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It often happens that a mathematical subject is beyond the capabilities of con-
temporary technique for many years followed by a period when a few pioneers
develop new techniques and make fundamental progress. Suddenly there is an ex-
plosion of interest by many mathematicians, although the original breakthroughs
tend to be forgotten. The subject of nonlinear dispersive wave equations is a good
example.

In an even broader context, this book is about nonlinear waves. They occur
in many branches of science, such as water waves, gas dynamics, laser beams,
and quantum field theory. The subject has turned out to be much, much richer
than anyone had suspected. The very earliest work, more than 100 years ago,
depended heavily on linearization, but that could only illuminate what happens
locally, analogous to approximating a surface by its tangent plane at a point. The
subject has two main branches. One is the kind where the highest derivatives are
nonlinear and there are shock waves. The other is the kind where only the lower-
order terms are nonlinear. This book is about the second kind. The very simplest
case is a nonlinear term with no derivatives, which appears in various physical
applications. Nevertheless, it turns out to be not at all simple.

Typical examples are the nonlinear wave equation (NLW), resp. Schrodinger
equation (NLS), generalized Korteweg—deVries equation (gKdV),

(1) uy — Au+ f(u) =0, iug — Au+ f(u) =0, Ut + Ugze — f(1)z =0,

where x € R™ (n = 1 in the third example), A is the Laplacian on R", and
f(u) = mu + AMulP~tu with p > 1 and m > 0. In each of these examples the
derivative terms tend to make the waves spread out (disperse) in the unbounded
space R™ like a linear wave. On the other hand, the nonlinear term f(u) tends to
make the waves exaggerate their height differences (peak). These two tendencies
fight each other. Sometimes one wins, sometimes the other does, and sometimes
they balance out.

One might ask why we study very particular PDEs. The answer is that the his-
tory of science and mathematics is rife with specific PDEs on which whole theories
are based, such as the Cauchy—Riemann equations, the Maxwell equations, and the
Navier—Stokes equations.

Fifty years ago almost nothing was known about the global behavior of the
solutions (waves) of the simple-looking equations (Il). Then major discoveries were
made in the 1960s and 1970s. During the last decade, there has been an explosion
of activity in the mathematical theory. The state of the theory up to 1989 can be
found in [3]. It turns out that the qualitative behavior of the waves depends heavily
on the sign of A and on the sizes of p and n. Let us focus on NLW, which is the
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main subject of this book. A big hint comes from the energy

) &)= [ {3lul*+3IVuf’ + Flu)ldz,  F(u) = Flul* + 25lul*,

]Rn
which is independent of time t. In the early years the focus was on classical, say C2,
solutions, but it has turned out that most of the theory is valid assuming merely
that £(u) is finite.

In the more controlled situation, A > 0, each term in (2] is positive so that we
have bounds on the solution and its first derivatives in the L?-norm in terms of &(u).
This is called the defocusing case, the terminology coming from nonlinear optics.
We might reasonably expect a global existence and uniqueness theorem for any
initial data. Surprisingly however, this is known only under restrictive conditions,
namely, if either n < 2or p <1+ ﬁ. On the other hand, for p > 1+ ﬁ, only
the global existence of weak solutions is known. The idea of the existence proof is
simple. One approximates NLW by a problem that is easy to solve, in such a way
that the solutions uy of the approximate problem still have bounded energy, and
then one uses weak compactness to show that there is a subsequence of wu; that
converges weakly to a solution u of the original problem. But essentially all that
we then know about the resulting solution is that its energy £(u) is bounded by
the initial energy. For such a weak solution it is not known whether the energy is
independent of time. The solution is so weak that it might not even be a continuous
function.

There are several ways to understand the condition on p. For the Sobolev space
H'(R") to be embedded in LP! (R") requires that p < 1+-%5. This means that the
last term [ |u[P™'dz in (@) is bounded by the others. Moreover the equation NLW
(with m = 0) is invariant under the change of scale uq(t,z) = o?/ P~ Dy(at, ax).
Then [ |Vu,|?dz scales like a4 where ¢ > 0 iff p < 1+ ﬁ, meaning that we
have control of the very small scales, which is a hint of regularity. The condition
p<l+ ﬁ is called the energy-subcritical case (critical case if equality).

