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Imagine a perfectly elastic d-dimensional sheet, infinite in extent, immersed (pos-
sibly with self-intersection) in a Riemannian manifold (M, g). One can think of this
sheet as a static map φ : Ω → M from d-dimensional spatial domain intoM (in equi-
librium with regards to surface tension) or as a freely evolving map φ : R×Ω → M
from a spacetime R × Ω into M . (For simplicity, we will primarily focus on Eu-
clidean spatial domains Ω = Rd here.) What are the ideal equations of motion for
this sheet?

For the evolution of a point particle φ : t �→ φ(t) moving freely in M (i.e.
the evolutionary case when d = 0), the motion is described by the geodesic flow
equation, which can be described in a number of different ways, all of which are of
importance. In coordinates, the geodesic flow equation is given by the nonlinear
ordinary differential equation

∂ttφ = −Γ(φ)(∂tφ, ∂tφ),

where Γ is the Christoffel symbol. In coordinate-free terms, this equation can be
written as

Dt∂tφ = 0,

where Dt = (φ∗∇)t is the ∂t component of the pullback φ∗∇ of the Levi–Civita
connection ∇ on the tangent bundle TM to the pullback bundle φ∗TM . In varia-
tional terms, the geodesic flow equation can be viewed as the formal Euler–Lagrange
equation for the functional

L(φ) := 1

2

∫
R

|∂tφ|2g(φ) dt,

where |∂tφ|g(φ) denotes the magnitude of the tangent vector ∂tφ at φ with respect
to the metric g. Finally, in Hamiltonian terms, one can view the geodesic flow
equation as the Hamiltonian flow associated to the energy

E(φ[t]) :=
1

2
|∂tφ(t)|2g(φ(t)),

where we use φ[t] := (φ(t), ∂tφ(t)) to denote the full state of the particle φ at time
t (i.e. both its position and velocity).

For a static map φ : x �→ φ(x) from a Euclidean spaceRd intoM , the equilibrium
requirement is described mathematically by the harmonic map equation, which
again can be described in a number of important ways. In coordinates, the harmonic
map equation is written as

Δφ = −Γ(φ)(∂iφ, ∂jφ),

where ∂i is differentiation in the xi spatial direction, Δ = ∂i∂i is the usual Lapla-
cian, and Roman indices such as i are summed from 1 to d. In coordinate-free
notation, this becomes

Di∂iφ = 0,
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and in variational terms, harmonic maps are formal critical points for the Dirichlet
energy functional

L(φ) := 1

2

∫
Rd

〈∂iφ, ∂iφ〉g(φ) dx.

When the target manifold M is a Euclidean space, a harmonic map is the same
concept as a harmonic function, and so the general harmonic map equation can be
viewed as a nonlinear generalization of Laplace’s equation Δφ = 0. A typical exam-
ple of a harmonic map is the stereographic projection from R2 = {(x, y, 0) : x, y ∈
R} to the unit sphere S2 = {(x, y, z) : x2 + y2 + (z − 1)2 = 1} by projecting from
the north pole (0, 0, 2). Harmonic maps arise naturally in the theory of minimal
surfaces, in conformal or complex geometry, and in the topology of manifolds.

The natural common generalization of the geodesic flow equation (in time) and
the harmonic maps equation (in space) is the wave maps equation for an evolving
map φ : R1+d → M from Minkowski spacetime R1+d = (R1+d, h) into M , which
in coordinates takes the form

(0.1) �φ = −Γ(φ)(∂αφ, ∂αφ),

where � := ∂α∂α is the d’Alambertian operator, and α runs over the spacetime
indices 0, . . . , d and is raised and lowered according to the Minkowski metric dh2 =
−dt2 + dx2. In coordinate-free notation, this becomes

(0.2) Dα∂αφ = 0.

In variational terms, wave maps are formal critical points of the functional

(0.3) L(φ) := 1

2

∫
R1+d

〈∂αφ, ∂αφ〉g(φ) dxdt

and can also be viewed as the Hamiltonian flow associated to the energy functional

(0.4) E(φ[t]) :=
1

2

∫
Rd

|∂tφ(t, x)|2g(φ(t,x)) + |∇xφ(t, x)|2g(φ(t,x)) dx.

