with unlikely intersections of subvarieties with a countable
collection of special points. The situation becomes even more difficult if one replaces
the set of special points with a countable collection of special subvarieties, as was
done in a series of conjectures by Bombieri, Masser and Zannier [4], Pink [14], and
Zilber [16]. For simplicity, we restrict our attention for the moment to the case of
an n-dimensional torus G = C∗n. For a given subvariety X ⊂ G, we define

X(d) =
⋃

H⊂G, dimH≤d

(X ∩H),

where H runs over all algebraic subgroups of G of dimension at most d. For
example, the set X(0) is the set considered earlier, namely the intersection of X
with the torsion points of G. Algebraic subgroups of G are special, so we would
expect X(d) to be small unless X itself is also special. Illustrating this intuition is a
recent theorem of Maurin [11], which says that if X is an irreducible curve defined
over Q̄ that is not contained in a proper algebraic subgroup of G, then X(n−2)

is finite. This is the best that one can hope, since each intersection X ∩ H with
dimH = n− 1 is likely to be nonempty, leading to X(n−1) being infinite.

When X has dimension greater than 1, the situation is considerably more com-
plicated, as illustrated by the following example of Bombieri, Masser and Zannier
[4]. Let

X =
{
(x1, x2, x3, x4) ∈ C∗4 : x1 + x2 = 1, x3 + x4 = 2

}
,

and consider the translated subgroup gH = {x1 = x2 = 1
2} ⊂ C∗4. Then X and gH

have dimension 2, and one can check that X contains no translated subgroups. So
one would expect X ∩ gH to have dimension 0, but in fact dim(X ∩ gH) = 1.

Generalizing this construction, Bombieri, Masser and Zannier gave the right
formulation for unlikely intersections. For an irreducible subvariety X ⊂ G = C∗n

and a subgroup H ⊂ G, the expected dimension ED(G;X,H) of the intersection
X ∩H is

ED(G;X,H) = dimG− codimG X − codimG H.

For δ ≥ 0 and g ∈ G, they write (X ∩ gH)δ for the union of the components
of X ∩ gH of dimension δ, and they define the “nonanomalous” part of X to be

X◦a = X \
⋃

H⊂G

⋃

g∈G

⋃

δ>ED(G;X,H)

(X ∩ gH)δ.

They prove that X◦a is a (possibly empty) Zariski open subset of X, and they
make a number of unlikely intersection conjectures for X◦a. Their formulation was
spectacularly justified by recent work of Habegger [6, 7] in which he shows that
X◦a ∩X(n−dimX−1) is a finite set. In a subsequent work, Habegger proves an anal-
ogous result for products of abelian varieties, and work is continuing by Habegger
and others to extend these results to more general (commutative) algebraic groups.
However, despite this great progress, we still do not know the best possible finiteness
result for surfaces sitting in a five-dimensional torus.
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Up to this point we have looked at algebraic groups, whose special subsets are
translates of subgroups. A rather different type of special subset arises in the theory
of moduli spaces and, more generally, Shimura varieties. It would require too many
technical definitions to describe the full theory in this short review, so we consider
the special case of elliptic curves. An elliptic curve E is a compact algebraic curve
(Riemann surface) that has the structure of an algebraic group. The isomorphism
class of E is determined by a single number j(E), called the j-invariant of E. The
set of algebraic maps from E to itself, denoted End(E), has the natural structure
of a ring via (f + g)(P ) = f(P ) + g(P ) and (fg)(P ) = f(g(P )). For most elliptic
curves, the ring End(E) is just Z, but for some special curves it is larger, isomorphic
to an order in an imaginary quadratic field. Such curves are said to have complex
multiplication, or CM for short. As an example, the elliptic curve E : y2 = x3 + x
admits the endomorphism ϕ(x, y) = (−x, iy) whose square ϕ2(x, y) = (x,−y) is
the negation map on E. In this way, one can show that End(E) = Z[i], the ring of
Gaussian integers. There are a countably infinite number of CM elliptic curves.

We now view the complex plane C2 as parameterizing pairs of elliptic curves
(E,E′) via the identification (E,E′) ↔

(
j(E), j(E′)

)
. Among those pairs, the

special points will be those (E,E′) such that both elliptic curves E and E′ have CM.
We will call them CM points. Now given an irreducible algebraic curve X ⊂ C2, we
might ask under what circumstances X contains infinitely many CM points. André
[2] answered this question: the curve X is either a horizontal line, a vertical line,
or a modular curve Y0(N), where Y0(N) is the set of pairs (E,E′) such that there
is a homomorphism E → E′ whose kernel is a cyclic group of order N . In brief,
if X contains infinitely many special points, then X itself has a special form.

Various conjectural generalizations of this result were formulated independently
by André [1] and Oort [12]. Later Pink [14] described a version that combines un-
likely intersection problems on Shimura varieties with the unlikely intersection prob-
lems we discussed earlier on algebraic groups, including the case in which the special
points are replaced by special subvarieties of higher dimension. Without getting
too much into technicalities, a Shimura variety is roughly a quotient of a symmetric
Hermitian domain by an arithmetic group. The special subvarieties of Shimura va-
rieties are themselves Shimura varieties; for example, the zero-dimensional Shimura
subvarieties are CM points. Then one version of the André–Oort conjecture says
that if an irreducible subvariety X of a Shimura variety V contains a Zariski dense
set of CM points, then X is itself a Shimura subvariety of V . Recently, Pila [13]
has proved certain cases of the combined André–Oort/Lang–Manin–Mumford con-
jecture using, among other tools, the theory of o-minimality from logic and model
theory.

