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How many prime numbers are there?

This simple question has inspired the subject of analytic number theory. The
sharpest known results use the theory of complex variables, and of the Riemann
zeta function in particular

However, our original question is purely elementary (if not easy!), inviting study
by elementary methods. Generally speaking, these elementary methods are known
as sieve methods, and they run from the very simple to the extraordinarily sophisti-
cated. Sieve methods are valued not only for their aesthetic value as an elementary
approach, but also for their flexibility: they have proved useful in studying a wide
variety of questions related to the primes, in some cases where zeta function tech-
niques are not applicable.

Reading the Latin title of the second book under review, one might wonder, Is
the study of sieves really 2,000 years old, dating back to ancient Rome? In fact,
the authors might have titled their book Yuyypduuata nepl tol xooxivou, for the
subject goes back further, to ancient Greece.

1. TWO THEOREMS ON PRIME NUMBERS

The first theorem on primes is due to Euclid: there are infinitely many. Proof:
If p1,p2,...,pn is the complete list of primes, then p1ps - - - p, + 1 must be prime
also, a contradiction.

As we have not exhausted our page limit, we have space to prove a second the-
orem. Suppose then that one wants to find all the primes less than 308 we may
do this by the sieve of Eratosthenes. Write out the integers from 1 to 30:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

We ignore 1, as it is neither prime nor composite. The next integer, 2, is the first
prime. We circle it and then cross out any subsequent multiples of 2:

1 @ 3 4 5 g 7 & 9 W 11 ¥ 13 M4 15
6 17 18 19 20 21 27 23 24 25 26 27 28 29 30

2010 Mathematics Subject Classification. Primary 11N35, 11N36.

1A new proof of the same results has recently been given by Koukoulopoulos [14], based
on Granville and Soundararajan’s theory [6] of pretentious multiplicative functions. Although his
proof does use complex variables, it does not rely on the analytic continuation of the zeta function.

2We have taken this part of the discussion straight from the very beginning of Opera de
cribro. Although there is plenty of room for creativity in the advanced variations of the sieve, the
beginning is essentially a one-way street, and one can almost not help but plagiarize.
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We proceed two more steps in the same fashion, obtaining;:

1 @3 4 O k 7 F 8 W 11 ¥ 13 M IR
M17 219 200 AW 27 23 2 25 26 W W 29 XK

Continuing, one would circle the primes through 30. However, the remaining num-
bers already must be prime: any composite number less than 30 has a prime factor
less than /30.

As this procedure allows us to find primes, a fortiori it allows us to count them.
Counting the primes < = seems to be difficulfd for large x, so one might be happy
with an asymptotic formula. Such a formula, namely the prime number theorem
T(x) ~ 57 (here 7(x) is the number of primes < x), was proved by Hadamard and
de la Vallée Poussin in 1896. As the proof is difficult and uses complex analysis, the
impatient reader might settle for any nontrivial theorem, beyond Euclid’s, about
m(x).

To this end, Legendre observed that Eratosthenes’ algorithm can be adapted to
prove an upper bound for 7(z). This can be seen already, from the first three steps

of the sieve: if we start with the integers between 1 and z, then we eliminate %z
of them (1 — 14 =% - 2 2). We might hope to conclude that 7(z) < ft; in fact,

we conclude that 7(z) < stz + O(1), where the error term depends on the number
of steps taken.

For large x, we can improve our bound by increasing the number of steps. We
will formalize this argument and prove a nontrivial upper bound for m(x). This
fairly simple argument will illustrate the flavor of more advanced sieve proofs.

Choose a parameter Y then, which may depend on z, and we run the sieve until
we have circled all the primes < Y. The remaining integers will either be prime, or
else have each of their prime factors at least Y.

More formally speaking, write P(Y") for the product of all primes < Y, and p(n)
for the Mdébius function: If n = p1ps - - - pr is a product of r distinct primes, then
u(n) := (=1)"; otherwise pu(n) = 0. Then, the inclusion-exclusion principle (or
Moébius inversion) gives the identity

1 if n=1,
(1.1) 2 uld) = { 0 if n>1
d|n ’

valid for any positive integer n. In particular, this implies that

1 if n has no prime factor <Y,
> ua={ b

0 if n has a prime factor <Y,
dl(n,P(Y))

where (n, P(Y)) denotes the greatest common divisor of n and P(Y).
Therefore,

(1.2) m@) <Y+ D> D> pud);

1<n<z d|(n,P(Y))

3As of the writing of this article, the primes have been counted up to approximately 1024, If
this number seems large, note that Bays and Hudson [I] have proved that

1—c dt T dt
7r(x)>lim</ 74—/ )
=0\ Jo  logt 1+4e logt

for some x < 1.4 x 10316 but no particular z is known to satisfy this inequality.
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this is equivalent to sieving up to Y as explained before. The first term of Y is
there because the prime numbers < Y have not survived the sieve, despite being
perfectly good prime numbers.