Solutions to this equation are known as wave maps or sigma models. They serve as
simplified models for other, more complicated, relativistic field equations, such as
the Yang–Mills equations and Einstein’s equations for gravity; in particular, they
are perhaps the simplest nonlinear wave equation that admits a nontrivial gauge
symmetry. In the opposite direction, wave maps are a more complicated variant of
the scalar semilinear wave equation �φ = F (φ), which has been intensively studied
in recent decades. As such, wave maps are an important test case for extending
the well-developed theory of scalar semilinear wave equations to more geometric
settings.

As it turns out, there is a fifth description of wave maps, in addition to the
above four (0.1)–(0.4), which is of importance in the analysis of these equations
(including the one in the book under review), in which one takes the derivative
map dφ (which one views as a section of the pullback bundle φ∗TM), expresses
that map in terms of an orthonormal frame (or “gauge”) for that bundle, and then
recasts the wave map equation (0.2) (together with the torsion-free property of the
Levi–Civita connection) as a covariant div-curl system that enjoys an additional
gauge freedom coming from the ability to arbitrarily change the orthonormal frame
used to coordinatise the derivative map dφ; see [26] for details. However, for the
purposes of this review we will not discuss this derivative formulation in much
further detail here.
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Being a nonlinear wave equation, the fundamental solvability problem for wave
maps is the Cauchy problem, which we specify in the smooth category for simplicity:
given a specified smooth initial datum φ[0] = (φ(0), ∂tφ(0)) obeying the obvious
compatibility conditions (namely, that φ(0) lies on M and (φ(0), ∂tφ(0)) lies in the
tangent bundle TM), does there exist a unique smooth solution φ to the wave maps
equation (0.1) with this initial data? Furthermore, if the solution exists for all time,
what are the asymptotics as the time coordinate t goes to infinity, and if instead the
solution only exists up to some finite time T∗, how does the solution “blow up” as t
approaches T∗? One can also ask related questions, such as quantitative estimates
on the regularity, stability, and lifespan of solutions, as well as the question of
what happens if one weakens the regularity hypotheses on the initial data or on
the solution, but we will not focus on these additional interesting questions in this
review.

From past experience with general nonlinear evolution equations, we know that
there are two key features of the wave maps equation that will play a major role
in answering the above questions. The first key feature is the conservation of the
energy (0.4), as well as the closely related pointwise conservation ∂αT

αβ of the
stress-energy tensor

Tαβ =
1

2
〈∂αφ, ∂βφ〉g(φ) −

1

4
hαβ〈∂γφ, ∂γφ〉g(φ).

Note that while a smooth map might not have finite energy due to slow decay
at spatial infinity, it will always be locally of finite energy, which turns out to be
sufficient for the question of global existence and regularity, due to the finite speed
of propagation of the wave maps equation.

The second key feature is the scale invariance of the wave maps equation with
respect to the scaling transformation φ �→ φ(λ), defined for any scaling parameter
λ > 0 by

(0.5) φ(λ)(t, x) := φ(
t

λ
,
x

λ
),

which can be easily verified to preserve the class of wave maps. The case d =
2 of two spatial dimensions then plays a distinguished role, as it is the unique
dimension for which the wave maps equation is energy-critical, in the sense that
the energy (0.4) is invariant (i.e. dimensionless) with respect to the scaling (0.5).
Informally, this means that for a given energy, the relative strength of the linear
and nonlinear components of the wave maps equation (0.1) are equally matched,
both at arbitrarily large and at arbitrarily small spatial scales. This is in contrast
to the subcritical situation d = 1, in which the fine scale behavior is essentially
linear, and one can easily establish global regularity of solutions from arbitrary
smooth initial data (see [12], [3], [6], [16]), and also should be compared with the
supercritical situation d > 2, in which one can construct self-similar solutions that
blow up in finite time (at least when the target manifold is positively curved; see
[2], [19], [22]).