Returning to the case of algebraic groups, we reconsider the earlier theorem that
a nonspecial subvariety X of an abelian variety A has small intersection with the
set of special points Ators. In this statement, we may view the abelian variety A
and its special points as fixed and the subvariety X as varying. Suppose now that
we allow the abelian variety A to vary in a family. In this setting, Masser and
Zannier [9] proved a deep, but very particular, result whose generalizations are an
active area of current research. They consider the family of elliptic curves

Eλ : y2 = x(x− 1)(x− λ)
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parameterized by λ and the two families of points

Pλ = (2,
√
4− 2λ) and Qλ = (3,

√
18− 6λ)

on Eλ. By setting nPλ = 0 for various values of n, one can easily find values
of λ ∈ C such that Pλ is a torsion point, i.e., such that Pλ is special; and similarly
for Qλ. However, it seems “unlikely” that there are many λ for which both Pλ

and Qλ are torsion points. Masser and Zannier prove that the set of such λ is
finite.

There are also analogues of unlikely intersection problems in the theory of dy-
namical systems. Rather than listing these analogues case by case, we instead
describe one recent beautiful result due to Baker and DeMarco [3] that is a dynam-
ical analogue of Masser and Zannier’s result on unlikely intersections in varying
families. For c ∈ C∗, let fc(z) = z2+ c, and write f◦n

c for the nth iterate of fc. The
forward orbit of a point a ∈ C is the set

{
f◦n
c (a) : n ≥ 1

}
. The point a is said to be

preperiodic for fc if its forward orbit is finite. In this dynamical setting, preperiodic
points are special points. The Baker–DeMarco theorem says that if a, b ∈ C have
the property that there are infinitely many values of c such that both a and b are
preperiodic for fc, then a2 = b2.

Before turning to the book under review, we mention briefly a situation in which
intersections are “likely, but not too likely.” To describe these results, we need to
find a way of measuring the arithmetic complexity of a point P whose coordinates
are algebraic numbers. For this purpose we use the height h(P ), which is roughly the
number of bits it takes to store the coordinates of the point P on a computer. For
example, if we consider points having rational coordinates, then for any bound B
there are only finitely many points P ∈ Qn whose height satisfies h(P ) ≤ B.

Returning to the family of elliptic curves Eλ and the family of points Pλ con-
sidered by Masser and Zannier, they show that there are infinitely many algebraic
numbers λ such that Pλ is a torsion point. So it would not be appropriate to say
that Pλ is unlikely to be a torsion point. However, it turns out that the set

{λ ∈ Q̄ : Pλ is a torsion point}
is a set of bounded height, so for example, we immediately see that there are only
finitely many λ ∈ Q for which Pλ is a torsion point. This is a very special case of
a theorem of the reviewer [15], which generalized earlier work of Dem’janenko [5]
and Manin [8] in the split case and deals with general one-dimensional families of
abelian varieties and points. In a related vein, Masser [10] gave a height density
result for higher dimensional families, and Habegger [6, 7] has proven deep bounded
height theorems for certain unlikely intersections. Aside from the intrinsic interest
of such results, they often form an important part of finiteness proofs for unlikely
intersection, but we do not have space here to comment further.

We turn now to the monograph under review, which is an expanded version of a
series of four lectures given by the author at the IAS in May 2010. The first lecture
forms an introductory chapter in which the author gives an overview of the theory
of unlikely intersections, including most of the relevant definitions and statements
of many of the main theorems and conjectures. Three of the remaining four chap-
ters (Chapters 1, 3, and 4) follow the remaining three lecures and cover unlikely
intersections in multiplicative groups, unlikely intersections on families of elliptic
curves (elliptic surfaces), and unlikely intersections on moduli spaces and Shimura
varieties (the André–Oort conjecture). We have described these topics already. An
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additional chapter (Chapter 2) discusses unlikely intersections in number fields,
which was not covered in the lectures. Each chapter ends with notes on related
topics, directions, and guides to the literature.

As an example of the sort of theorems discussed in Chapter 2, we mention
the following special case of a result of Corvaja and the author: Let a, b ≥ 2 be
integers such that an 
= bm for all m,n ≥ 1. Then for every ε > 0 there is a
constant C = C(a, b, ε) such that

gcd(an − 1, bm − 1) ≤ Cmax{anε, bmε} for all m,n ≥ 1.

Although deceptively simple to state, the proof is ineffective and uses Schmidt’s
subspace theorem.

Zannier’s book is well written and a pleasure to read, although since it is a
monograph based on a lecture series, the pace is at times uneven, and the proofs,
of course, are generally only sketched. But the author always makes an effort to
point out key ideas and key steps, so a reader who wants to read and understand
the complete proofs in this technically demanding field will find this monograph to
be an extremely helpful entree into the subject. Seven appendices round out the
volume. In the first appendix, the author sketches Pila’s theorem describing the
distribution of rational points on subanalytic varieties, which plays a crucial role in
many unlikely intersection proofs. The remaining six appendices are short notes by
David Masser on a variety of related subjects and tools used in the study of unlikely
intersection. Since any book review must find at least one item to criticize, the
reviewer warns the reader that some sort of indexing glitch has caused many index
entries to be off by up to four pages. But aside from this minor caveat, the reviewer
highly recommends Zannier’s book as an excellent survey of and introduction to
the important and hot topic of unlikely intersections in arithmetic geometry.
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[13] J. Pila. O-minimality and the André–Oort conjecture for Cn. Ann. of Math. (2), 173:1779–
1840, 2011. MR2800724

[14] R. Pink. A common generalization of the conjectures of André–Oort, Manin–Mumford, and
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