The next step of any analytic number theory argument is usually to switch the
order of the sums (or else to apply Poisson summation, but that does not seem to
help here). We thus see that

(1.3) @) <Y+ > opd) Y1

d|P(Y) 1<n<z
d|n

The inner sum is § + O(1), so that

)<Y+ > w (2 (1)>

dIP(Y)
p(d)

(1.4) =Y+z ) S+ ) 00

d|P(Y) dIP(Y)

=Y +z 1—- o

mi-;)+ >

p<yY d|P(Y)
The product over p < Y generalizes the 5 % - ¢ term we saw earlier. There is an

O(1) term for every divisor of P(Y), and since P(Y) is the product of all primes
<Y we observe to our horror that the error term is exponential in Y.

The product over p converges to zero as Y — oo (this is not trivial, but neither
is it difficult), and so allowing Y to grow slowly with x, one sees that

(1.5) m(x) = o(x).
With a little effort, one can prove that the choice Y = log(z) establishes the bound
w(x) = O(log logw) But one cannot help but be annoyed by the error term—

it remains stubbornly difficult to obtain even the slightest bit of cancellation, let
alone to prove that

7 dw 1/27..2
(1.6) w(w)—/2 logaz+0(x log x),

as is widely expectedH

2. REFINEMENTS OF THE SIEVE

This proof can be refined to show that 7(z) = O(%). But the prime
number theorem is known, and so our efforts seem wasted. (It is not as if complex
analysis is forbidden.) But what of similar problems, those that zeta function
methods seem unable to touch? For example, the twin prime conjecture which says
that there are infinitely many twin prime pairs p, p+2? Or the Goldbach conjecture
which says that every even integer > 4 is the sum of two primes?

These questions were taken up by Viggo Brun in the early twentieth century.
Despite his striking and original results, apparently Brun’s papers were difficult
to read. Cojocaru and Murty’s book suggests that Brun’s papers sat unread on
Edmund Landau’s desk for eight years, and Greaves’ book [7] recommends them to

4This is equivalent to the famous Riemann hypothesis, for which there is an open million dollar
bounty.
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the “adventurous reader”. Less adventurous readers might prefer the books under
review, where Brun’s sieve is given a very readable treatment.

Brun proved that there are infinitely many twin almost prime pairs ¢, g+ 2, where
each of ¢ and ¢ + 2 has at most nine prime factors, and Atle Selberg developed
another sieve and improved upon this. The strongest result along these lines is due
to Jing-run Chen, who proved that there are infinitely many primes p for which p+2
has at most two prime factors. This is at least close to the twin prime conjecture.

All of this is treated in detail by Halberstam and Richert’s 1974 classic Sieve
methods [9], which is newly back in print. The reader of [9] might be forgiven for
believing that sieve methods had already achieved most of their potential. The
book starts with the Eratosthenes, Brun, and Selberg sieves, and in large part
presents a series of more and more complicated iterations of the same techniques,
culminating in a proof of Chen’s theorem.

Their book was relied upon by many, and the chapter endnotes suggested that the
theory had further room for improvement. Their prediction proved accurate: one
may see the books of Diamond and Halberstam [3], Greaves [7], and Harman [I0],
among many other books and papers, for further improvements and applications.
Nevertheless, barring a resolution of the twin prime conjecture, the book [9] seemed
to offer a relatively complete description of the possibilities and limitations of sieve
methods.

The twin prime problem remains open. But a variety of mathematicians have
refined the sieve and found an ever-increasing range of applications for it. John
Friedlander and Henryk Iwaniec (among others) have been at the forefront of this
effort, so it is not surprising that Opera de cribro is already the definitive source
for the modern theory.