Henceforth we restrict our attention to the energy-critical case d = 2. The study
of critical equations (not just of wave equation type, but across all classes of PDE)
has proven to be a fascinating and delicate story, requiring very sophisticated (and
scale-invariant) estimates from harmonic analysis, and in particular in exploiting
the phenomenon of concentration compactness, which is a major theme of the book
under review. This study naturally splits into two subtopics: the perturbative
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theory, in which one either makes a smallness hypothesis on the initial data (e.g.
small energy), or works locally in time instead of globally; and the nonperturbative
theory, in which one extends the perturbative theory into the regime of large data
and long times.

For simpler equations, such as the semilinear wave equation, the perturbative
theory can be handled by applying the contraction mapping theorem (or equiv-
alently, the Picard iteration scheme) in a carefully chosen function space, using
a number of harmonic analysis estimates on solutions to the linear wave equa-
tion, such as the Strichartz estimates. In the case of wave maps, the perturbative
theory is surprisingly complicated; not only does one need to employ incredibly
complicated spaces and estimates, but one must also perform an additional gauge
transformation to prevent a logarithmic divergence coming from the interactions
between scales. Nevertheless, this can all be accomplished, leading in particular to
the conclusion that one has existence and uniqueness of global smooth wave maps
into any reasonable target manifold as long as the initial data has sufficiently small
energy; see [10], [14], [33], [27] for surveys of the long sequence of papers leading
up to this result (which, for reasons of space, we are unable to survey here).

For the perturbative theory, the exact choice of target manifold does not play
a decisive role (although some particularly simple manifolds, such as the sphere,
allow for an easier treatment in the proofs). In contrast, in the nonperturbative
theory there is an important distinction to be made between positively curved tar-
gets and negatively curved targets (which roughly speaking correspond to focusing
and defocusing nonlinearities respectively for the semilinear wave equation). This
can already be seen at the level of harmonic maps (which can be interpreted as the
stationary solutions to the wave maps equation); positively curved targets can sup-
port nontrivial harmonic maps of finite energy (such as the stereographic projection
to S2 mentioned earlier), whereas negatively curved targets cannot (as can be seen
from the Bochner–Weitzenbock identity and an integration by parts; see e.g. [5] or
[27]). In the positively curved case, it is now known that one can construct large
energy solutions that blow up in finite time [11], [15]. In the negatively curved case
(and in particular, in the case the target manifold is a hyperbolic space M = Hm),
it was conjectured that no blowup occurs, and that solutions exist globally and
remain smooth for all time. One of the main purposes of the text under review is
to establish this conjecture for constant negative curvature surfaces, such as H2:

Theorem 0.1 (Global regularity). Let M be a Riemann surface of constant neg-
ative curvature. Then for any smooth initial data φ[0] : R2 → TM , there exists a
unique smooth wave map φ : R1+2 → M with this initial data.

This result was also simultaneously established by the author [28]–[32] for con-
stant negative curvature manifolds of any dimension, and by Sterbenz and Tataru
[20], [21] for arbitrary smooth targets with bounded geometry; earlier results in
these directions under additional symmetry conditions on the initial data may be
found in [4], [18], [17], [23], [24], [25]. However, in contrast to these other works, the
authors are able to go well beyond global regularity, and also obtain some (rather
technical to state) estimates and qualitative conclusions on the asymptotic behav-
ior of solutions (assuming, for sake of simplicity, that the initial data is constant
outside of a compact set), and furthermore establish an important concentration
compactness property of solutions, which is one of the strongest statements one can
make about the well-posedness of a given equation.
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To explain this further, we now step back briefly from wave maps to give an
extremely abbreviated history of concentration compactness. A fundamental dif-
ficulty in functional analysis is the failure of the Bolzano–Weierstrass theorem in
infinite dimensions: given a sequence of functions f1, f2, f3, . . . in some function
space (e.g. the Sobolev space H1(Rd) for some d > 2) of bounded norm, it is
usually not the case that one can find a subsequence fnj

which converges strongly
to some limit v, thus having a decomposition

(0.6) fnj
= v + wj .