The most fundamental open problem in nonlinear PDEs is whether there is
uniqueness—and perhaps regularity—in the supercritical situations where solutions
are known to exist but are merely weak, that is, not smooth functions. This problem
for NLW has remained open for fifty years. The same problem for the Navier—Stokes
equation has been open for eighty years, ever since the work of J. Leray. It is one
of the Millenium problems [4] and is connected to the problem of turbulence of a
fluid.

Another basic question is, What is the asymptotic behavior as ¢ — +00? It took
many years, but we now know that if 1 + % <p<l1l+ ﬁ, then all the solutions
u of NLW scatter in the sense that they are asymptotic to linear waves, that is, to
solutions vy of the equation with A = 0. This means that E(u(t) —vi(t)) — 0 as
t — Fo0, where & (u) = [p.{3w|* + §|Vu|?}dz is the free energy. The behavior
of u in the distant past is given by v_ and in the far future by v,. The nonlinear
mapping from v_ to vy is called the scattering operator. The condition that 1—}—% <
p is equivalent to saying that [ |uq|? scales like a? with ¢ < 0. It implies that, for
small u, the nonlinear term is small enough that it is asymptotically negligible.

The focusing case, A < 0, is quite different because some solutions blow up in
a finite time 7. In fact, any solution of NLW that satisfies £(u) < 0 does blow
up. Negative energy is just a condition on the initial data that the last term in (2))
dominates the other two. In fact, as t  T*, the first two terms in (2) and the
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last one both become infinite but of opposite sign. On the other hand, if the initial
data is small enough, then the solution exists globally (that is, for all times) and
scatters because the linear term mu dominates the nonlinear one. On the other
hand, if m = 0, other interesting situations occur [3], which we will not get into in
this review.

Continuing the focusing case for NLW, we see a big gap between the waves that
blow up and those that scatter. It turns out that if the energy is not too big, this gap
is well understood. A major role is played by the ground state Q). @ is the unique
positive solution of NLW that does not depend on time (so that —AQ + f(Q) = 0)
and that minimizes the energy £(¢) = [5.{3|V¢|> + F(¢)}dz among all functions
¢(x) subject to the constraint K(¢) = [5.{|V¢[* + ¢f(¢)}dx = 0. It is a nonlinear
analogue of the principal eigenfunction of a self-adjoint operator. The existence of a
steady state of finite energy requires both focusing (A < 0) and energy-subcriticality
(p <1+ ﬁ) Thus it is another distinguishing feature of the focusing case. It
turns out that the ground state @ is a decreasing function of the radial variable |z|
and has positive energy. Assuming the subcritical case p < 1 + ﬁ and assuming

that the initial data satisfies £(u) < £(Q), we have the following dichotomy:

(i) The solution is global and scatters if C(u) > 0, while
(ii) the solution blows up if K(u) < 0.

In particular, @ is unstable under some perturbations of the initial data.

Orbital stability is a more subtle issue. In fact, many of the most interesting
PDEs are invariant under a group G of transformations. Then G generates a whole
family of solutions from a steady state ). For instance, permitting complex values
in NLW and taking m = 1, we have the phase transformations u +— e’u. Then
there is a family (orbit) of standing wave solutions {e™!Q(r;w) : —1 < w < 1} of
lowest energy that depend on the parameter w. Orbital stability of one of these
standing waves means that Ve > 0, 3§ > 0 such that
(3) E(u((), ) - Q(-;w)) <6 implies sup sup E(u(t, ) - er(~;w)) <e.

0<t<oo R
Thus the solution u remains close to the orbit for all future times. It turns out that
e"!'Q(z;w) is orbitally stable if p <1+ 2 and |w| > (1—n+4/(p — 1))~'/2, and
it is orbitally unstable otherwise [3].

The three examples in () are Hamiltonian, meaning that they can be written
in the form 4 = JE&'(u) with u(t) € H where H is a Hilbert space and J is
a skew-symmetric linear operator. Taking the inner product of any Hamiltonian
system with £ (u), we see that €(u(t)) is independent of time. For the case of NLW,
H = H'(R") x L?(R"), and the Hamiltonian form is

o ()-8 ()

For NLS, J is multiplication by i and E(u) = [5.{5|Vu* + F(u)}dz. For KdV,
J =08, and E(u) = [p{%|us|? + F(u)}dz. The various particular wave equations
have a lot in common but there are important differences as well and most problems
demand separate analyses.