Before getting to the books, we discuss a few interesting sieve results which have
been proved in recent years. Omne obvious standout is the theorem of Goldston,
Pintz, and Yildirim [5], who proved that

(2.1) lim inf 22— Pn
n—o0 logn

¢ Pnt1=Pn
logn
equals 1 on average, so their result implies the existence of many small gaps between

primes. Moreover, the same authors proved that
(2.2) lim inf (pn_H —pn) <16
n—oo

if the so-called Flliott—Halberstam conjecture is true; namely, if the primes are well
distributed in arithmetic progressions on average.
Much of their technique can be seen from the formula
(2.3)
S(z) ==

where p,, denotes the nth prime. The prime number theorem implies tha

> (X(n)+X(n+2)+X(n+4)+~--+x(n+1000)—1>( > Ad) 7
)

r<n<2x d|n(n+2)---(n+1000

where y(n) is the characteristic function of the primes, and the A4 are real numbers.
If S(x) > 0, then on weighted average over n, the quantity x(n)+- - -+ x(n+1000) is
larger than 1. It follows that there is some n € [z, 2] for which two of the n+2k are
primes; i.e., there is a bounded prime gap in [z, 2z]. In other words, if one proved
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that S(x) > 0 for all sufficiently large x, this would show that liminf, (an -
pn) < 1000.

We will carry out one more step of the proof. Multiplying out the square and
rearranging the sums, one obtains

(24)  S(@)=> Ak > <x(n) + - 4 x(n 4 1000) — 1),
d,e

r<n<2x
[d,e]|n(n+2)---(n+1000)

where [d, €] is the least common multiple of d and e. We will require that Ay = 0 for
d > D (for some D) to prevent the error terms from spiraling out of control. The
condition in the inner sum restricts n to certain arithmetic progressions (mod [d, €]),
and we must estimate the number of primes in these progressions. This explains
the utility of the Elliott—Halberstam conjecture, and it also illustrates how sieve
methods can effectively use theorems from other parts of analytic number theory.

This technique led quite directly to ([22), and a variation led to ([ZI). Needless
to say, there are considerable technical difficulties. It is easy to define coefficients Ay
for which S(z) is presumably positive, and it is easy to define coefficients for which
S(z) can be reasonably evaluated, but it is difficult to satisfy these constraints
simultaneously, especially for [2.1]).

Another remarkable result is due to Friedlander and Iwaniec [4], who proved that
the polynomial 22 +y* represents infinitely many primes. Adapting their methods,
Heath-Brown [12] proved the same for the polynomial 2% + 2y%. A novice may not
know to be impressed; for example, every book on algebraic number theory proves
that the related polynomial 2 + y? represents precisely the primes 2 and those
=1 (mod 4).

The difference is that 22 + y* is not the norm form of any number field to Q,
and so the usual algebraic methods do not suffice. Friedlander and Iwaniec indeed
work in the Gaussian field Q(7) (where their polynomial factors), but their work
critically relies on further development of the sieve.

A key input is a result on the level of bilinear distribution of this sequence. As we
saw in (24, it is useful to understand the average distribution of primes (and other
sequences) in arithmetic progressions. If one can estimate these up to modulus D,
with sufficiently good error terms, one says that the sequence being sieved has level
of (absolute) distribution D. Bombieri, Friedlander, and Iwaniec’s recent work on
the asymptotic sieve has highlighted the importance of related estimates for certain
bilinear forms. In many applications it is both useful and possible to prove such
estimates—especially when it is hoped that the sieve will detect primes.

A discussion of recent results on the primes would be incomplete without men-
tioning Green and Tao’s exciting result [8] that the primes contain arbitrarily long
arithmetic progressions. Their work substantially overlaps with sieve methods; no-
tably, they use the variant Selberg sieve weights appearing in Goldston, Pintz, and
Yildirim [5]. Their work also applies ergodic theory, placing it outside the purview
of the books under review. Nevertheless, many of the technical details overlap, and
Opera de cribro in particular would make an excellent companion to works on this
family of ideas.
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3. THE BOOKS UNDER REVIEW

Let us say something, then, about the books under review.

We begin with the Cojocaru and Murty book. The authors, in their own words,
aim “to acquaint graduate students to the difficult, but extremely beautiful area,
and enable them to apply these methods in their research. Hence we do not develop
the detailed theory of each sieve method. We hope that many will find the treatment
elegant and enjoyable.” In my estimation, the authors succeed admirably.

The absolute beginner to analytic number theory can do no better than to start
with Chapter 1 and do all thirty-six of the exercises. The book then proceeds with
a variety of sieve methods, including those of Brun and Selberg, the “large” sieve of
Linnik, and a variety of lesser-known but interesting sieves. The authors emphasize
applications throughout, and not only the most well-known ones.

At only 224 pages it is the shortest and simplest book on sieve methods that I
have seen. Experts will note that much of the material is readily available elsewhere,
but beginners will appreciate the clear path laid out towards the modern theory.
Although the authors stop short of the state of the art (for example, settling for a
proof that p + 2 has four prime factors infinitely often, in contrast to Chen’s two)
they come closer than one might expect, and I enthusiastically recommend their
book to any newcomer to the subject.