Standard counterexamples precluding such a decomposition include “moving bump”
examples where each fn is concentrated at a point xn in space that goes to infinity
as n → ∞, or “shrinking/growing bump” examples where each fn is spread out over
a spatial scale λn that is going to either zero or infinity as n → ∞. There are also
countless “dispersed” examples in which the fn do not behave like bump functions,
but simply fluctuate randomly in space without converging strongly to any limit.
This lack of compactness frustrates many strategies for understanding solutions to
a PDE (for instance, by trying to locate an extremiser to a variational problem),
and so a vast amount of effort has been devoted to finding substitutes for this lack
of compactness. One general substitute in this regard is weak compactness : thanks
to results such as the Banach–Alaoglu theorem, one can usually recover a version of
the Bolzano–Weierstrass theorem if one is willing to allow the subsequence fnj

to
converge in the weak topology rather than the strong one. However, weak conver-
gence is often insufficient for applications. A compromise is to work with notions
of convergence intermediate between strong and weak convergence, such as conver-
gence in a weaker norm than the original function space norm. For instance, if the
initial function space was H1(Rd), one might study convergence in the Lebesgue
space L2d/(d−2)(Rd), as the latter norm is controlled by the former norm thanks to
the Sobolev embedding theorem. In this intermediate norm, the dispersed examples
alluded to previously are no longer an obstruction (they converge to zero in interme-
diate norms), but the moving bump and shrinking/growing bump counterexamples
are still present, as are superpositions of such examples. The concentration com-
pactness phenomenon, which was first introduced and systematically developed by
Lions [13], asserts, roughly speaking, that such superpositions are in fact the only
obstruction to compactness; given any sequence f1, f2, . . . bounded in (say)H1(Rd),
one can extract a subsequence fnj

which admits a profile decomposition

(0.7) fnj
=

∑
k

gj,kvk + wj

for some vk independent of j, for some wj converging in the intermediate sense

L2d/(d−2)(Rd) to zero, and where the gj,k are elements of the relevant symmetry

group acting on both H1(Rd) and L2d/(d−2)(Rd), which in this case is the affine
group of translations and dilations (where the dilations are normalized to preserve
the H1(Rd) and L2d/(d−2)(Rd) norms). Here we are glossing over several technical
details about the nature of convergence of the sum

∑
k gj,kvk. While this appears

to be a significantly more complicated notion of convergence than (0.6), the fact
that the error can be made small in a normed sense, rather than simply converging
weakly to zero, is of importance in PDE applications (particularly because many
stability results about PDE and their associated functionals are stated with respect
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to norms rather than in weak topologies). Very roughly speaking, these concen-
tration compactness results can be proven by iteratively locating places and scales
where the functions fnj

“concentrate”, renormalizing such components of fnj
into

a single profile vk, and then subtracting off the effect of that profile and continuing
the iteration.

The original formulation of the concentration compactness phenomenon was
phrased for sequences in linear spaces, such as Sobolev spaces, or the space of
solutions to a certain linear differential equation with a finiteness condition im-
posed on some norm of the solution. However, in 1999, Bahouri and Gérard [1]
observed that a version of concentration compactness also held for certain nonlin-
ear classes of functions, and specifically for finite energy solutions fn to a certain
energy-critical nonlinear wave equation. Roughly speaking, their main result was
that given any such sequence of solutions with uniformly bounded energy, one could
find a subsequence fnj

with a profile decomposition (0.7), where vk were also so-
lutions to the same nonlinear equation, the error wj converged to zero in suitable
intermediate norms, and the gj,k represent the symmetries of the space of solutions
(in this case, the group generated by translations in both space and time, as well
as scaling). The nonlinear proof, while being more complicated than the linear
one, still followed the same basic strategy, namely to isolate locations and scales
where the solutions fn concentrated, and then removing the resulting profiles (us-
ing various approximate superposition principles to overcome the lack of perfect
linearity).