What happens to waves, solutions of the focusing NLW, A < 0, whose energies are
greater than the energy of @7 This is almost completely open territory. What the
authors do in this book is to show that the situation is tremendously complicated
even if the energy is only a tiny bit greater. In particular, they investigate in great
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detail the waves that begin initially in a small neighborhood of ). Throughout
most of the book they assume that p = n = 3 and that the solutions are radial
(depend only on t and r = |z|). Thus the equation is uy — Au + u — |ul?u = 0.
Since they are working near @, the linearized operator L = —A 4+ 1 — 3Q? plays a
central role. It has exactly one negative eigenvalue, which is a hint that there might
be solutions of NLW lurking near @ that blow up. In fact, @) can be rewritten as

o a(z)e(D)e(ate ) (5 1)

Now the linear matrix operator £ has exactly one negative and one positive eigen-
value while all the rest of its spectrum (including the continuous spectrum) is
imaginary.

Here is the book’s main conclusion: Starting with any initial data of energy less
than £(Q) + €2 for small ¢, the solution of NLW either (a) blows up or (b) scatters
to zero or (c) scatters to Q. Furthermore, there exist radial solutions such that
any one of these three scenarios occurs as ¢ — +0o and any other one as t — —oc.
So this set of solutions splits up into nine nonempty subsets! By “scatter to zero”
is meant “scatter” in the sense mentioned earlier in this review. By “scatter to @)”
is meant that u(t,x) — Q(x) scatters.

Furthermore, among the waves that begin near ), those that satisfy (a) or (b) for
positive times leave the vicinity of ). The spectrum of L tells us about the behavior
of these solutions as, say, t — 4+00. Namely, the unstable direction, associated with
the positive eigenvalue of L, is the tangent at () to a smooth local curve in H,
called the unstable manifold W*. The stable direction, coming from the negative
eigenvalue of £, leads to another curve, the stable manifold W#, for which u(t) — Q
as t = 4+o00. The complementary initial data, for which the solution scatters to Q
but does not converge to @, form the center manifold W€, which has codimension
two. The concept of stable/center/unstable manifolds is exactly the same as in
dynamical systems. Among these three manifolds, the center manifold is the most
subtle because a small nonlinear perturbation could in principle kick the solution
towards stability or instability.

A novel ingredient of their proof is their “one-pass” theorem, which states that
a solution that begins near () can enter or exit a neighborhood of @ at most once.
In fact, a solution in the neighborhood that is not on the center-stable manifold
moves away from () because of the unstable mode associated with the positive
eigenvalue of £. Then another global identity, related to scaling in z, is used to
show that it continues to move away. In fact, one considers the family of dilations
D, : u(z) — u(ax) and its generator x - V, symmetrizes it, and multiplies the
equation by the result to get the virial (Morawetz) identity

Oy /n uy 3(z-Vu+ V- (zu))de = /{|Vu\2 — 3 |u|*}dz =: Ko (u).

The signs of K9 and K are used in conjunction with a classical argument [2] to show
that the solution stays away from Q.

A natural problem that remains open is to understand the eventual behavior
of the super-energetic focusing waves, those with energies greater than that of the
ground state. Interesting numerical computations in [I] indicate that the boundary
of the set Sy of all the waves that scatter to zero appears to be very irregular.
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The nonradial case is outlined in Section 6.1. This is more difficult because in-
stead of the two stationary solutions (), there is a whole manifold M of solutions
generated from ) by spatial translations and Lorentz transformations. The extra
parameters of Mg have to be controlled in the construction of the center-stable
manifold that emanates from Myg.

This book is written by two leaders in the theory of nonlinear waves. It is partic-
ularly well written and organized. There are very clear preambles and summaries
of the individual chapters. After an introductory chapter, there is an analysis of
the waves below the ground state energy. The core of the book is Chapters 3-5,
which treats the slightly larger energies for radial NLW with n = p = 3. In Chapter
3 they also discuss the linear dispersive estimates in the analogous NLS case, and
this is reconsidered in Section 6.3. They have a section on the one-dimensional
NLW and another one on the energy-critical NLW for m = 0 and p = 1 + ﬁ.
The book is an expanded version of the authors’ research papers that is based on
a course given by one of them.
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