This, then, leaves the door open for a modern treatment of sieve methods, written
for the aspiring expert, which connects classical work to ongoing progress. This is
brilliantly accomplished by Opera de cribro. On the back cover Enrico Bombieri
calls the book “a true masterpiece”, and your reviewer found no cause to disagree.

Caveat emptor, however: the book is not for the faint of heart. This can be seen,
for example, in their treatment of the sieve of Eratosthenes. To my surprise, they
do not present the simple proof above that 7(z) = O(m). After discussing
this circle of ideas at the beginning of the book, they seemingly decide that the
error term will be too large to be interesting, and abandon it. They return to this
sieve in Chapter 4, but only in cases (i.e., for sequences A which are not of the form
{n: 1 <n < z}) where they can obtain an asymptotic.

This book, then, is recommended for those who have already read an introduc-
tory book on analytic number theory, such as those by Davenport [2] or Montgomery
and Vaughan [15]. The authors freely use techniques such as Mellin integration and
Poisson summation, which are familiar to the seasoned analytic number theorist but
which could catch the novice by surprise. Occasionally the authors appeal to more
sophisticated results from the subject, for which it would be handy to also have
Iwaniec and Kowalski’s book [I3] at hand.

Although the casual reader might prefer to look elsewhere, the serious and pre-
pared reader will recognize this book as a goldmine. Among many other places,
this can be seen in Chapter 7.2, “Comments on the A%-Sieve”. Having presented
the main theorem of the Selberg sieve in Chapter 7.1, the authors now offer five
full pages of discussion of the result. The formulas for the sieve coefficients are
(unavoidably) complicated, and so this section reads like a burst of fresh air. The
serious student no longer has any excuse to treat the Selberg sieve as a mysterious
black box, as Friedlander and Iwaniec take great pains to provide not only the
details but also the motivation.

The authors discuss technical details such as “composition of sieves” early in
the book, and they do the difficult work of establishing the fundamental theorems
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of sieve theory in the middle (roughly Chapters 7-11). The payoff is apparent
later in the book, where the authors present a dizzying variety of variations and
applications—far more than in any book on sieves that I have seen. By then the
authors can say, e.g., “we choose (\,), (Ay,) to be upper-bound sieves of level
D < z and with A, supported on numbers coprime to 8”7, and the diligent reader
will know what is meant.

This last point should really be emphasized. It is typical of sieve results that
there are a large number of technical hypotheses to be verified, leading to some com-
plicated, technical conclusion. Opera de cribro does an impressive job of presenting
sieve methods as a genuine theory, where the technical underpinnings are well mo-
tivated and for the most part encapsulated, and one really can just “introduce an
upper-bound sieve”.

A further treat can be found near the end of the book, where the authors use sieve
methods to prove Linnik’s theorem: given any arithmetic progression a (mod q),
there is a prime p = a (mod q) with p < ¢%, where L is an absolute constant. The
usual proof, using L-functions, is notoriously difficult, where standard methods are
stymied by the possibility of an exceptional zero, violating the Riemann hypothesis,
lying very close to 1. Such a zero does not exist—but this cannot be proved. The
usual proof of Linnik’s theorem (see, e.g., that in [I3]) establishes an “exceptional
zero repulsion” principle, akin to proving that at most one of Santa Claus and the
Tooth Fairy exist.

Friedlander and Iwaniec do not avoid zeros of L-functions, but they make clever
use of the exceptional zerof] if it does not exist, then the standard methods work
easily; if it does exist, then a sieve problem of very low dimension is set up, and
primes = a (mod ¢) can be found. As the authors say, “No wonder then that we
welcome the exceptional characters into the arsenal of tools in analytic number
theory, even though we perceive them as ghosts in the house who will eventually
disappear forever.”

This last proof illustrates how sieve methods can be applied in concert with other
tools from analytic number theory, a theme that runs throughout the book. To
give another example, the authors repeatedly demonstrate how Poisson summation
can be used to establish good levels of distribution for various sequences, thereby
preparing the ground for the sieve.

This exciting and innovative book will introduce the reader to a fascinating area
of contemporary research, which is very much intertwined with the rest of analytic
number theory, and which has a promising future—even if it does not prove the
twin prime conjecture. The authors are sure to be rewarded for their efforts by the
sight of ratty, worn-out copies of their book in the offices of a generation of analytic
number theorists.
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