In a seminal paper of Kenig and Merle [8], a general strategy was laid out in which
the Bahouri–Gérard concentration compactness phenomenon (and variants thereof)
could be used to demonstrate global regularity for critical nonlinear equations,
together with some associated quantitative bounds. Suppressing many details, the
strategy proceeds as follows. Suppose for sake of contradiction that one did not have
global regularity or the associated bounds; then by standard perturbative theory,
one could find a sequence of solutions fn with finite energy, such that a certain
spacetime norm of the fn diverged to infinity as n → ∞. Furthermore, one could
assume that the energy En of these solutions fn converged to a critical energy Ecrit,
below which all solutions were well behaved in suitable norms. Applying the profile
decomposition (0.7), it turns out that one can then extract a single profile v whose
energy is exactly the critical energy Ecrit. Furthermore, there is an important almost
periodicity property to this profile, namely that at any given time it is localized in
a single location in space and frequency, without dispersing across many locations
or many scales. (Intuitively, the reason for this is that if such dispersion were to
take place, then the profile would decouple into two or more component profiles
of strictly smaller energy, which can be used to contradict the definition of the
critical energy.) It is then often possible to combine this almost periodicity with
other properties of solutions (such as monotonicity formulas of Morawetz or virial
type) to obtain a contradiction, thus establishing global regularity. See [7], [9] for
surveys of this method and its variants, which remain among the most powerful
tools currently known to attack critical nonlinear PDE.

Almost the entirety of the almost five hundred pages of the book under review is
devoted to implementing this strategy for the energy-critical wave maps equation.
There are several reasons why the argument is this lengthy. Firstly, as already
mentioned briefly, in order to obtain a satisfactory perturbative theory, one has
to pass to the derivative map formulation of wave maps, and then one has to
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select a good gauge in order to keep the nonlinear terms at a manageable size.
There are a number of gauges which are suitable for this purpose; in the setting
of Riemann surfaces, it turns out that the Coulomb gauge (in which a certain
divergence-free condition is imposed on the connection coefficients) is an acceptable
choice. Unfortunately, the introduction of this gauge introduces a number of higher
order terms into the nonlinearity, and a large part of the text is concerned with the
establishment of estimates that can adequately control these terms.

Once this is done, the next stage is to run the Bahouri–Gérard concentration
compactness method to decompose the wave map into profiles. Here, another diffi-
culty emerges, which appears to be inherent to the wave maps equation and is not
present in simpler models such as the semilinear wave equation. Namely, the princi-
ple of superposition partly fails when one attempts to superimpose a low frequency
wave map with a high frequency wave map; the effect of the latter on the former
remains negligible, but the effect of the former on the latter is nontrivial, with the
low frequency component acting as a “magnetic” field that rotates the phases of the
high frequency component. This partial interaction between frequencies requires
an extremely careful profile decomposition, in which the lowest frequency compo-
nents of a sequence of wave maps are extracted first, and the next lowest frequency
components extracted with the assistance of the linearized equation around the
previous components, and so forth until all components have been extracted.

Finally, a minimal energy profile is extracted, and by applying local energy es-
timates of Morawetz (or Pohozaev) type, it is shown that these profiles behave
self-similarly or statically in a certain limit, so that they are associated to a non-
trivial harmonic map (either from the plane, or from hyperbolic space). Known
results about harmonic maps, combined with the negative curvature of the target,
can then be used to obtain a contradiction and prove the main theorem.

In all, the book provides a detailed and careful presentation of one of the deepest
results available for the wave maps equation, and is a remarkable technical achieve-
ment that exemplifies the vast amount of progress that the field of nonlinear wave
and dispersive equations has experienced in recent decades.

References

1. H. Bahouri, P. Gérard, High frequency approximation of solutions to critical nonlinear wave
equations, Amer. J. Math. 121 (1999), no. 1, 131–175. MR1705001 (2000i:35123)

2. T. Cazenave, J. Shatah, A.S. Tahvildar-Zadeh, Harmonic maps of the hyperbolic space and
development of singularities in wave maps and Yang-Mills fields, Ann. Inst. H. Poincaré Phys.
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